Complete Intersections Which Are Abelian Extensions of a Factorial Domain

Yuji KAMOI

Tokyo Metropolitan University (Communicated by T. Ishikawa)

Introduction.

Let A be a Noetherian local factorial domain having a field of fractions K and L be an Abelian extension of K with G = Gal(L/K). An Abelian extension R of A is an integral closure of A in L.

Assume that ch(A) does not divide n = |G| and A has a primitive n-th root of unity. Roberts [12] showed that R is Cohen-Macaulay, if A is a Cohen-Macaulay factorial domain. Also Itoh [8] studied a condition for a cyclic extension of a formal power series ring to be Gorenstein. Furthermore, Griffith [7] showed that if A is regular and if R is factorial, then R is a complete intersection.

Our purpose of this article is to give a condition for R to be a complete intersection. We shall show in section 4 that an Abelian extension of a local factorial domain A which is a complete intersection, is completely determined by a datum of A. A datum is a pair (Γ, w) of a finite subset Γ of $Div(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ (= $P(A) \otimes_{\mathbf{Z}} \mathbf{Q}$ since A is factorial) and a map $w: \Gamma \rightarrow N_+$ satisfying the following condition.

- (1) For $D, E \in \Gamma$ ($D \neq E$), one of the following cases occurs;
- (a) Supp(D) \subsetneq Supp(E), (b) Supp(D) \supsetneq Supp(E), (c) Supp(D) \cap Supp(E) = \emptyset . For $E \in \Gamma$, there is a relation $w(E)E = \sum_{i=1}^{k} E_i + \sum_{j=1}^{l} \mathfrak{p}_j$ where $\{E_1, \dots, E_k\} = \{D \in \Gamma \mid D \prec E\}$ and $\{\mathfrak{p}_1, \dots, \mathfrak{p}_l\} = \text{Supp}(E) \setminus \bigcup_{i=1}^{k} \text{Supp}(E_i)$.

Here we denote by $\operatorname{Supp}(D)$ $(D \in \operatorname{Div}(A)_0)$ the set of prime divisors of A which appear in D with non-zero coefficients. We write $D \lt E$, if $Supp(D) \subseteq Supp(E)$ and if there is no element $D' \in \Gamma$ such that $Supp(D) \subsetneq Supp(D') \subsetneq Supp(E)$.

Then we state our main result as follows.

THEOREM. Let A be as above and R be a local ring such that $R \supset A$. Then the following conditions are equivalent.

(1) R is an Abelian extension of A which is a complete intersection.

(2) There exists a datum (Γ, w) such that

$$R \cong A[Y_E \mid E \in \Gamma] / \left(Y_E^{w(E)} - a_E \prod_{D \prec E} Y_D \mid E \in \Gamma\right)$$

where $A[Y_E \mid E \in \Gamma]$ is a polynomial ring and a_E is an element of A satisfying $div(a_E) = w(E)E - \sum_{D \prec E} D$.

A datum was first defined by Watanabe [15] for normal simplicial semigroup rings (cf. Definition 1.1 of [15]). He used it to determine normal simplicial semigroup rings which are complete intersections. In his case, an affine semigroup ring can be regarded as a \mathbb{Z}^n -graded ring in natural way. In our case, an Abelian extension R is graded by its Galois group. (See (4.1).) By this reason, the concept of rings graded by an Abelian group is essential for us. In particular, we state a group graded version of the divisor group theory (in section 1).

1. Preliminaries.

Let us recall some concepts of graded rings and graded modules from [6], [11] and [9].

Let G be an Abelian group. We say that a ring R is a G-graded ring, if there exists a family $\{R_g\}_{g\in G}$ of additive subgroups of R such that $R=\bigoplus_{g\in G}R_g$ and $R_gR_h\subset R_{g+h}$ for every $g,h\in G$. Similarly, a G-graded R-module is an R-module M for which there is given a family $\{M_g\}_{g\in G}$ of additive subgroups of M such that $M=\bigoplus_{g\in G}M_g$ and $R_gM_h\subset M_{g+h}$ for every $g,h\in G$.

A homomorphism $f: M \to N$ of G-graded R-modules in an R-linear map such that $f(M_g) \subset N_g$ for all $g \in G$.

Let R be a G-graded ring and M a G-graded R-module. For $g \in G$, we define a G-graded R-module M(g) by M = M(g) as the underlying R-module and graded by $[M(g)]_h = M_{g+h}$ for all $h \in G$. We say that M is free, if it is isomorphic to a direct sum of G-graded R-modules of the form R(g) $(g \in G)$.

We denote by $\underline{\operatorname{Hom}}_R(M,N)_g$ the Abelian group of all the G-graded homomorphisms from M to N(g). We put $\underline{\operatorname{Hom}}_R(M,N) = \bigoplus_{g \in G} \underline{\operatorname{Hom}}_R(M,N)_g$ and consider it as a G-graded R-module.

The elements of $\bigcup_{g \in G} M_g$ are called homogeneous elements of M. Every non-zero element $x \in M_g$ is said to be homogeneous of degree g, and we denote $\deg(x) = g$. For a subset $N \subset M$, we set $h(N) = \bigcup_{g \in G} (N \cap M_g)$. Any element $x \in M$ has a unique expression as a sum of homogeneous elements, $x = \sum_{g \in G} x_g$ where $x_g \in M_g$ and $x_g = 0$ for almost all $g \in G$. With this notation, we call nonzero x_g the homogeneous component (of degree g) of x.

Let H be a subgroup of G and $g \in G$. We define $R^{(H)} = \bigoplus_{h \in H} R_h$ and $M^{(g,H)} = \bigoplus_{h \in H} M_{g+h}$. Then $R^{(H)}$ is a subring of R and $M^{(g,H)}$ is an $R^{(H)}$ -submodule of M. We

define a G-grading on $M^{(g,H)}$ as

$$[M^{(g,H)}]_{g'} = \begin{cases} M_{g'}, & \text{if } g - g' \in H \\ (0), & \text{if } g - g' \notin H \end{cases}$$

for all $g' \in G$. If $g - g' \in H$, then we have $M^{(g,H)} = M^{(g',H)}$ as a G-graded $R^{(H)}$ -module. Hence M has the following decomposition as a G-graded $R^{(H)}$ -module

$$M = \bigoplus_{i \in \Gamma} M^{(g_i, H)}$$

where $\{g_i\}_{i\in\Gamma}$ is a system of representatives of G mod H. Also, we have $R^{(g_i,H)}M^{(g_j,H)}\subset M^{(g_i+g_j,H)}$ for all $i,j\in\Gamma$. Hence a G-graded ring R (resp. G-graded R-module M) can be regarded as a G/H-graded ring (resp. G/H-graded R-module).

We say that R is a G-domain (resp. G-simple), if every nonzero G-homogeneous element of R is a nonzero divisor of R (resp. a unit of R).

A G-graded ideal $\mathfrak P$ of R is said to be a G-prime ideal (resp. a G-maximal ideal), if the G-graded ring $R/\mathfrak P$ is a G-domain (resp. G-simple). Note that a G-prime ideal is not necessarily a prime ideal, if G has a torsion. We denote by $V_G(R)$ the set of all G-prime ideals of R. For $\mathfrak P \in V_G(R)$, we denote by $M_{(\mathfrak P)}$ the module of fractions of M with respect to the multiplicatively closed subset $h(R \setminus \mathfrak P)$ and call it the homogeneous localization of M at $\mathfrak P$. We set $V_G(M) = \{\mathfrak P \in V_G(R) \mid M_{(\mathfrak P)} \neq (0)\}$. For an ideal P of R, we denote by P^* the maximal graded ideal of R contained in P (or the graded ideal generated by h(P)). If P is a prime ideal of R, then P^* is a G-prime ideal of R. Furthermore, for a G-graded R-module M and $P \in \operatorname{Spec}(R)$, $P \in \operatorname{Supp}_R(M)$ if and only if $P^* \in V_G(M)$. We denote by $\operatorname{\underline{dim}}(M)$ the largest length of a chain of G-prime ideals in $V_G(M)$ (cf. section 2 of [9]).

REMARK 1.1. Let H be a subgroup of G such that G/H is torsion. If $\mathfrak{P} \in V_G(R)$, then $\mathfrak{P}^{(H)} \in V_H(R^{(H)})$. Furthermore, if $\mathfrak{p} \in V_H(R^{(H)})$, then a G-graded ideal $(\sqrt{\mathfrak{p}R})^*$ is G-prime. This gives a bijective correspondence between $V_H(R^{(H)})$ and $V_G(R)$. $M_{(\mathfrak{P})} \cong M \otimes_{R^{(H)}} (R^{(H)})_{(\mathfrak{P}^{(H)})}$ holds for a G-graded G-graded G-module G-graded G-gr

DEFINITION 1.2. R is said to be a G-Noetherian graded ring, if every strictly ascending chain of G-graded ideals of R has finite length.

DEFINITION 1.3. We say that R is a G-local graded ring, if it has a unique G-maximal ideal. Often we use the notation (R, \mathfrak{M}) to say that R is a G-local ring with the unique G-maximal ideal \mathfrak{M} .

Next, we state a G-graded version of the theory of *divisors*. All propositions shall be proved in the same way as in the non graded case or \mathbb{Z}^n -graded case (cf. Anderson [1]). Therefore, we omit proofs.

Let R be a G-domain and K be the homogeneous localization of R at (0).

DEFINITION 1.4. A G-domain R is called G-normal, if every element of h(K), which is integral over R, is in R.

DEFINITION 1.5. R is said to be *completely G-normal*, if it satisfies the following condition; if $x \in h(K)$ and R[x] is contained in a finitely generated G-graded R-submodule of K, then $x \in R$.

A G-graded R-submodule $0 \neq I$ of K is said to be a G-fractional ideal of R, if there exists $a \in R$ such that $aI \subset R$. We denote by $\underline{I}(R)$ the set of all G-fractional ideals of R and by $\underline{P}(R)$ the set of all homogeneous principal ideals. We set $\underline{\text{div}}_R(I) = \bigcap_{0 \neq x \in h(K), I \subset R_x} R_x$ for $I \in \underline{I}(R)$.

DEFINITION 1.6. A G-fractional ideal I is said to be a G-divisorial ideal of R, if $I = \underline{\text{div}}_R(I)$. We denote by $\underline{\text{Div}}(R)$ the set of all G-divisorial ideals of R.

REMARK 1.7. Let $I, J \in \underline{I}(R)$. Then the following hold.

- (0) $\underline{\operatorname{Hom}}_{R}(I, J) \cong [J:I].$
- (1) $[I:J]_K = \bigcap_{x \in h(J)} x^{-1}I.$
- (2) If $I \in \underline{\text{Div}}(R)$, then so is $[I:J]_K$.
- (3) $\underline{\operatorname{div}}_{R}(I) = [R : [R : I]_{K}]_{K}.$
- (4) $\underline{\operatorname{div}}_{R}(I) \subset \underline{\operatorname{div}}_{R}(J)$ if and only if $[R:I]_{K} \supset [R:J]_{K}$.

DEFINITION 1.8. We define a commutative monoid structure on $\underline{\text{Div}}(R)$ by $\underline{\text{div}}_R(I) + \underline{\text{div}}_R(J) := \underline{\text{div}}_R(IJ)$ for $I, J \in \underline{\text{I}}(R)$. Also, we denote $\underline{\text{div}}_R(I) \sim \underline{\text{div}}_R(J)$, if $\underline{\text{div}}_R(I) = \underline{\text{div}}_R(J) + \underline{\text{div}}_R(a)$ for some $0 \neq a \in h(K)$. Here we denote $\underline{\text{div}}_R(a) = \underline{\text{div}}_R(aR)$ for $0 \neq a \in h(K)$. We put $Cl(R) = Div(R)/\sim$.

The following proposition is proved in the same way as in the non-graded case (cf. Chap. VII, §1.2, Theorem 1 of [3]).

PROPOSITION 1.9. R is completely G-normal if and only if $\underline{\text{Div}}(R)$ is an Abelian group.

DEFINITION 1.10. Let Γ be an ordered Abelian group and $v: h(K\setminus\{0\})\to\Gamma$ be a map. We call v a *G-valuation* on K, if it satisfies the following two conditions; for $x, y \in h(K\setminus\{0\})$,

- $(1) \quad v(xy) = v(x) + v(y)$
- (2) $v(x+y) \ge \min(v(x), v(y))$, if $\deg(x) = \deg(y)$ and $x+y \ne 0$.

Let v be a G-valuation on K. Then $v \mid_{K'_0}$ is a valuation on $K'_0 := K_0 \setminus \{0\}$. We denote by R_{v0} the valuation ring of $v \mid_{K'_0}$. We set $R_v = R_{v0}[x \in h(K \setminus \{0\}) \mid v(x) \ge 0]$ and call it the G-valuation ring of v.

A G-valuation $v: h(K \setminus \{0\}) \to \Gamma$ is said to be equivalent to a G-valuation $v': h(K \setminus \{0\}) \to \Gamma'$, if there exists an isomorphism $\phi: Im(v) \to Im(v')$ of ordered Abelian groups such that $v' = \phi \circ v$.

DEFINITION 1.11. A G-valuation v on K is said to be discrete, if $Im(v) \cong \mathbb{Z}$.

We say that R is a G-discrete valuation ring (G-DVR), if there exists a discrete G-valuation v on K such that $R = R_v$.

As in the non-graded case, the following hold.

PROPOSITION 1.12. Let (R, \mathfrak{M}) be a G-Noetherian G-local G-domain of $\underline{\dim}(R) = 1$. Then the following are equivalent.

- (1) R is G-DVR.
- (2) R is G-normal.
- (3) \mathfrak{M} is a principal ideal.
- (4) Every proper G-homogeneous ideal is a power of \mathfrak{M} .

EXAMPLE 1.13. Let (R, \mathfrak{M}) be a G-DVR and $x \in h(R)$ such that $\mathfrak{M} = xR$. We put $H = \{g \in G \mid R_g \neq \mathfrak{M}_g\}$ (= $\{g \in G \mid R_g \text{ contains a unit of } R\}$). (Note that H is a subgroup of G.) Then $\mathfrak{M}^{(H)} = \mathfrak{M}_0 R^{(H)}$ (cf. (1.4) of [9]).

- If $\mathfrak{M}_0 = (0)$ (i.e. $\mathfrak{M}^{(H)} = (0)$), then $R^{(H)}$ is H-simple and $x^n \notin R^{(H)}$ for every n > 0. Hence $n \deg(x) \notin H$ for every n > 0 (or $H \oplus \mathbb{Z} \deg(x) \subset G$) and $R = R^{(H)}[x]$ the polynomial ring over $R^{(H)}$.
- If $\mathfrak{M}_0 \neq 0$, then (R_0, \mathfrak{M}_0) is a DVR. We take $x_0 \in \mathfrak{M}_0$ such that $\mathfrak{M}_0 = x_0 R_0$. Then there exists a positive integer e > 0 such that $x_0 = u x^e$ for some homogeneous unit $u \in R^{(H)}$. Hence $R = \bigoplus_{i=0}^{e-1} R^{(H)} x^i$.

EXAMPLE 1.14. Let $K = \bigoplus_{n \in \mathbb{Z}} K_n$ be a simple **Z**-graded ring. We assume that $K \neq K_0$. Then there exists $t \in h(K \setminus \{0\})$ such that t is algebraically independent over K_0 and $K = K_0[t, t^{-1}]$. We define **Z**-valuations as follows;

- (i) $v_t: h(K\setminus\{0\}) \rightarrow \mathbb{Z}$ by $v_t(at^n) = n \ (a \in K_0)$,
- (ii) $v_{t-1}: h(K\setminus\{0\}) \rightarrow \mathbb{Z}$ by $v_t(at^n) = -n \ (a \in K_0),$
- (iii) $v_0^{d,e}: h(K\setminus\{0\}) \to \mathbb{Z}(1/e) \ (\subset \mathbb{Q})$ by $v_0^{d,e}(at^n) = v_0(a) + n(d/e) \ (a \in K_0)$ where v_0 is a discrete valuation of K_0 and $d, e \in \mathbb{Z}$ such that e > 0 and either d = 0 or (e, d) = 1.

Let v be a discrete **Z**-valuation of K and (R, xR) be a **Z**-valuation ring of v. We put $m \ge 0$ such that $\mathbb{Z}m = \{n \in \mathbb{Z} \mid R_n \text{ contains a unit of } R\}$. Then, by (1.13), either (1) $R = R^{(m)}[x]$ or (2) $R = \bigoplus_{i=0}^{e-1} R^{(m)}x^i$.

- Case (1) Since $\mathbb{Z}m \oplus \mathbb{Z} \deg(x) \subset \mathbb{Z}$, m=0 and $R=R_0[x]$. On the other hand, K is a homogeneous localization of R at (0) (i.e. $K=R_0[x, x^{-1}]$). Hence $R_0=K_0$ and either x=t or $x=t^{-1}$. Namely, either $v=v_t$ or $v=v_{t-1}$.
- Case (2) We put v(t) = d and $v_0 = (1/e)v|_{K_0}$. Then v_0 is a normalized discrete valuation of R_0 . Furthermore, for $a \in K_0 \setminus \{0\}$ and $n \in \mathbb{Z}$, $v(at^n) = e(v_0(a) + n(d/e) = ev_0^{d,e}(at^n)$. Hence v is equivalent to $v_0^{d,e}$ and $R = R_{v_0^{d,e}} = \bigoplus_{n \in \mathbb{Z}} R_0 x_0^{[-nd/e]} t^n$ where x_0 is the primitive element of R_0 and [a] is the largest integer not larger than a for $a \in \mathbb{Q}$.

We set
$$V_G^1(R) = \{ \mathfrak{P} \in V_G(R) \mid \underline{\dim}(R_{(\mathfrak{P})} = 1 \}.$$

DEFINITION 1.15. A G-domain R is said to be G-Krull, if it satisfies the following conditions:

- (1) $R_{(\mathfrak{P})}$ is G-DVR for every $\mathfrak{P} \in V_G^1(R)$,
- $(2) \quad R = \bigcap_{\mathfrak{P} \in V_G^1(R)} R_{(\mathfrak{P})},$
- (3) every nonzero element of h(R) is contained in only a finite members of $V_G^1(R)$.

PROPOSITION 1.16 (cf. Chap. VII, §1 of [3]). (1) A G-domain R is G-Krull, if R is G-Noetherian and G-normal. Conversely, a G-Krull R is completely G-normal.

- (2) A G-graded Krull domain is G-Krull.
- (3) Let R be a G-Krull G-domain and S be a multiplicatively closed subset of h(R). Then a G-graded ring $S^{-1}R$ is G-Krull and $S^{-1}R = \bigcap_{\mathfrak{P} \in \Lambda} R_{(\mathfrak{P})}$ where $\Lambda = \{\mathfrak{P} \in V_G^1(R) \mid \mathfrak{P} \cap S = \emptyset\}$.
- (4) Let R be a G-Krull G-domain and K be the homogeneous localization of R at (0). If K' is a simple graded subring of K, then $R \cap K'$ is a G-Krull G-domain. In particular, $R^{(H)}$ is an H-Krull H-domain for a subgroup H of G.

Throughout this section, we assume that R is G-Krull.

Proposition 1.17 (cf. Chap. VII, §1 of [3]). (1) For $I \in \underline{I}(R)$, $\underline{\text{div}}_R(I) = \bigcap_{\mathfrak{P} \in V_G^1(R)} IR_{(\mathfrak{P})}$.

(2) For $I, J \in \underline{\text{Div}}(R)$, I = J if and only if $I_{(\mathfrak{P})} = J_{(\mathfrak{P})}$ for every $\mathfrak{P} \in V_G^1(R)$.

COROLLARY 1.18. Let H be a subgroup of G such that G/H is torsion and $\{g_i\}_{i\in\Gamma}$ be a system of representatives of G mod H. Then a G-fractional ideal I is G-divisorial if and only if $I^{(g_i,H)}$ is H-divisorial for any $i\in\Gamma$.

Let $\mathfrak{P} \in V_G^1(R)$. Then, by (1.12), $\mathfrak{P}R_{(\mathfrak{P})}$ defines a discrete G-valuation on K. We denote it by $v_{\mathfrak{P}}$.

We define a map $\mu: \underline{\mathrm{Div}}(R) \to \bigoplus_{\mathfrak{P} \in V_G^1(R)} \mathbf{Z}\mathfrak{P}$ by $\mu(\underline{\mathrm{div}}_R(I)) = \sum_{\mathfrak{P} \in V_G^1(R)} v_{\mathfrak{P}}(I)\mathfrak{P}$. Then μ is an isomorphism of Abelian groups and, for $I, J \in \underline{\mathrm{Div}}(R), I \subset J$ if and only if $\mu(I) \ge \mu(J)$ (i.e. $v_{\mathfrak{P}}(I) \ge v_{\mathfrak{P}}(J)$ for all $\mathfrak{P} \in V_G^1(R)$).

Let H be a subgroup of G such that G/H is torsion.

DEFINITION 1.19. Let $\mathfrak{p} \in V_H^1(R^{(H)})$ and $\mathfrak{P} \in V_G^1(R)$ such that $\mathfrak{P}^{(H)} = \mathfrak{p}$. We put $e_R(\mathfrak{p}) = v_{\mathfrak{P}}(\mathfrak{p}R_{(\mathfrak{P})})$.

REMARK 1.20. The correspondence $I \mapsto \underline{\operatorname{div}}_R(IR)$ $(I \in \underline{\operatorname{Div}}(R^{(H)}))$ defines a homomorphism $\underline{\operatorname{Div}}(R^{(H)}) \to \underline{\operatorname{Div}}(R)$ and there is the following commutative diagram of exact sequences:

$$\begin{array}{cccc}
0 & 0 & \downarrow & \downarrow \\
0 \longrightarrow \underline{P}(R^{(H)}) \longrightarrow \underline{Div}(R^{(H)}) & \longrightarrow \underline{Cl}(R^{(H)}) \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 \longrightarrow \underline{P}(R) \longrightarrow \underline{Div}(R) & \longrightarrow \underline{Cl}(R) \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow \\
G'/H' \stackrel{\alpha}{\longrightarrow} \bigoplus_{p} \mathbf{Z}/(e_{R}(p)) \\
\downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}$$

where $G' = \{g \in G \mid K_g \neq 0\}$, H' is a subgroup of G generated by $(G' \cap H) \cup \{g \in G \mid R_g \text{ contains a unit of } R\}$ and the map $\underline{P}(R) \rightarrow G/H'$ is defined by $x \in h(K) \mapsto$ the image of $\deg(x)$ in G'/H'.

EXAMPLE 1.21 (Demazure's construction of normal graded rings [4]). Let $R = \bigoplus_{n \geq 0} R_n$ be a Krull domain such that $R \neq R_0$ and $K = K_0[t, t^{-1}]$ be the homogeneous localization of R at (0) with $\deg(t) > 0$.

We put $\{\mathfrak{P}_1, \dots, \mathfrak{P}_r\} = \{\mathfrak{Q} \in V_{\mathbf{Z}}^1(R) \mid \mathfrak{Q} \neq R_+\}$. Then, by (1.14), $v_{\mathfrak{P}_i}$ is equivalent to $v_0^{d_i, e_i}$ for some $d_i, e_i \in \mathbb{Z}$.

We set X = Proj(R) and $D = \sum_{i=1}^{r} (d_i/e_i) V_i \in Div(X) \otimes \mathbf{Q}$ where V_i is the prime divisor of X corresponding to \mathfrak{P}_i .

Then, for $a \in K_0$ and $n \ge 0$,

$$at^{n} \in R \iff \underline{\operatorname{div}}_{R}(a) + n \, \underline{\operatorname{div}}_{R}(t) \ge 0$$
$$\iff \underline{\operatorname{div}}_{X}(a) + nD \ge 0 \in \operatorname{Div}(X) \otimes \mathbf{Q}$$
$$\iff a \in H^{0}(X, \mathcal{O}_{X}(nD)).$$

(Note that if $R_+ := \bigoplus_{n>0} R_n \in V^1_{\mathbf{Z}}(R)$, then $v_{R_+} = v_t$.) Hence we have

$$R \cong R(X, D) := \bigoplus_{n \ge 0} H^0(X, \mathcal{O}_X(nD)) T^n \ (\subset K_0[T]).$$

We set $R(E) = \bigoplus_{n \in \mathbb{Z}} H^0(X, \mathcal{O}_X(E+nD)) T^n$ for $E \in Div(X)$. Then, the correspondence $E \mapsto \underline{\operatorname{div}}_R(R(-E))$ $(E \in Div(X))$ defines a homomorphism $Div(X) \to \underline{\operatorname{Div}}(R)$ and we have the following commutative diagram;

$$\begin{array}{cccc}
0 & 0 & \downarrow & \downarrow \\
0 \longrightarrow P(X) \longrightarrow Div(X) & \longrightarrow Cl(X) \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 \longrightarrow P(R) \longrightarrow Div(R) & \longrightarrow Cl(R) \longrightarrow 0 \\
\downarrow & \downarrow & \downarrow & \downarrow \\
I \longrightarrow \bigoplus_{i=1}^{r} \mathbf{Z}/(e_i) & \downarrow \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0
\end{array}$$

where $I \cong \mathbb{Z}$ and is generated by the image of $\underline{\text{div}}_{\mathbb{R}}(T)$. (See, for instance, Watanabe [16].)

2. A description of R from $R^{(H)}$.

Let R be a G-Noetherian G-normal G-domain and K be the homogeneous localization of R at (0). We assume that $K_q \neq 0$ for every $g \in G$.

Let H be a subgroup of G such that $G/H \cong \bigoplus_{i=1}^r \mathbb{Z}/(d_i)$ and put $A = R^{(H)}$. We put $\underline{\operatorname{Div}}(A)_{\mathbb{Q}} = \underline{\operatorname{Div}}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$. For $D = \sum_{\mathfrak{p} \in V_G^1(A)} a_{\mathfrak{p}} \mathfrak{p} \in \underline{\operatorname{Div}}(A)_{\mathbb{Q}}$, we set

$$\begin{aligned} &\operatorname{Supp}(D) = \left\{ \mathfrak{p} \mid a_{\mathfrak{p}} \neq 0 \right\}, \qquad D(\mathfrak{p}) = a_{\mathfrak{p}}, \\ &[D] = \sum_{\mathfrak{p} \in V_G^1(R)} [a_{\mathfrak{p}}] \mathfrak{p}, \qquad \left\{ D \right\} = D - [D], \end{aligned}$$

where we denote by A(D) the *H*-divisorial ideal of *A* generated by $\{a \in h(K) \mid \underline{\text{div}}_A(a) + D \ge 0\}$. Note that A(D) = A([D]) and $\underline{\text{div}}_A(A(D)) = -[D]$.

Tomari-Watanabe [14] constructed normal \mathbb{Z}_r -graded rings using an element of $\underline{P}(A)_{\mathbf{Q}}$. In this section, we repeat Tomari-Watanabe's construction.

We put K' the homogeneous localization of A at (0). Then $K' = K^{(H)}$ and $K = R \otimes_A K'$. Furthermore, there exists $x_i \in h(K \setminus \{0\})$ $(1 \le i \le r)$ such that $x_i^{d_i} = f_i \in A$ and

$$K = \bigoplus_{\substack{1 \le i \le r \\ 0 \le m_i < d_i}} K' x_1^{m_1} x_2^{m_2} \cdots x_r^{m_r} \cong K'[X_1, \cdots, X_r]/(X^{d_1} - f_1, \cdots, X^{d_r} - f_r)$$

where $K'[X_1, \dots, X_r]$ is a polynomial ring over K' (cf. (1.6) of [9]). We put $D_i = (1/d_i)\underline{\text{div}}_A(f_i) \in \underline{\text{Div}}(A)_{\mathbf{Q}}$ for $1 \le i \le r$.

Proposition 2.1. We have

$$R = \bigoplus_{\substack{1 \leq i < r \\ 0 \leq m_i < d_i}} A \left(\sum_{i=1}^r m_i D_i \right) \prod_{i=1}^r x_i^{m_i}.$$

We can give a proof in the same way as in Proposition 1.4 of Tomari-Watanabe [14].

REMARK 2.2. (1) The converse of (2.1) is also true. Let A be an H-Noetherian H-normal H-domain and $D_i \in \underline{\mathrm{Div}}(A)_{\mathbf{Q}}$ such that $d_i D_i = \underline{\mathrm{div}}_A(f_i)$ $(1 \le i \le r)$. Put $G = \underline{\mathrm{Div}}(A)_{\mathbf{Q}}$

 $H \oplus \mathbf{Z}^r / \sum_{i=1}^r \mathbf{Z}(\deg(f_i), -d_i e_i)$ where $e_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbf{Z}^r$. Then a G-graded subring

$$R(A; D_1, \dots, D_r, f_1, \dots, f_r) := \bigoplus_{\substack{1 \le i \le r \\ 0 \le m_i < d_i}} A\left(\sum_{i=1}^r m_i D_i\right) \prod_{i=1}^r x_i^{m_i}$$

of $K'[X_1, \dots, X_r]/(X_1^{d_1}-f_1, \dots, X_r^{d_r}-f_r)$ is a G-normal G-domain where K' is the homogeneous localization of A at (0).

(2) It is easy to verify that $e_R(\mathfrak{p}) > 1$ if and only if $D_i(\mathfrak{p}) \notin \mathbb{Z}$ for some $1 \le i \le r$. Furthermore, if we denote $D_i(\mathfrak{p}) = a_i/b_i \in \mathbb{Q}$ with $(a_i, b_i) = 1$, then $e_R(\mathfrak{p})$ is equal to $LCM(\{b_i \mid a_i \ne 0, 1 \le i \le r\})$.

EXAMPLE 2.3. Let k be a field and $A = k[s^6, t^{12}] \subset k[s, t]$ and $D_1 = \frac{1}{2} \underline{\text{div}}_A(s^6 t^{12})$, $D_2 = \frac{1}{3} \underline{\text{div}}_A(s^6 t^{24})$. Then we have

$$R(A; D_1, D_2, s^{12}t^{12}, s^6t^{24}) \cong k[s^6, st^{10}, s^2t^8, s^3t^6, s^4t^4, s^5t^2, t^{12}]$$

For $E \in \underline{\text{Div}}(A)_{\mathbb{Q}}$, we define a G-graded R-module $R(E; D_1, \dots, D_r, f_1, \dots, f_r)$ as

$$R(E; D_1, \dots, D_r, f_1, \dots, f_r) = \bigoplus_{\substack{1 \le i \le r \\ 0 \le m_i < d_i}} A\left(E + \sum_{i=1}^r m_i D_i\right) \prod_{i=1}^r x_i^{m_i}.$$

Then $R(E; D_1, \dots, D_r, f_1, \dots, f_r)$ is a G-divisorial ideal of R. We denote the G-divisorial ideal as above simply by R(E), if no confusion is possible.

Proposition 2.4. We define a map

$$\phi: \bigoplus_{\mathfrak{p} \in V_{H}(A)} \mathbb{Z} \frac{1}{e_{R}(\mathfrak{p})} \mathfrak{p} \longrightarrow \underline{\mathrm{Div}}(R)$$

$$E \longmapsto R(-E; D_{1}, \dots, D_{r}, f_{1}, \dots, f_{r}).$$

Then ϕ is an isomorphism of Abelian groups.

PROOF. Since $\underline{\operatorname{div}}_R(R(D)R(E)) = R(D+E)$ (cf. (1.17)), ϕ is a group homomorphism. Let $\mathfrak{P} \in V_G^1(R)$ and $\mathfrak{p} = \mathfrak{P}^{(H)}$. Then $\underline{\operatorname{div}}_R(\mathfrak{p}R) = R(-\mathfrak{p})$ (cf. (1.17) and (1.18)). Since $e_R(\mathfrak{p})\underline{\operatorname{div}}_R(\mathfrak{P}) = \underline{\operatorname{div}}_R(\mathfrak{p}R) = \phi(\mathfrak{p}) = e_R(\mathfrak{p})\phi((1/e_R(\mathfrak{p}))\mathfrak{p})$ (in $\underline{\operatorname{Div}}(R)$), we have $\phi((1/e_R(\mathfrak{p}))\mathfrak{p}) = \underline{\operatorname{div}}_R(\mathfrak{P})$ and ϕ is an isomorphism.

REMARK 2.5. (1) We note that $\phi(D_i) = \underline{\operatorname{div}}_R(Rx_i)$ for $1 \le i \le r$ and, therefore, $\underline{P}(R)$ is isomorphic to $\{E + \sum_{i=1}^r m_i D_i \mid E \in \underline{P}(A), 0 \le m_i < d_i, 1 \le i \le r\}$.

(2) For $0 \le m_i < d_i$ $(1 \le i \le r)$, $A(\sum_{i=1}^r m_i D_i) \prod_{i=1}^r x_i^{m_i}$ contains a G-homogeneous unit of R if and only if $\sum_{i=1}^r m_i D_i \in \underline{P}(A)$.

We put
$$D_R = \sum_{\mathfrak{p} \in V_H(A)} ((e_R(\mathfrak{p}) - 1)/e_R(\mathfrak{p})) \mathfrak{p} \in \underline{\text{Div}}(A)_{\mathbb{Q}}$$
.

LEMMA 2.6. For $E \in \underline{\text{Div}}(A)$, there is the following isomorphism

$$\underline{\operatorname{Hom}}_{A}(R, A(E)) \cong R(E + D_{R}; D_{1}, \dots, D_{r}, f_{1}, \dots, f_{r}).$$

PROOF. Let $0 \le m_i < d_i$ $(1 \le i \le r)$ and $g = \sum_{i=1}^r m_i \deg(x_i)$. Then, for $h \in H$, $[\underline{\text{Hom}}_A(R, A(E))]_{g+h} = [\underline{\text{Hom}}_A(R^{(-g,H)}, A(E))]_{g+h}$ and

$$R^{(-g,H)} = A\left(\sum_{m_i > 0} (d_i - m_i)D_i\right) \prod_{m_i > 0} x_i^{d_i - m_i} = A\left(\sum_{m_i > 0} ((d_i - m_i)D_i - \underline{\operatorname{div}}_A(f_i))\right) \prod_{i=1}^r x_i^{-m_i}.$$

Hence we have

$$\underline{\text{Hom}}_{A}(R^{(-g,H)}, A(E)) = \underline{\text{Hom}}_{A}\left(A\left(-\sum_{i=1}^{r} m_{i} D_{i}\right) \prod_{i=1}^{r} x_{i}^{-m_{i}}, A(E)\right)$$

$$\cong \left[A(E) : A\left(-\sum_{i=1}^{r} m_{i} D_{i}\right) \prod_{i=1}^{r} x_{i}^{m_{i}} = A\left(E - \left[-\sum_{i=1}^{r} m_{i} D_{i}\right]\right) \prod_{i=1}^{r} x_{i}^{m_{i}}$$

$$= A\left(E + \left[D_{R} + \sum_{i=1}^{r} m_{i} D_{i}\right]\right) \prod_{i=1}^{r} x_{i}^{m_{i}} = A\left(E + D_{R} + \sum_{i=0}^{r} m_{i} D_{i}\right) \prod_{i=1}^{r} x_{i}^{m_{i}}$$

and

$$\underline{\text{Hom}}_{A}(R, A(E)) = \bigoplus_{\substack{1 \le i \le r \\ 0 \le m_{i} < d_{i}}} \underline{\text{Hom}}_{A} \left(A \left(-\sum_{i=1}^{r} m_{i} D_{i} \right) \prod_{i=1}^{r} x_{i}^{-m_{i}}, A(E) \right)$$

$$\cong R(E + D_{R}; D_{1}, \dots, D_{r}, f_{1}, \dots, f_{r}). \qquad \square$$

If (A, \mathfrak{m}) is *H*-local, then an *H*-canonical module \underline{K}_A is defined as an *H*-graded *A*-module satisfying $\underline{K}_A \otimes_{A_0} \hat{A}_0 \cong [H^d_{\widehat{\mathfrak{m}}}(\hat{A})]^{\vee}$ where $\hat{A} = A \otimes_{A_0} \hat{A}_0$ and $d = \underline{\dim}(A)$ (cf. section 3 of [9]). Furthermore, if *A* is *H*-normal and \underline{K}_A exists, then \underline{K}_A is *H*-divisorial. We denote by $\Re_A \in \underline{\mathrm{Div}}(A)$ the *H*-divisor satisfying $\underline{K}_A = A(\Re_A)$, if \underline{K}_A exists.

As a direct consequence of (2.6), we have the following:

PROPOSITION 2.7 (Theorem 3.2 of Tomari-Watanabe [14]). Assume that A is H-local and has an H-canonical module $K_A = \text{div}_A(\Re_A)$.

- (1) $\underline{K}_R = R(\Re_A + D_R; D_1, \dots, D_r, f_1, \dots, f_r).$
- (2) \underline{K}_R is free if and only if $\Re_A + D_R \sum_{i=1}^r m_i D_i \in \underline{P}(A)$ for some $0 \le m_i < d_i$ $(1 \le i \le r)$.

3. Complete intersections.

We keep notations as in section 2. Suppose that R has a unique G-maximal ideal \mathfrak{M} . We put $\mathfrak{m} = \mathfrak{M}^{(H)} \subset A$ and assume that $A/\mathfrak{m} = A_0/\mathfrak{m}_0$.

In this section, we consider a condition for R to be (locally) a complete intersection under the following assumptions.

Assumption 3.1. (1) A is a factorial domain and locally a complete intersection.

(2)
$$R/\mathfrak{M} = A/\mathfrak{m} \ (= A_0/\mathfrak{m}_0) \ (or \sum_{i=1}^r m_i D_i \notin \underline{P}(A) \ for \ (m_1, \cdots, m_r) \neq (0, \cdots, 0)).$$

Throughout this section, we assume the above conditions (1) and (2).

We set $\operatorname{Deg}(R) = \{\{\sum_{i=1}^r m_i D_i\} \mid 0 \le m_i < d_i \ (1 \le i \le r)\}$ and denote by Fund(R) the set of minimal elements of $\operatorname{Deg}(R)$ with respect to the order of $\operatorname{\underline{Div}}(A)_0$.

Since $[\sum_{i=1}^{r} m_i D_i] \in \underline{P}(A)$, $\{\sum_{i=1}^{r} m_i D_i\}$ is a principal ideal of R and $Deg(R) \subset \underline{P}(R)$. For $E \in Fund(R)$, we put $y_E \in h(R)$ a homogeneous element satisfying $\underline{div}_R(y_E) = E$. Also, by (3.1), $\alpha : G/H \to \bigoplus_{\mathfrak{p} \in V_H^1(A)} \mathbf{Z}/(e_R(\mathfrak{p}))$ is injective where α is as in (1.20).

Put $\Lambda = \{ \mathfrak{p} \in V_H^1(A) \mid e_R(\mathfrak{p}) > 1 \}$. For $\Lambda' \subset \Lambda$, we denote by $G_{\Lambda'}$ a subgroup of G such that $G_{\Lambda'} \supset H$ and $G_{\Lambda'}/H = \alpha^{-1}(\bigoplus_{\mathfrak{p} \in \Lambda'} \mathbb{Z}/(e_R(\mathfrak{p})))$.

LEMMA 3.2. (1) For $E \in \underline{P}(R)$ with E > 0 and $E \notin \underline{P}(A)$, there exists $D \in \text{Fund}(R)$ such that $D \leq E$ (i.e. Fund(R) is the set of minimal elements of $\{E \in \underline{P}(R) \mid E > 0 \text{ and } E \notin \underline{P}(A)\}$).

- (2) $R = A[y_E \mid E \in \text{Fund}(R)].$
- (2') Every element of Deg(R) is a sum of elements of Fund(R).
- (3) Fund $(R^{G_{\Lambda'}}) = \{ E \in \text{Fund}(R) \mid \text{Supp}(E) \subset \Lambda' \} \text{ for } \Lambda' \subset \Lambda.$

PROOF. (1) For every $E \in \underline{P}(R) \setminus \underline{P}(A)$ with E > 0, there exist $0 \le m_i < d_i$ $(1 \le i \le r)$ and $E' \in \underline{P}(A)$ such that $E = E' + \sum_{i=1}^r m_i D_i$ and $E' + [\sum_{i=1}^r m_i D_i] \ge 0$ (cf. (1) of (2.5)). Hence $E \ge \{\sum_{i=1}^r m_i D_i\}$. This implies the assertion (1).

- (2) Let $D \in \underline{P}(R)$ such that D > 0 and $D \notin \underline{P}(A)$. Then there exists $E_1 \in \operatorname{Fund}(R)$ such that $D \ge E_1$ by (1). Since $0 \le D E_1 \in \underline{P}(R)$, if $D E_1 \notin \underline{P}(A)$, then there exists $E_2 \in \operatorname{Fund}(R)$ such that $D E_1 \ge E_2$. Continuing this process, we can write $D = \underline{\operatorname{div}}_A(a) + \sum_{i=1}^s p_i E_i$ where $a \in h(A)$, $E_i \in \operatorname{Fund}(R)$ and p_i 's are non-negative integers. This implies that R is generated by $\{y_E \mid E \in \operatorname{Fund}(R)\}$ as an A-algebra.
- (3) For $y \in h(R)$, $\deg(y) \in G_{A'}$ if and only if $\operatorname{Supp}(\{\underline{\operatorname{div}}_R(y)\}) \subset A'$ by (1.20). Hence, by (1), $\operatorname{Fund}(R^{(G_{A'})})$ is the set of minimal elements of $\{E \in \underline{P}(R) \mid [E] \neq E, E > 0 \text{ and } \operatorname{Supp}(\{E\}) \subset A'\}$ and coincide with $\{E \in \operatorname{Fund}(R) \mid \operatorname{Supp}(E) \subset A'\}$.

For $\Lambda' \subset \Lambda$, we define a polynomial ring $S_{\Lambda'}$ by $S_{\Lambda'} = A[Y_E \mid E \in \text{Fund}(R^{(G_{\Lambda'})})]$ and $M_{\Lambda'} = mS_{\Lambda'} + (Y_E \mid E \in \text{Fund}(R^{(G_{\Lambda'})}))$. We define a surjective Λ -algebra homomorphism

$$\psi_{A'}: S_{A'} \to R^{(G_{A'})}$$
 by $\psi_{A'}(Y_E) = y_E$

for $E \in \operatorname{Fund}(R^{(G_{A'})})$ and put $J_{A'} = \ker(\psi_{A'})$. It is easy to verify that $J_{A'}$ is generated by elements of the form $Y^{\alpha} - aY^{\beta}$ ($\neq 0$) ($a \in h(A)$, Y^{α} , Y^{β} are monomials of $S_{A'}$) and $J_{A'} = J_{A} \cap S_{A'}$.

For $E \in \text{Fund}(R)$, there exists an element of J_A of the form $Y_E^d - aY^\beta$, where $a \in h(A)$ and Y^β is a monomial of S_A , since G/H is torsion. Put $d_E = \inf\{d \mid 0 \neq Y_E^d - aY^\beta \in J_A\}$. We fix an element

$$F(E) = Y_E^{d_E} - a_E Y^{\beta_E} \in J_A.$$

For $\Lambda' \subset \Lambda$, if $\operatorname{Supp}(E) \subset \Lambda'$, then $F(E) \in J_{\Lambda'}$. Moreover, $\{F(E) \mid E \in \operatorname{Fund}(R^{(G_{\Lambda'})})\}$ is a part of minimal basis of $(J_{\Lambda'})_{M_{\Lambda'}}$.

PROPOSITION 3.3. For $\Lambda' \subset \Lambda$, $R^{(G_{\Lambda'})}$ is locally a complete intersection if and only if $J_{\Lambda'}$ is generated by $\{F(E) \mid E \in \text{Fund}(R^{(G_{\Lambda'})})\}$.

To prove Proposition 3.3, we need some preliminaries.

For $\Lambda' \subset \Lambda$, we define a directed graph $\mathscr{G}_{\Lambda'}$ of a vertex set $V(\mathscr{G}_{\Lambda'}) = \{Y_E \mid E \in \operatorname{Fund}(R^{(G_{\Lambda'})})\}$ and directed edges $DE(\mathscr{G}_{\Lambda'})$ as follows: an ordered pair (Y_E, Y_D) is in $DE(\mathscr{G}_{\Lambda'})$, if Y_D divides Y^{β_E} where Y^{β_E} is as above.

LEMMA 3.4. ((3.5) of Nakajima [10] and (2.1) of Eto [5]). Suppose that $(J_A,)_{M_A}$ is generated by $\{F(E) \mid \text{Fund}(R^{(G_A)})\}$.

- (1) There exists a linear ordering $\leq_{A'}$ on $V(\mathcal{G}_{A'})$ such that $Y_E \geq_{A'} Y_D$, if $(Y_E, Y_D) \in DE(\mathcal{G}_A)$.
 - (2) $\{F(E) \mid E \in \text{Fund}(R^{(G_{A'})})\}\$ forms a regular sequence (in any order).

PROOF. (1) We have only to show that $\mathscr{G}_{A'}$ has no cycle. Therefore, we assume the contrary. Then there exist $(Y_{E_1}, Y_{E_2}), (Y_{E_2}, Y_{E_3}), \cdots, (Y_{E_{k-1}}, Y_{E_k}), (Y_{E_k}, Y_{E_1}) \in DE(\mathscr{G}_{A'})$. We may assume that $E_i \neq E_j$ for $i \neq j$. Then, by definition of $DE(\mathscr{G}_{A'})$, $\{F(E_1), \cdots, F(E_k)\}$ is contained in $(Y_{E_1}, \cdots, Y_{E_k})$. Since $(J_{A'})_{M_{A'}}$ is generated by $\{F(E) \mid E \in \text{Fund}(R^{(G_{A'})})\}$, the number of minimal generators of $(J_{A'})_{M_{A'}} + (Y_{E_1}, \cdots, Y_{E_k})_{M_{A'}}$ is at most $|\text{Fund}(R^{(G_{A'})})| - k + k = |\text{Fund}(R^{(G_{A'})})|$. On the other hand, since $R^{(G_{A'})}$ is $G_{A'}$ -domain, Y_{E_1} is not a zero divisor of $S_{A'}/J_{A'}$ and

$$|\operatorname{Fund}(R^{(G_{A'})})| = ht((J_{A'})_{M_{A'}}) < ht((J_{A'}, Y_{E_1}, \dots, Y_{E_k})_{M_{A'}})).$$

This is a contradiction. Hence $\mathcal{G}_{A'}$ has no cycle.

(2) We put $J' = (\{F(E) \mid E \in \text{Fund}(R^{(G_{A'})})\})$ and extend $\leq_{A'}$ to a monomial ordering of $S_{A'}$, lexicographically. Then, for $E \in \text{Fund}(R^{(G_{A'})})$, $Y_E^{d_E} >_{A'} Y^{\beta_E}$ and $\{F(E) \mid E \in \text{Fund}(R^{(G_{A'})})\}$ forms a Gröbner basis of J' (cf. Proposition 9.2(b) of [13]). In particular, the initial term in(J') of J' is generated by $\{Y_E^{d_E} \mid E \in \text{Fund}(R^{(G_{A'})})\}$. By standard arguments of the theory of Gröbner basis, this implies $\{F(E) \mid E \in \text{Fund}(R^{(G_{A'})})\}$ is a regular sequence. (See for instance [13].)

PROOF OF (3.3). The "if" part follows from (3.4). We shall show the "only if" part.

We put $S = S_{A'}$, $M = M_{A'}$, and $J = J_{A'}$. Since $R^{(G_{A'})}$ is A-free, we have $J/mJ \cong ker(\psi_{A'} \otimes_A A/m)$. Thus the number $\mu(J_M)$ of minimal generators of J_M is equal to the number $\mu(J_M + mS_M/mS_M)$. Then, since $(R^{(G_{A'})})_M$ is complete intersection, $\mu(J_M) = |\operatorname{Fund}(R^{G_{A'}})|$ (cf. Theorem 2 of [2]). Namely, if we put $J' = (\{F(E) \mid E \in \operatorname{Fund}(R^{(G_{A'})})\})$, then $J_M = J_M'$ since $\{F(E) \mid E \in \operatorname{Fund}(R^{(G_{A'})})\}$ is part of minimal generators of J_M . Thus J = J' + MJ and $J = J' + M^nJ$ for every n > 0. For $E \in \operatorname{Fund}(R^{(G_{A'})})$, we put $d = \prod_{Y_D \subseteq A'Y_E} d_D$ where A' is as in (1) of (3.4). By (2) of (3.1), there exists $D \in \operatorname{Fund}(R^{(G_{A'})})$

such that $Y_D <_{A'} Y_E$ and $F(D) = Y_D^{d_D} - a_D$ for some $a_D \in \mathbb{m}$. This implies that $Y_E^d \in J' + \mathbb{m}S$. Hence, for $n \gg 0$, $M_A^n J \subset J' + \mathbb{m}S$ and $J + \mathbb{m}S/\mathbb{m}S = J' + \mathbb{m}S/\mathbb{m}S$ (or $S/J' + \mathbb{m}S \cong (S/J') \otimes_A A/\mathbb{m} \cong R^{(G_{A'})} \otimes_A A/\mathbb{m}$). On the other hand, S/J' is A-free, by the proof of (2) of (3.4). Then $rank_A(S/J') = \dim_{A/\mathbb{m}}((S/J') \otimes_A A/\mathbb{m}) = \dim_{A/\mathbb{m}}(R^{(G_{A'})} \otimes_A A/\mathbb{m}) = rank_A(R^{(G_{A'})})$ and the canonical surjection $S/J' \to R^{(G_{A'})}$ is isomorphism. Hence we have J = J'.

COROLLARY 3.5. If R is locally a complete intersection, then so is $R^{(G_{A'})}$ for any $\Lambda' \subset \Lambda$.

PROOF. Suppose that R is locally a complete intersection. Then, by (3.3), J_{Λ} is generated by $\{F(E) \mid E \in \text{Fund}(R)\}$. Also, by the proof of (3.4), $J_{\Lambda'} = J_{\Lambda} \cap S_{\Lambda'}$ is generated by $\{F(E) \mid E \in \text{Fund}(R), F(E) \in S_{\Lambda'}\} = \{F(E) \mid E \in \text{Fund}(R^{(G_{\Lambda'})})\}$ for $\Lambda' \subset \Lambda$. Thus $R^{(G_{\Lambda'})}$ is locally a complete intersection for $\Lambda' \subset \Lambda$.

DEFINITION 3.6. Let Γ be a finite subset of $\underline{\mathrm{Div}}(A)_{\mathbb{Q}} \setminus \{0\}$ and $w : \Gamma \to \mathbb{N}_+$ be a map. Here we denote by \mathbb{N}_+ the set of all positive integers. We call that (Γ, w) is a datum, if it satisfies the following conditions;

- (1) for $D, E \in \Gamma$ $(D \neq E)$, one of the following cases occurs; (a) $\text{Supp}(D) \subsetneq \text{Supp}(E)$, (b) $\text{Supp}(D) \supsetneq \text{Supp}(E)$, (c) $\text{Supp}(D) \bigcap \text{Supp}(E) = \emptyset$,
- (2) for $E \in \Gamma$, there is a relation $w(E)E = \sum_{i=1}^{k} E_i + \sum_{j=1}^{l} \mathfrak{p}_j$ where $\{E_1, \dots, E_k\} = \{D \in \Gamma \mid D \prec E\}$ and $\{\mathfrak{p}_1, \dots, \mathfrak{p}_l\} = \operatorname{Supp}(E) \setminus \bigcup_{i=1}^{k} \operatorname{Supp}(E_i)$. (We write $D \prec E$ if $\operatorname{Supp}(D) \subsetneq \operatorname{Supp}(E)$ and there is no element $D' \in \Gamma$ such that $\operatorname{Supp}(D) \subsetneq \operatorname{Supp}(D') \subsetneq \operatorname{Supp}(E)$.)

Let (Γ, w) be a datum. For $E \in \Gamma$ and $\mathfrak{p} \in \text{Supp}(E)$, we set

$$\Gamma_{E,\mathfrak{p}} = \{ D \in \Gamma \mid \mathfrak{p} \in \operatorname{Supp}(D) \subset \operatorname{Supp}(E) \} ,$$

$$e_E(\mathfrak{p}) = \prod_{D \in \Gamma_{E,\mathfrak{p}}} w(D) .$$

Then we have $E = \sum_{\mathfrak{p} \in \text{Supp}(E)} (1/e_E(\mathfrak{p}))\mathfrak{p}$.

DEFINITION 3.7. Let (Γ, w) be a datum.

(1) Let $A[Y_E \mid E \in \Gamma]$ be a polynomial ring over A. We put $a_E \in h(A)$ a homogeneous element satisfying $\underline{\text{div}}_A(a_E) = w(E)E - \sum_{D \prec E} D$ for $E \in \Gamma$ and set

$$R(\Gamma) = A[Y_E \mid E \in \Gamma] / \left(Y_E^{w(E)} - a_E \prod_{D \prec E} Y_D \mid E \in \Gamma \right).$$

(2) We put $G(\emptyset) = H$ and define an Abelian group $G(\Gamma)$ such that $R(\Gamma)$ is a $G(\Gamma)$ -graded ring by

$$G(\Gamma) = \mathbf{Z}^{(\Gamma)} / \left\langle w(E) \mathbf{e}_E - \sum_{D \prec E} \mathbf{e}_D \mid E \in \Gamma \right\rangle$$

where $\mathbf{Z}^{(\Gamma)} = \bigoplus_{E \in \Gamma} \mathbf{Z} \mathbf{e}_E$ is a free abelian group with free basis $\{\mathbf{e}_E \mid E \in \text{Fund}(R)\}$.

(3) Let $\{E_1, \dots, E_l\} = \{E \in \Gamma \mid \text{Supp}(E) \text{ is maximal in } \{\text{Supp}(D) \mid D \in \Gamma\}\}$ and $\mathfrak{p} \in V^1_H(A)$. We put

$$e(\mathfrak{p}) = \begin{cases} e_{E_i}(\mathfrak{p}) & \text{if } \mathfrak{p} \in \text{Supp}(E_i) \text{ for some } i \\ 1 & \text{otherwise} \end{cases}$$

EXAMPLE 3.8. Let k be a field. We put A = k[[a, b, c, d]] the formal power series ring and

$$E_1 = \frac{1}{12} \operatorname{div}_A(ac) + \frac{1}{8} \operatorname{div}_A(bd) ,$$

$$E_2 = \frac{1}{6} \operatorname{div}_A(a) + \frac{1}{4} \operatorname{div}_A(b) , \qquad E_3 = \frac{1}{6} \operatorname{div}_A(c) + \frac{1}{4} \operatorname{div}_A(d) ,$$

$$E_4 = \frac{1}{3} \operatorname{div}_A(a) , \qquad E_5 = \frac{1}{2} \operatorname{div}_A(b) , \qquad E_6 = \frac{1}{3} \operatorname{div}_A(c) , \qquad E_7 = \frac{1}{2} \operatorname{div}_A(d) ,$$

and $\Gamma = \{E_1, \dots, E_7\}$. We define the map $w : \Gamma \to \mathbb{N}_+$ by $w(E_1) = w(E_2) = w(E_3) = w(E_5) = w(E_7) = 2$ and $w(E_4) = w(E_6) = 3$. Then (Γ, w) is a datum and

$$R(\Gamma) = A[Y_{E_1}, \cdots, Y_{E_n}]/J$$

where
$$J = (Y_{E_1}^2 - Y_{E_2}Y_{E_3}, Y_{E_2}^2 - Y_{E_4}Y_{E_5}, Y_{E_3}^2 - Y_{E_6}Y_{E_7}, Y_{E_4}^3 - a, Y_{E_5}^2 - b, Y_{E_6}^3 - c, Y_{E_7}^2 - d)$$
.

PROPOSITION 3.9. Let (Γ, w) be a datum. Then the following hold.

- (1) $R(\Gamma)$ is $G(\Gamma)$ -normal and $\underline{\mathrm{Div}}(R(\Gamma)) \cong \bigoplus_{\mathfrak{p} \in V^1_{H}(A)} \mathbf{Z}(1/e(\mathfrak{p}))\mathfrak{p}$.
- (2) $\operatorname{div}_{R}(Y_{E}R(\Gamma)) = E$ for $E \in \Gamma$ by the identification as in (2.4).
- (3) Fund $(R(\Gamma)) = \Gamma$.

The above proposition follows from the next remark.

REMARK 3.10. Let B be a G'-normal and $a \in h(B)$. We put $G'' = G' \oplus \mathbb{Z}/\langle (\deg(a), -n) \rangle$. Then, by (2.1) and (2.2), $B' := B[X]/(X^n - a)$ is G''-normal if and only if $\underline{\operatorname{div}}_B(a)(\mathfrak{q}) \leq 1$ for every $\mathfrak{q} \in V_{G'}^1(B)$. In this case, $\underline{\operatorname{Div}}(B') = \bigoplus_{\mathfrak{q} \in V_{G'}^1(B)} \mathbb{Z}(1/e(\mathfrak{q}))\mathfrak{q}$ and $\underline{\operatorname{div}}_{B'}(XB') = (1/n) \underline{\operatorname{div}}_B(a)$ where $e(\mathfrak{q}) = n$ (resp. $e(\mathfrak{q}) = 1$), if $\mathfrak{q} \in \operatorname{Supp}(\underline{\operatorname{div}}_B(a))$ (resp. $\mathfrak{q} \notin \operatorname{Supp}(\underline{\operatorname{div}}_B(a))$) (cf. (2.4)).

We state our main result as follows.

THEOREM 3.11. The following conditions are equivalent.

- (1) R is locally a complete intersection.
- (2) There exists a datum (Γ, w) such that $G \cong G(\Gamma)$ and $R \cong R(\Gamma)$.

The proof of $(2) \Rightarrow (1)$ of (3.11) is easy. Therefore, it is enough to show the following proposition.

PROPOSITION 3.12. Suppose that R is locally a complete intersection. We put $\Gamma = \operatorname{Fund}(R)$. Then the following hold.

(1) There exists a map $w: \Gamma \rightarrow \mathbb{N}_+$ such that (Γ, w) is a datum.

- (2) $R(\Gamma) = S_A/J_A \ (\cong R)$.
- (3) $G \cong G(\Gamma)$.

PROOF. (1) We prove the assertion by induction on $|\Lambda|$. If $\Lambda = \emptyset$, then R = A and Fund $(R) = \emptyset$. We assume that $\Lambda \neq \emptyset$. Then, by (3.5), $R^{(G_{\Lambda'})}$ is locally a complete intersection and, by induction hypothesis, Fund $(R^{(G_{\Lambda'})})$ is a datum for all $\Lambda' \subsetneq \Lambda$. Since Λ is factorial, $\sum_{\mathfrak{p} \in \Lambda} \mathfrak{p} \in \underline{P}(A)$ and, by (2) of (2.7), $D := \sum_{\mathfrak{p} \in \Lambda} (1/e_R(\mathfrak{p}))\mathfrak{p} \in \mathrm{Deg}(R)$. The proof is divided into two cases: (1) $D \notin \mathrm{Fund}(R)$, (2) $D \in \mathrm{Fund}(R)$.

Case (1). We can write $D = E_1 + \cdots + E_p$ for $E_1, \cdots, E_p \in \text{Fund}(R)$ $(p \ge 2)$ by (3.2), (2'). Then $\text{Supp}(E_i) \cap \text{Supp}(E_j) = \emptyset$ for $i \ne j$. We put $\Lambda_i = \text{Supp}(E_i)$ for $1 \le i \le p$.

Let $E' \in \operatorname{Fund}(R)$. If $\Lambda_i \subset \operatorname{Supp}(E')$, then $E_i \leq E'$ and, since $E' \in \operatorname{Fund}(R)$, we have $E_i = E'$. We assume that $\Lambda_i \not \subset \operatorname{Supp}(E')$ for $i = 1, \dots, p$. Since $\operatorname{Supp}(E') \subset \Lambda$, $\operatorname{Supp}(E_j) \cap \operatorname{Supp}(E') \neq \emptyset$ for some j. Then $\Lambda' := \Lambda_j \cup \operatorname{Supp}(E') \subsetneq \Lambda$ since $\Lambda_i \not \subset \operatorname{Supp}(E')$ for all i and $\Lambda_i \cap \Lambda_k = \emptyset$ for $i \neq k$. By induction hypothesis and the fact that E_j , $E' \in \operatorname{Fund}(R^{(G_{\Lambda^i})})$ (cf. (3.2)), we have $\operatorname{Supp}(E') \subset \operatorname{Supp}(E_j)$. Hence $\operatorname{Fund}(R)$ is disjoint union of $\operatorname{Fund}(R^{(G_{\Lambda^i})})$ ($1 \leq i \leq p$). On the other hand, $\operatorname{Fund}(R^{(G_{\Lambda^i})})$ is a datum ($1 \leq i \leq p$), by induction hypothesis. Thus $\operatorname{Fund}(R)$ is also a datum.

Case (2) $D \in \text{Fund}(R)$. We put $\{E_1, \dots, E_p\} = \{E \in \text{Fund}(R) \mid E \prec D\}$.

Claim 1. Supp $(E_i) \cap \text{Supp}(E_i) = \emptyset$ for $i \neq j$.

Assume that $\operatorname{Supp}(E_i) \cap \operatorname{Supp}(E_j)$ is not empty for some $i \neq j$. Then we have that $A = \operatorname{Supp}(E_i) \cup \operatorname{Supp}(E_j)$, since $\operatorname{Fund}(R^{(G_{A'})})$ is a datum for any $A' \subsetneq A$. Since $E_i + E_j \geq D$, we have a relation $E_i + E_j = nD + E$ where $0 \leq E \in \underline{P}(R)$ and $\operatorname{Supp}(E) \subsetneq A$. In other words, $Y_{E_i}Y_{E_j} - aY_D^nY^\beta \in J_A$ where $a \in h(A)$ such that $\underline{\operatorname{div}}_R(a\psi_A(Y^\beta)) = E$. Then, by (3.3), there exists $E' \in \operatorname{Fund}(R)$ such that $Y^{\beta_{E'}}$ divides $Y_{E_i}Y_{E_j}$ and a_{E^i} is unit where $a_{E'}Y^{\beta_{E'}}$ is the term of the polynomial $F(E') \in S_A$. Since E_i , $E_j \in \operatorname{Fund}(R)$, we have $Y^{\beta_{E'}} = Y_{E_i}Y_{E_j}$ and $F(E') = Y_{E_i}^{d_{E_i}} - a_{E'}Y_{E_i}Y_{E_j}$. Also, since $\operatorname{Supp}(E') \supsetneq \operatorname{Supp}(E_i)$, we have F' = D. Namely, $F(E') = F(E_i) = A$ by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis. Then F(E) = A and F(E) = A by induction hypothesis.

We put $\operatorname{Supp}(E_1) \setminus \operatorname{Supp}(E_2) = \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\}$, $\operatorname{Supp}(E_1) \cap \operatorname{Supp}(E_2) = \{\mathfrak{p}_{s+1}, \dots, \mathfrak{p}_t\}$ and $\operatorname{Supp}(E_2) \setminus \operatorname{Supp}(E_1) = \{\mathfrak{p}_{t+1}, \dots, \mathfrak{p}_m\}$. Since $d_D D = E_1 + E_2$, we can write

$$E_1 = \sum_{i=1}^s \frac{d_D}{e_R(\mathfrak{p}_i)} \mathfrak{p}_i + \sum_{i=s+1}^t \frac{n_i}{e_R(\mathfrak{p}_i)} \mathfrak{p}_i \quad \text{and} \quad E_2 = \sum_{i=s+1}^t \frac{n_i'}{e_R(\mathfrak{p}_i)} \mathfrak{p}_i + \sum_{i=t+1}^m \frac{d_D}{e_R(\mathfrak{p}_i)} \mathfrak{p}_i$$

where $n_i + n_i' = d_D$ for $s + 1 \le i \le t$. Without loss of generality, we may assume that n_{s+1} is minimal in $\{n_{s+1}, \dots, n_t, n_{s+1}', \dots, n_t'\}$. We put $E = E_1 + \sum_{j=t+1}^m \mathfrak{p}_j - n_{s+1}D \in \underline{P}(R)$. Then $E \not> E_i$ for i = 1, 2. Since $E = \{E\}$, there exists $E' \in \text{Fund}(R) \setminus \{D, E_1, E_2\}$ such that $E' \le E$ and $\text{Supp}(E') \cap \{\mathfrak{p}_1, \dots, \mathfrak{p}_s\} \neq \emptyset$. We note that, for every $E'' \in \text{Fund}(R) \setminus \{D, E_1, E_2\}$, either $\text{Supp}(E'') \subset \text{Supp}(E_1)$ or $\text{Supp}(E'') \subset \text{Supp}(E_2)$. Hence $\text{Supp}(E') \subset \text{Supp}(E_1)$ and $E' \le \sum_{\mathfrak{p} \in \text{Supp}(E_1)} E(\mathfrak{p}) < E_1$. This contradicts $E_1 \in \text{Fund}(R)$.

The proof of Claim 1 is completed.

We put $\{\mathfrak{p}_1, \dots, \mathfrak{p}_q\} = \operatorname{Supp}(D) \setminus \bigcup_{i=1}^p \operatorname{Supp}(E_i)$. Claim 2. $w(D)D = \sum_{i=1}^p E_i + \sum_{j=1}^q \mathfrak{p}_j$ for some w(D) > 0. There exists an integer w > 0 such that $E := \sum_{i=1}^p E_i + \sum_{j=1}^q \mathfrak{p} - wD \ge 0$ and Supp $(E) \subseteq \Lambda$. If $E \neq 0$, then there exists $E' \in \text{Fund}(R) \setminus \{D\}$ such that $E' \leq E$. On the other hand, we have $\operatorname{Supp}(E') \subset \operatorname{Supp}(E_i)$ for some i. Since $\operatorname{Supp}(E_i) \cap \operatorname{Supp}(E_j) = \emptyset$ $(i \neq j)$, $E' \leq \sum_{\mathfrak{p} \in \text{Supp}(E')} E(\mathfrak{p})\mathfrak{p} < E_i$. This is a contradiction. Hence E = 0 and $wD = \sum_{i=1}^{p} E_i + \sum_{j=1}^{q} \mathfrak{p}$.

Combining Claims 1, 2 and the induction hypothesis, we have that Fund(R) = $\{D\} \cup \bigcup_{i=1}^p \operatorname{Fund}(R^{(G_{\operatorname{Supp}(E_i)})})$ is a datum.

(2) We prove that $J_A = (Y_E^{w(E)} - a_E \prod_{E' \prec E} Y_{E'} \mid E \in \text{Fund}(R))$ by induction on | Fund(R)|. If Fund(R) = \emptyset , then there is nothing to prove. We assume that Fund(R) $\neq \emptyset$. Let $E \in \text{Fund}(R)$ such that Supp(E) is maximal in $\{\text{Supp}(D) \mid D \in A\}$ Fund(R). Then it suffices to show that locally a complete intersection $R^{(G_{Supp}(E))}$ satisfies the above condition. Therefore we may assume that $E = \sum_{\mathfrak{p} \in A} (1/e_R(\mathfrak{p}))\mathfrak{p} \in \operatorname{Fund}(R)$. We put $\{E_1, \dots, E_p\} = \{D \in \text{Fund}(R) \mid D \prec E\}$. Then, by induction hypothesis, $R^{(G_{\text{Supp}}(E_i))}$ satisfies the assertion (2) $(1 \le i \le p)$. Then we have only to show that $J_A = (Y_E^{w(E)}$ $a_E \prod_{i=1}^p Y_{E_i} + \sum_{i=1}^p J_{\text{Supp}(E_i)}.$ Let $E'_1, \dots, E'_t \in \text{Fund}(R) \setminus \{E\}$. Assume that there exists a relation

$$\underline{\operatorname{div}}_{A}(a) + dE + \sum_{i=1}^{s} d_{i}E'_{i} = \underline{\operatorname{div}}_{A}(b) + \sum_{i=s+1}^{t} d_{i}E'_{i}.$$

Then, by definition of a datum, $E'_1, \dots, E'_t \in \bigoplus_{\mathfrak{p} \in A} \mathbb{Z}(w(E)/e_R(\mathfrak{p}))\mathfrak{p}$. Hence $dE \in \bigoplus_{\mathfrak{p} \in A} \mathbb{Z}(w(E)/e_R(\mathfrak{p}))\mathfrak{p}$ and w(E) divides d. This implies $J_A = (Y_E^{w(E)} - a_E \prod_{i=1}^p Y_{E_i}) + a_E \prod_{i=1}^p Y_{E_i} + a_E \prod_{i=1}^p Y_{E_i}$ $\sum_{i=1}^p J_{\operatorname{Supp}(E_i)}.$

The assertion (3) follows from definition of G(Fund(R)).

Abelian extensions which are complete intersections.

Let A be a Noetherian normal domain with K=Q(A) and L be a finite Abelian extension of K with G = Gal(L/K). An integral closure R of A in L is called an Abelian extension of A with a Galois group G.

REMARK 4.1. We put $\hat{G} = \text{Hom}(G, U(A))$, where U(A) is the multiplicative group of units of A. Assume that ch(A) does not divide |G|, if ch(A) is positive and A contains a primitive |G|-th root of unity. Then R can be regarded as \hat{G} -graded ring in the following sense.

For $g \in \hat{G}$, we set $R_g = \{a \in R \mid \sigma(a) = g(\sigma)a \text{ for every } \sigma \in G\}$. Then

- (1) $R_0 = R^G = A$,
- (2) $R_q R_h \subset R_{q+h}$ for every $g, h \in \hat{G}$,
- (3) $R = \sum_{g \in \hat{G}} R_g = \bigoplus_{g \in \hat{G}} R_g$. (See 2 of Itoh [8].)

As a consequence of (3.11), we have the following.

THEOREM 4.2. Let A be a complete intersection factorial local domain and G be a finite Abelian group of n = |G|. Assume that

- (i) either ch(A) = 0 or ch(A) = p > 0 and (p, n) = 1,
- (ii) A contains a primitive n-th root of unity.

Let (R, n) be a local ring such that $R \supset A$. Then the following are equivalent.

- (1) R is an Abelian extension of A with Galois group G such that $R/n \cong A/m$ and is a complete intersection.
 - (2) There exists a datum (Γ, w) (in $Div(A)_0$) such that $G \cong G(\Gamma)$ and $R \cong R(\Gamma)$.

PROOF. (1) \Rightarrow (2): This follows from (4.1) and (3.11). (2) \Rightarrow (1): Let $E \in \Gamma$ such that Supp(E) is maximal in $\{\text{Supp}(D) \mid D \in \Gamma\}$ and $\{E_1, \dots, E_s\} = \{D \in \Gamma \mid D \prec E\}$. By Proposition 1.12 of Tomari-Watanabe [14], if $R\{\Gamma \setminus \{E\}\}$ is normal domain, then so is

$$R(\Gamma) \cong R(\Gamma \setminus \{E\})[Y_E] / (Y_E^{d_E} - a_E \prod_{i=1}^s y_{E_i}).$$

Hence R is normal domain. Also, by assumptions (i) and (ii), we have Q(R) is Galois extension of K and $Gal(Q(R)/K) \cong G(\Gamma) \cong G$.

ACKNOWLEDGEMENT. The author would like to express his appreciation to Doctor Kazuhiko Kurano for stimulating discussion. Thanks are also due to Professor Kei-ichi Watanabe and Professor Shiro Goto for several useful suggestions.

References

- [1] D. F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979), 79–106.
- [2] L. AVRAMOV, Flat morphisms of complete intersections, Soviet Math. Dokl. 16 (1975), 1413-1417.
- [3] N. BOURBAKI, Algèbre Commutative, Hermann (1965).
- [4] M. Demazure, Anneaux gradues normaux, Seminaire Demazure-Giraud-Teissier, Singularites des Surfaces, Ecole Polytechnique (1979), 35-68.
- [5] K. Eto, Ideals associated with free abelian groups, preprint (1994).
- [6] S. Goto and K.-i. WATANABE, On graded rings, J. Math. Soc. Japan 30 (1978), 172-213.
- [7] P. Griffith, Normal extensions of regular local rings, J. Algebra 105 (1987), 465-475.
- [8] S. Itoh, Cyclic Galois extensions of regular local rings, Hiroshima Math. J. 19 (1989), 309-318.
- [9] Y. KAMOI, Noetherian rings graded by an Abelian group, Tokyo J. Math. 18 (1995), 31-48.
- [10] H. NAKAJIMA, Affine torus embeddings which are complete intersections, Tôhoku Math. J. 38 (1986), 85–98.
- [11] C. NÄSTÄSESCU and F. Van OYSTAEYEN, Graded Ring Theory, North-Holland (1982).
- [12] P. ROBERTS, Abelian extensions of regular local rings, Proc. Amer. Math. Soc. 78 (1980), 307–310.
- [13] L. ROBBIANO, Introduction to the Theory of Gröbner Basis, Quen's Papers in Pure and Appl. Math. 80 (1988).
- [14] M. Tomari and K.-i. WATANABE, Normal \mathbb{Z}_r -graded rings and normal cyclic covers, Manuscripta Math. 76 (1992), 325–340.

YUJI KAMOI

- [15] K.-i. Watanbe, Invariant subrings which are complete intersections, I, Nagoya Math. J. 77 (1980), 89–98.
- [16] K.-i. WATANABE, Some remarks concerning Demazure's construction of normal graded rings, Nagoya Math. J. 83 (1981), 203-211.

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, MINAMI-OHSAWA, HACHIOJI-SHI, TOKYO, 192–03 JAPAN. *e-mail*: kamoi@math.metro-u.ac.jp