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Introduction.

In his paper [7], being inspired by a classical treatment of static magnetic fields
in the three dimensional Euclidean space, T. Sunada studied the flow associated with
a magnetic field on a Riemann surface. A closed 2-form $B$ on a complete Riemannian
manifold $M$ is called a magnetic field. Let $\Omega=\Omega_{B}$ denote the skew symmetric operator
on the tangent bundle $TM$ of $M$ satisfying $ B(u, v)=\langle u, \Omega(v)\rangle$ with the Riemannian metric
$\langle, \rangle$ for every tangent vectors $u$ and $v$ . The Newton equation on this setting is of the
form $\nabla_{\dot{\gamma}}\dot{\gamma}=\Omega(\dot{\gamma})$ for a smooth curve $\gamma$ on $M$. We call such a curve satisfying this equation
a trajectory for $B$ . In terms of physics it is a trajectory of a charged particle moving on
this manifold under the action of the magnetic field. The aim of this paper is to give a
light in terms of magnetic fields on dynamical systems for a manifold of complex space
form. The most important dynamical object associated to a Riemannian manifold is
the geodesic flow. Consider the case without an action of magnetic field, $B=0$ . The
Newton equation turns out to $\nabla_{\dot{\gamma}}\dot{\gamma}=0$ , hence trajectories are nothing but geodesics. In
the same way as the geodesic flow corresponds to geodesics, we can define a flow
associated with a magnetic field in the following manner. One can easily check that
every trajectory $\gamma(t)$ for $B$ has constant speed, hence is defined for $-\infty<t<\infty$ . We call
a trajectory normal if it is parametrized by its arc length. The magnetic flow
$B\varphi_{t}$ : $UM\rightarrow UM$ on the unit tangent bundle $UM$ is defined by

$B\varphi_{t}(v)=\gamma_{v}(t)$ , $v\in UM$ , $-\infty<t<\infty$ ,

where $\gamma_{v}$ denotes the normal trajectory for $B$ with $\dot{\gamma}_{v}(0)=v$ . If $\gamma$ is a trajectory for $B$,

then the curve $\sigma(t)=\gamma(\lambda t)$ with a constant $\lambda$ is a trajectory for $\lambda B$ . This represents a
dynamical property of trajectories for $B$ .

On a Riemann surface, magnetic fields are of the form $f$ . Vol with a smooth
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function $f$ and the volume form Vol. When $f$ is a constant function, it is called uniform.
The feature of trajectories are well-known for a uniform magnetic field $k$ . Vol on a
surface of constant sectional curvature. On a sphere $S^{2}(c)$ of sectional curvature $c$ ,
normal trajectories are small circles, which can be seen circles (in usual sense ofEuclidean
geometry) of radius $(k^{2}+c)^{-1/2}$ if we canonically embed $S^{2}(c)$ in $R^{3}$ . On a Euclidean
plane $R^{2}$ they are circles of radius $1/|k|$ . In these two cases, every trajectory is closed.
The prime period of anormal trajectory is $2\pi/\sqrt{k^{2}+c}$ on $S^{2}(c)$, and $2\pi/|k|$ on R2. On
a hyperbolic plane $H^{2}(-c)$ of sectional curvature $-c$ , the feature is quite different.
When the strength $|k|$ is greater than $\sqrt{c}$ , normal trajectories are still closed with prime
period $2\pi/\sqrt{k^{2}-c}$, but when $|k|\leq\sqrt{c}$, normal trajectories are open curves and go to
some points on the ideal boundary as $ t\rightarrow\pm\infty$ . Moreover, when $|k|=\sqrt{c}$ normal
trajectories are horocycles (see [4] and [7]).

We shall now consider magnetic fields on manifolds of higher dimension. We call
a magnetic field uniform if the associated skew symmetric operator is parallel $\nabla\Omega=0$ .
This means that the magnetic field has constant strength. On real space forms of
dimension greater than 2 we find there exist no nontrivial uniform magnetic fields.
Another typical example of uniform magnetic fields is a K\"ahler magnetic field on a
K\"ahler manifold. Let $(M, J)$ be a K\"ahler manifold with a complex structure $J$. We call
a scalar multiple of the K\"ahler form $B_{J}$ a Kahler magnetic field, here the K\"ahler form
is given by $ B_{J}(u, v)=\langle u, Jv\rangle$ . In contrast with the feature of trajectories for uniform
magnetic fields on surfaces of constant sectional curvature, it is quite natural to study
K\"ahler magnetic fields on manifolds of constant holomorphic sectional curvature. For
a complex space $C^{n}$ , the flat case, the situation is trivial. For a complex projective space,
we announced in [1] that every trajectory for a K\"ahler magnetic field is a small circle
on a totally geodesic embedded 2-sphere, hence is simply closed. We study in section
1 the case of a complex hyperbolic space $CH^{n}(-c)$ of constant holomorphic sectional
curvature $-c$ . We give explicit expressions of trajectories and point out that the feature
of trajectories changes according to the strength $|k|$ of a K\"ahler magnetic field $k\cdot B_{J}$

is greater or smaller than $\sqrt{c}$ . Under these consideration we shall be concemed in
section 2 with dynamical theoretic relationship between the geodesic flow and K\"ahler
magnetic flows. Two flows $\varphi_{t}$ and $\psi_{t}$ on a manifold $N$ are said to be smoothly conjugate
in the strong sense if there exist a diffeomorphism $f:N\rightarrow N$ and a nonzero constant
$\theta$ such that $f^{-1}\circ\varphi_{t}\circ f=\psi_{\theta t}$ . We show that, in the same way as the sense $n=1$ , K\"ahler
magnetic flows for $CH^{n}(-c)$ are classified into three classes according to the strength
of K\"ahler magnetic field. We also point out that K\"ahler magnetic flows for a complex
projective space are strong smoothly conjugate each other.

Our proof is based on the fact that a complex hyperbolic space is a base manifold
of a principal $S^{1}$ -bundle $\pi:H_{1}^{2n+1}\rightarrow CH^{n}$ , which corresponds to the Hopf fibration
$S^{2n+1}\rightarrow CP^{n}$ . Once we take horizontal lifts of trajectories, we find that they are helices
of order 3, which satisfy linear ordinary differential equations in $C^{n+1}$ . Solving these
equations we can give their explicit expressions, which are very useful in our argument.
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Our results are natural generalization of the result of [7] on uniform magnetic flows
for a hyperbolic plane.

\S 1. Trajectories for K\"ahler magnetic fields.

We shall start with giving some fundamental notations on a complex hyperbolic
space. Consider a Hermitian form on $C^{n+1}$ defined by

$\ll z,$ $w\gg=-z_{0}\overline{w_{0}}+\sum_{j=1}^{n}z_{j}\overline{w_{j}}$ ,

for $z=(z_{0}, \cdots, z_{n}),$ $w=(w_{0}, \cdots, w_{n})\in C^{n+1}$ . On the real hypersurface $ H_{1}^{2n+1}=\{z\in$

$C^{n+1}|\ll z,$ $z\gg=-1$ }, the group $S^{1}=\{e^{i\theta}\}$ acts freely; $z\rightarrow e^{i\theta}z$ . We denote by
$\pi:H_{1}^{2n+1}\rightarrow CH^{n}$ the principal $S^{1}- fiber$ bundle. For $z\in H_{1}^{2n+1}$ , the tangent space is
represented by

$T_{z}H_{1}^{2n+1}=\{(z, u)|u\in C^{n+1}, {\rm Re}\ll z, u\gg=0\}$ ,

and is decomposed into horizontal and vertical subspaces $\ovalbox{\tt\small REJECT}_{z}H_{1}^{2n+1}\oplus\gamma {}_{z}H_{1}^{2n+1}$ , where

$\ovalbox{\tt\small REJECT}_{z}H_{1}^{2n+1}=\{(z, u)|u\in C^{n+1}, \ll z,u\gg=0\}$ , and $\mathscr{V}{}_{z}H_{1}^{2n+1}=\{(z, i\lambda z)|\lambda\in R\}$ .

The tangent space $T_{\pi\langle z)}CH^{n}$ is identified with the horizontal subspace $\ovalbox{\tt\small REJECT} {}_{z}H_{1}^{2n+1}$ , and
represented by

$T_{\pi\langle z)}CH^{n}=\{d\pi((z, u))|z\in H_{1}^{2n+1}, (z, u)\in\ovalbox{\tt\small REJECT} {}_{z}H_{1}^{2n+1}\}$ .

Since the restriction of the Hermitian form $\ll,$ $\gg$ on $T_{z}C^{n+1}\simeq C^{n+1}$ to $\ovalbox{\tt\small REJECT} {}_{z}H_{1}^{2n+1}$ is
positive-definite, we can define a metric on $CH^{n}$ by

$\langle u, v\rangle=\frac{4}{c}{\rm Re}\ll u,$ $ v\gg$ , $u,$ $v\in T_{\pi\langle z)}CH^{n}\simeq\ovalbox{\tt\small REJECT} {}_{z}H_{1}^{2n+1}$ ,

with a positive constant $c$ . With the complex structure $J$ induced by the canonical
complex structure on $C^{n+1}$ , the K\"ahler manifold $CH^{n}=CH^{n}(-c)$ is called a complex
hyperbolic space of holomorphic sectional curvature $-c$ .

We use the same $\langle, \rangle$ to denote the pseudo-Riemannian metric ${\rm Re}\ll,$ $\gg onC^{n+1}$

and its restriction on $H_{1}^{2n+1}$ . Let V and $\tilde{\nabla}$ denote the Riemannian connections associated
to $\langle, \rangle$ on $C^{n+1}$ and $H_{1}^{2n+1}$ respectively. We put $N=N(z)=(z, z)\in T_{z}H_{1}^{2n+1}$ , which is
the “unit” normal vector at $z\in H_{1}^{2n+1}$ . The relations between V, $\tilde{\nabla}$ and the Riemannian
connection $\nabla$ on $CH^{n}(-4)$ are as follows:

LEMMA 1. (1) For any vector fields $X,$ $Y$ on $H_{1}^{2n+1}\subset C^{n+1}$ we have $\nabla_{X}Y=$

$7_{X}Y-\langle X, Y\rangle N$.
(2) For horizontal vectorfields $X,$ $Y$ on $H_{1}^{2n+1}$ we have in regarding them as vector

fields on $CH^{n}(-4)$ that $\nabla_{X}Y=\tilde{\nabla}_{X}Y+\langle X, JY\rangle JN$.
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$PR\infty F$ . (1) Since $\langle Y, N\rangle=0$ and $\overline{\nabla}_{X}N=X$, we have

$ 0=\overline{\nabla}_{X}\langle Y, N\rangle=\langle\overline{\nabla}_{X}Y, N\rangle+\langle Y,\overline{\nabla}_{X}N\rangle=\langle\overline{\nabla}_{X}Y, N\rangle+\langle Y, X\rangle$ .

Therefore we get

$\nabla_{X}Y=\overline{\nabla}_{X}Y-\frac{\langle\overline{\nabla}_{X}Y,N\rangle}{\langle N,N\rangle}N=\overline{\nabla}_{X}Y+\langle\overline{\nabla}_{X}Y, N\rangle N=\overline{\nabla}_{X}Y-\langle X, Y\rangle N$ .

(2) Similarly we have

$\nabla_{X}Y=\nabla_{X}Y-\frac{\langle\nabla_{X}Y,JN\rangle}{\langle JN,JN\rangle}JN=\nabla_{X}Y-\frac{\langle\nabla_{X}Y,JN\rangle}{\langle N,N\rangle}JN=\nabla_{X}Y+\langle\nabla_{X}Y, JN\rangle JN$ .

Since $\langle Y, JN\rangle=0$ we find

$ 0=\nabla_{X}\langle Y, JN\rangle=\langle\nabla_{X}Y, JN\rangle+\langle Y, \nabla_{X}JN\rangle$

$=\langle\nabla_{X}Y, JN\rangle+\langle Y,\overline{\nabla}_{X}JN-\langle X, JN\rangle N\rangle$

$=\langle\nabla_{X}Y, JN\rangle+\langle Y, EV_{X}N\rangle$

$=\langle\nabla_{X}Y, JN\rangle+\langle Y, JX\rangle=\langle\nabla_{X}Y, JN\rangle-\langle X, JY\rangle$ ,

and get the relation.

By using this fundamental relation, we shall give explicit expressions for trajectories
for K\"ahler magnetic fields on a complex hyperbolic space. We here mention to some
fundamental properties of trajectories for K\"ahler magnetic fields. Let $\gamma$ be a trajectory
for a K\"ahler magnetic field $k\cdot B_{J}$ on a K\"ahler manifold $(M, J, \langle, \rangle)$ . If $f$ is a
$\pm holomorphic$ isometry of $M$, then the curve $ f\circ\gamma$ is a trajectory for $\pm k\cdot B_{J}$ . Two
trajectories $\gamma_{1}$ and $\gamma_{2}$ are called congruent if there exists a holomorphic isometry $f$ with
$\gamma_{2}=f\circ\gamma_{1}$ . On a manifold of complex space form $CP^{n}(c)$ or $CH^{n}(-c)$ , it is clear that
trajectories for $k\cdot B_{J}$ are congruent. When we change the Riemannian metric
homothetically; $\langle$ , $\rangle\rightarrow a^{2}\cdot\langle, \rangle$ for some positive constant $a$ , the curve $\sigma(t)=\gamma(t/a)$ is
a trajectory for the K\"ahler magnetic field $(k/a)\cdot B_{J}$ . In our study for K\"ahler magnetic
fields on a complex hyperbolic space, we may therefore consider only the case of
$CH^{n}(-4)$ .

As a direct consequence of Lemma 1, we can conclude that every horizontal lift $\tilde{\gamma}$

of a trajectory $\gamma$ for a K\"ahler magnetic field $k\cdot B_{J}$ on $CH^{n}(-4)$ into $H_{1}^{2n+1}$ is a helix
of order 3:

$\left\{\begin{array}{l}\nabla_{\gamma}\sim\dot{\tilde{\gamma}}=k\cdot J\dot{\tilde{\gamma}}\\\nabla_{\gamma}\sim J\dot{\tilde{\gamma}}=-k\cdot\dot{\tilde{\gamma}}+JN\\\nabla_{\gamma}\dot{\sim}JN=J\dot{\tilde{\gamma}}\end{array}\right.$

Here we should note that $\langle JN, JN\rangle=-1$ and the equation of helix seems a bit different
from usual one. If we regard $\tilde{\gamma}$ as a curve in $C^{n+1}$ , we get by Lemma 1 that $\tilde{\gamma}$ satisfies
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the following linear ordinary differential equation:
$\ddot{\tilde{\gamma}}-\tilde{\gamma}=ki\dot{\tilde{\gamma}}$ .

Solving this equation under the initial condition that $\gamma(0)=\pi(z)$ and $\dot{\gamma}(0)=d\pi((z, u))$ , we
have

$\tilde{\gamma}(t)=\left\{\begin{array}{ll}(4-k^{2})^{-1/2}\{(\alpha e^{\beta t}-\beta e^{\alpha t})z+(e^{\alpha t}-e^{\beta t})u\}, & if k\neq 2,\\e^{\pm it}\{(1\mp it)z+tu\}, & if k=\pm 2,\end{array}\right.$

where $\alpha=(ki+\sqrt{4-k^{2}})/2$ and $\beta=(ki-\sqrt{4-k^{2}})/2$ . Rewriting these we have

PROPOSITION 1. The trajectory $\gamma$ for the Kahler magnetic field $k\cdot B_{J}$ on $CH^{n}(-4)$

with $\gamma(0)=\pi(z)$ and $\dot{\gamma}(0)=d\pi((z, u))$ is written as

$\gamma(t)=\pi(\cos\sqrt{k^{2}-4}t/2\cdot z+(k^{2}-4)^{-1/2}\sin\sqrt{k^{2}-4}t/2\cdot(-kiz+2u))$ , if $|k|>2$ ,
$\gamma(t)=\pi(\{(1\mp it)z+tu\}))$ , $\iota fk=\pm 2$ ,

$\gamma(t)=\pi(\cosh\sqrt{4-k^{2}}t/2\cdot z+(4-k^{2})^{-1/2}\sinh\sqrt{4-k^{2}}t/2\cdot(-kiz+2u))$ , if $|k|<2$ .

Therefore it lies on a totally geodesic embedded hyperbolic plane $\pi((Cz\oplus Cu)\cap H_{1}^{2n+1})$

of sectional curvature $-4$ .

A trajectory $\gamma$ for a K\"ahler magnetic field is said to be closed if there exist $t_{0}$ such
that $\gamma(t_{0})=\gamma(0)$ and $\dot{\gamma}(t_{0})=\dot{\gamma}(0)$ . We calla positive number the prime period of $\gamma$ if it is
the minimum positive number satisfying these equalities. The expressions (or the
Comtet’s result) lead us to the following.

COROLLARY. The feature of trajectories for the Kahler magnetic field $k\cdot B_{J}$ on
$CH^{n}(-c)$ are as follows.

(1) When $|k|>\sqrt{c}$ , they are simply closed with prime period $2\pi/\sqrt{k^{2}-c}$ .
(2) When $|k|\leq\sqrt{c}$ , they are two-sides unbounded simple open curves. Here a

trajectory $\gamma$ is called two-sides unbounded if the sets $\{\gamma(t)|t>0\}$ and $\{\gamma(t)|t<0\}$ are
unbounded.

Since $|\ll z,$ $w\gg|>1$ if $\pi(z)\neq\pi(w)$ , by use of Proposition 1 one can easily get the
following property on trajectories for a K\"ahler magnetic field of weak strength.

PROPOSITION 2. Consider a Kahler magnetic field $k\cdot B_{J}$ with $|k|<\sqrt{c}$ on a
complex hyperbolic space $CH^{n}(-c)$ . Given two distinct points $p=\pi(z),$ $q=\pi(w)$ on $CH^{n}$

we can find two and only two trajectories for $k\cdot B_{J}$ joining them. One is from $p$ to $q$ and
the other is from $q$ to $p$ . Their length $l$ between these points are the same; it satisfies

$\sinh^{2}\sqrt{c-k^{2}}l/2=\frac{1}{c}(c-k^{2})(|\ll z, w\gg|^{2}-1)$ .

A complex hyperbolic space $CH^{n}$ is identified with the open unit ball $D_{n}(C)$

$=\{x=(x_{1}, \cdots, x_{n})\in C^{n}|((x, x))=\sum_{j=1}^{n}x_{j}\overline{x_{j}}<1\}$ in $C^{n}$ by the map
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$\Phi:CH^{n}\ni\pi(z_{0}, \cdots, z_{n})\rightarrow(z_{1}/z_{0}, \cdots, z_{n}/z_{0})\in D_{n}(C)$ .

The topological boundary $\partial D_{n}(C)=\{x\in C^{n}|((x, x))=1\}$ is the ideal boundary as a
Hadamard manifold. Under this identification the image of trajectories lies on a complex
plane and can be seen as circles on $C^{n}$ like the following figures.

$|k|>\sqrt{c}$ $k=\pm\sqrt{c}$ $|k|<\sqrt{c}$

We here mention the asymptotic behavior of two-sides unbounded trajectories.
Let $\gamma$ be a trajectory with $\dot{\gamma}(0)=d\pi((z, u))$ for a K\"ahler magnetic field $k\cdot B_{J}$ on $CH^{n}(-c)$ .
When the strength $|k|$ is not greater than $\sqrt{c}$, the limits $\gamma(\infty)=\lim_{t\rightarrow\infty}\gamma(t)$ and
$\gamma(-\infty)=\lim_{t\rightarrow-\infty}\gamma(t)$ exist in $\overline{CH^{n}}$, the compactification with the ideal boundary. We
shall call these points the points of infinity of $\gamma$ . $If|k|<\sqrt{c}$ they are distinct, and they
coincide if $k=\pm\sqrt{c}$ . For example, on $CH^{n}(-4)$ we have

$\lim_{t\rightarrow\infty}\Phi\circ\gamma(t)=(\frac{2z_{1}+(ki+\sqrt{4-k^{2}})u_{1}}{2z_{0}+(ki+\sqrt{4-k^{2}})u_{0}},$ $\cdots\frac{2z_{n}+(ki+\sqrt{4-k^{2}})u_{n}}{2z_{0}+(ki+\sqrt{4-k^{2}})u_{0}})$ ,

$\lim_{t\rightarrow-\infty}\Phi\circ\gamma(t)=(\frac{2z_{1}+(ki-\sqrt{4-k^{2}})u_{1}}{2z_{0}+(ki-\sqrt{4-k^{2}})u_{0}},$ $\cdots,$ $\frac{2z_{n}+(ki-\sqrt{4-k^{2}})u_{n}}{2z_{0}+(ki-\sqrt{4-k^{2}})u_{0}})$

if $|k|<2$ , and

$\lim_{t\rightarrow\infty}\Phi\circ\gamma(t)=\lim_{t\rightarrow-\infty}\Phi\circ\gamma(t)=(\frac{z_{1}\pm iu_{1}}{z_{0}\pm iu_{0}},$
$\cdots,$ $\frac{z_{n}\pm iu_{n}}{z_{0}\pm iu_{O}})$

if $k=\pm 2$ . When $k=\pm\sqrt{c}$ we consider the geodesic $\rho$ with $\dot{\rho}(0)=d\pi((z, \pm Ju))$ . On
$CH^{n}(-4)$ it satisfies the equation $\rho(t)=\pi(\cosh t\cdot z\pm\sinh t\cdot Ju)$ , hence $\lim_{t\rightarrow\infty}\Phi\circ\rho(t)=$

$\lim_{t\rightarrow\infty}\Phi\circ\gamma(t)$ . This means that if $\gamma$ crosses to a geodesic going to the single point of
infinity then they cross orthogonally. With these properties we may call trajectories for
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$\pm\sqrt{c}\cdot B_{J}$ are horocyclic.
We denote by $n$ the outer normal vector of $\overline{D_{n}(C)}$ at a point $p$ of infinity for $\gamma$ , and

by $m$ the outer tangent vector at $p$ of the circle which is the image $\Phi\circ\gamma$ . We shall call
the angle between $n$ and $m$ the magnetic angle of $\gamma$ at $p$ . The magnetic angle of trajectories
for $k\cdot B_{J}$ do not depend on the choice of trajectories and on their points at infinity:
the angle is $\cos^{-1}\sqrt{(c-k^{2})/c}$ . Summarizing up we have

PROPOSITION 3. On $CH^{n}(-c)$ trajectories for the Kahler magnetic field $\pm\sqrt{c}\cdot B_{J}$

are horocyclic, and trajectories for $k\cdot B_{J}$ with $|k|<\sqrt{c}$ have distinct points at infinity.

For given two distinct points on $\partial D_{n}(C)$ we have a unique complex plane containing
them. We therefore find out that the property in Proposition 2 is inherited to the ideal
boundary.

PROPOSITION 4. Consider the Kahler magnetic field $k\cdot B_{J}$ with $|k|<\sqrt{c}$ on a
complex hyperbolic space $CH^{n}(-c)$ . Given two distinct points at infinity we have two and
only two trajectories for $k\cdot B_{J}$ joining these points.

\S 2. K\"ahler magnetic flows.

In the previous section we found that trajectories have similar properties as those
of geodesics. By use of the explicit expression of trajectories we shall study K\"ahler

magnetic flows, magnetic flows associated with K\"ahler magnetic fields. Our main result
is the following.

THEOREM 1. Let $B=k\cdot B_{J}$ be a Kahler magnetic field on a complex hyperbolic
space $CH^{n}(-c)$ ofholomorphic sectional curvature-c. Thefeature of the Kahler magnetic
flow $B\varphi_{t}$ depends on the strength $|k|$ .

(1) If $|k|<\sqrt{c}$ , then the Kahler magnetic flow $B\varphi_{t}$ is smoothly conjugate to the
geodesic flow $\varphi_{t}$ in the strong sense;

$f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=\varphi_{\sqrt{}\overline{c-k^{2}}t/\overline{c}}\sqrt{}$

for some $d\iota ffeomorphismf_{k}$ on UCH $(-c)$ .
(2) If $|k|>\sqrt{c}$, then $B\varphi_{t}$ is smoothly conjugate to the rotation flow $B_{0}\varphi_{t}$ , where

$B_{0}=\sqrt{2c}\cdot B_{J}$ in the strong sense;

$f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=B_{0}\varphi_{\sqrt{}\overline{k^{2}-c}t/\sqrt{}\overline{c}}$ if $k>\sqrt{c}$ ,

$f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=B_{O}\varphi_{-\sqrt{}\overline{k^{2}-c}t/\overline{c}}\sqrt{}$ if $k<-\sqrt{c}$

for some diffeomorphism $f_{k}$ on UCH $(-c)$ .
(3) When $k=\pm\sqrt{c}$, the Kahler magneticflow $B\varphi_{t}$ is so called the horocyclic flow,

and is not smoothly conjugate in the strong sense to other magnetic flows for Kahler
magnetic fields of strength not equal to $\sqrt{c}$ .
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$PR\infty F$ . As usual we only treat the case $c=4$ . We first note that the geodesic flow

$\varphi_{t}$ on UCH $(-4)$ is represented by $\varphi_{t}(d\pi(\left(\begin{array}{l}z\\u\end{array}\right))=d\pi(A_{0}(t)\left(\begin{array}{l}z\\u\end{array}\right))$ with the matrix

$A_{0}(t)=\left(\begin{array}{ll}cosht\cdot I & sinht\cdot I\\sinht\cdot I & cosht\cdot I\end{array}\right)\in Mat(2(n+1);C)$ ,

where $\left(\begin{array}{l}Z\\u\end{array}\right)$ denotes the transposed vector of $(z, u)$ and $I\in Mat(n+1, C)$ denotes the

identity matrix. We define $A_{k}(t)\in Mat(2(n+1);C)$ by

$A_{k}(t)=$

$\left\{\begin{array}{l}cosh\sqrt{4-k^{2}}t/2\cdot((1\mp tit)ItI)OIOI+\frac{sinh\sqrt{4-k^{2}}t/2}{\sqrt{4-k^{2}}}.(-kiI2IkiI2I)\\cos\sqrt{k^{2}-4}t/2\cdot IOI+\frac{sin\sqrt{k^{2}-4}t/2}{\sqrt{k^{2}-4}}.(-kiI2I2IkiI)\end{array}\right.$
$ififif$ $k=\pm 2|k|<2|k|>2$

,

where $O\in Mat(n+1, C)$ denotes the zero matrix. By Proposition 1 we find that the K\"ahler

magnetic flow $B\varphi_{t}$ for $B=k\cdot B_{J}$ is represented by

$B\varphi_{t}(d\pi(\left(\begin{array}{l}Z\\u\end{array}\right)))=d\pi(e^{kit/2}\cdot A_{k}(t)\left(\begin{array}{l}Z\\u\end{array}\right))=d\pi(A_{k}(t)\left(\begin{array}{l}z\\u\end{array}\right))$ .

We first treat the case that $k>2$ . Put $\epsilon_{k}=(\sqrt{k^{2}-4}+k)^{1/2}/\sqrt{2}\in R$ and set

$P_{k}=\frac{1}{(k^{2}-4)^{1/4}}\cdot\left(\begin{array}{llll}-i/\epsilon_{k} & I & \epsilon_{k}\cdot & I\\I\epsilon_{k}\cdot & & i/\epsilon_{k} & I\end{array}\right)$ ,

then we have

$P_{k}^{-1}\cdot A_{k}(t)\cdot P_{k}$

$(\cos\sqrt{k^{2}-4}t/2+i\sin\sqrt{k^{2}-4}t/2)\cdot I$ $O$

$O$ $(\cos\sqrt{k^{2}-4}t/2-i\sin\sqrt{k^{2}-4}t/2)\cdot I$

Hence we get $Q_{k}^{-1}\cdot A_{k}(t)\cdot Q_{k}=A_{2\sqrt{}\overline{2}}(\sqrt{k^{2}-4}t/2)$ with $Q_{k}=P_{k}\cdot P_{2\sqrt 2}^{-\llcorner}$ . Since $Q_{k}$ acts on
the horizontal subbundle $\ovalbox{\tt\small REJECT} H_{1}^{2n+1}$ and is commutative with the $S^{1}- fiber$ action, it
induces a diffeomorphism $f_{k}$ on UCH $(-4)$ such that

$f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=B_{O}\varphi_{\sqrt{}\overline{k^{2}-4}t/2}$ ,
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where $B_{0}=2\sqrt{2}\cdot B_{J}$ . As $(-B)\varphi_{t}(v)=-B\varphi_{-t}(-v)$ , we have $A_{-k}(t)=\left(\begin{array}{ll}I & o\\o & -I\end{array}\right)A_{k}(-t)$

$\left(\begin{array}{ll}I & o\\o & -I\end{array}\right)$ , hence we can find for $k<-2$ a diffeomorphism $f_{k}$ on UCH $(-4)$ such that

$f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=B_{0}\varphi_{-\sqrt{}\overline{k^{2}-4}t/2}$ .

Next we treat the case that $|k|<2$ . Put $\epsilon_{k}=(2-\sqrt{4-k^{2}})^{1/2}$ and define $ Q_{k}\in$

$Mat(2(n+1);C)$ by

$Q_{k}=\frac{1}{\sqrt{2}(4-k^{2})^{1/4}}\cdot\left(\begin{array}{llll}k/\epsilon_{k} & I & -i\epsilon_{k} & I\\i\epsilon_{k} & I & k/\epsilon_{k} & I\end{array}\right)$ .

We then have

$Q_{k}^{-1}\cdot A_{k}(t)\cdot Q_{k}=A_{0}(\sqrt{4-k^{2}}t/2)$ .

Since we can easily check that $Q_{k}$ acts on $\ovalbox{\tt\small REJECT} H_{1}^{2n+1}$ and is commutative with the $S^{1}- fiber$

action, we can conclude that there exists a diffeomorphism $f_{k}$ on UCH $(-4)$ satisfying

$f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=\varphi_{\sqrt{}\overline{4-k^{2}}t/2}$ ,

hence we obtain Theorem 2.

We now make mention of the hyperbolicity of magnetic flows. We shall call a flow
$\psi_{t}$ on a manifold $N$ satisfies the hyperbolic condition if the tangent bundle $TN$ has a
continuous splitting $TN=E^{t}\oplus E^{s}\oplus E^{u}$ into three $d\psi_{t}$-invariant subbundles with the
following properties. The line bundle $E^{t}$ is tangent to the flow, and for the stable and
unstable subbundles $E^{s}$ and $E^{u}$ , there exist positive constants $C,$ $\lambda$ such that for $t\geq 0$

$\Vert d\psi_{t}(\xi)\Vert\leq Ce^{-\lambda t}\Vert\xi\Vert$ if $\xi\in E^{s}$ , $\Vert d\psi_{-t}(\xi)\Vert\leq Ce^{-\lambda t}\Vert\xi\Vert$ if $\xi\in E^{u}$

It is well-known that the geodesic fiow on $UM$ of a complete Riemannian manifold $M$

satisfies the hyperbolic condition if $M$ is of bounded negative curvature. Since the action
of $Q_{k}$ on $\ovalbox{\tt\small REJECT} H_{1}^{2n+1}$ (in the proof of Theorem 1) is commutative with the induced actions
of isometries on $CH^{n}$ , we find that the classification of K\"ahler magnetic flows holds
for a complete manifold of constant negative holomorphic sectional curvature. Therefore
we have

COROLLARY. Let $M$ be a complete Kahler manifold of holomorphic sectional
curvature $-c$ . If the strength of the Kahler magnetic field $B=k\cdot B_{J}$ is smaller than $\sqrt{c}$,
then the magnetic flow $B\varphi_{t}$ satisfies the hyperbolic condition. When $M$ is compact, its
topological entropy is $\sqrt{c-k^{2}}/2$ .

Finally we concem with K\"ahler magnetic flows on a complex projective space
$CP^{n}(c)$ of holomorphic sectional curvature $c$ . Let $\tilde{\pi}:S^{2n+1}\rightarrow CP^{n}$ denote the Hopf
fibration. The tangent bundle TCP can be denoted as $\{d\tilde{\pi}((z, u))|z\in S^{2n+1}\subset C^{n+1},$ $ u\in$
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$C^{n+1},$ $((z, u))=0$ } $.$ By the similar argument as in section 1, we obtain an explicit
expression of trajectories for K\"ahler magnetic fields on $CP^{n}(c)$ (see [1]). We find that
K\"ahler magnetic flow $B\varphi_{t}$ for $B=k\cdot B_{J}$ on UCP (4) is represented as

$B\varphi_{t}(d\pi(\left(\begin{array}{l}z\\u\end{array}\right)))=d\pi(e^{-kit/2}\cdot\tilde{A}_{k}(t)\left(\begin{array}{l}z\\u\end{array}\right))=d\pi(\tilde{A}_{k}(t)\left(\begin{array}{l}z\\u\end{array}\right))$

with the matrix $\tilde{A}_{k}\in Mat(2(n+1), C)$ defined by

$\tilde{A}_{k}(t)=\cos\sqrt{k^{2}+4}t/2\cdot\left(\begin{array}{ll}I & O\\O & I\end{array}\right)+\frac{\sin\sqrt{k^{2}+4}t/2}{\sqrt{k^{2}+4}}\cdot\left(\begin{array}{ll}kiI & 2I\\-2I & -kiI\end{array}\right)$ .

This flow is a rotation flow with prime period $2\pi/\sqrt{k^{2}}$F4. Putting $\tilde{\epsilon}_{k}=(\sqrt{k^{2}+4}+$

$k)^{1/2}/\sqrt{2}$ and

$\tilde{P}_{k}=\frac{1}{(k^{2}+4)^{1/4}}\cdot\left(\begin{array}{lllll}i\tilde{\epsilon}_{k}\cdot & I & & i/\tilde{\epsilon}_{k}\cdot & I\\-1/\tilde{\epsilon}_{k}\cdot & & I & \tilde{\epsilon}_{k} & I\end{array}\right)$ ,

we have
$\tilde{P}_{k}^{-1}\cdot\tilde{A}_{k}(t)\cdot\tilde{P}_{k}$

$=\left(\begin{array}{ll}(cos\sqrt{k^{2}+4}t/2+isin\sqrt{k^{2}+4}t/2)\cdot I & O\\O & (cos\sqrt{k^{2}+4}t/2-isin\sqrt{k^{2}+4}t/2)\cdot I\end{array}\right)$ .

Hence we get $\tilde{Q}_{k}^{-1}\cdot\tilde{A}_{k}(t)\cdot\tilde{Q}_{k}=\tilde{A}_{0}(\sqrt{k^{2}+4}t/2)$ with $\tilde{Q}_{k}=\tilde{P}_{k}\cdot\tilde{P}_{0}^{1}$ . One can easily check
that $\tilde{Q}_{k}$ acts on the horizontal subbundle $\ovalbox{\tt\small REJECT} S^{2n+1}$ which is identified with $TCP^{n}$ . Since
$\tilde{A}_{0}(t)$ corresponds to the geodesic flow $\varphi_{t}$ and $\tilde{Q}_{k}$ is commutative with the $S^{1}- fiber$

action, it induces a diffeomorphism $f_{k}$ on $UCP(4)$ such that $f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=\varphi_{\sqrt{}\overline{k^{2}+4}t/2}$ .
We therefore get the following.

THEOREM 2. Let $B=k\cdot B_{J}$ be a Kahler magneticfield on a complex projective space
$CP^{n}(c)$ of constant holomorphic sectional curvature $c$ . The Kahler magnetic flow $B\varphi_{t}$ is
smoothly conjugate to the geodesic flow $\varphi_{t}$ , which is a rotation flow in the strong sense.
More precisely, we can find a diffeomorphism $f_{k}$ on the unit sphere bundle UCP $(c)$ such
that $f_{k}^{-1}\circ B\varphi_{t}\circ f_{k}=\varphi_{\sqrt{}\overline{k^{2}+c}t/\sqrt{}\overline{c}}$ .

Since the action of $\tilde{Q}_{k}$ on $\ovalbox{\tt\small REJECT} S^{2n+1}$ is commutative with the induced actions of
isometries on $CP^{n}$ , we have that for a complete manifold of positive holomorphic
sectional curvature every two K\"ahler magnetic flows are smoothly conjugate in the
strong sense.
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