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Introduction.

Let 4 be a Noetherian local factorial domain having a field of fractions K and L
be an Abelian extension of K with G=Gal(L/K). An Abelian extension R of A4 is an
integral closure of 4 in L.

Assume that ch(A4) does not divide n=| G| and A has a primitive »n-th root of unity.
Roberts [12] showed that R is Cohen-Macaulay, if 4 is a Cohen-Macaulay factorial
domain. Also Itoh [8] studied a condition for a cyclic extension of a formal power
series ring to be Gorenstein. Furthermore, Griffith [7] showed that if A4 is regular and
if R is factorial, then R is a complete intersection.

Our purpose of this article is to give a condition for R to be a complete intersection.
We shall show in section 4 that an Abelian extension of a local factorial domain 4
which is a complete intersection, is completely determined by a datum of A. A datum
is a pair (I', w) of a finite subset I of Div(4) ® , Q (=P(4) ®2Q since 4 is factorial)
and a map w: I'->N, satisfying the following condition. '

(1) For D,EeI (D#E), one of the following cases occurs;

(a) Supp(D) & Supp(E), (b) Supp(D) 2Supp(E), (c) Supp(D) N Supp(E) = .

(2) For EeT, there is a relation w(E)E=Y ¥_, E,-+Z;= ,p;where {E,, -+, E;}=

{Del'| D<E} and {p,, - - -, p;} =Supp(E)\ ;- , Supp(E)).
Here we denote by Supp(D) (D e Div(4),) the set of prime divisors of 4 which appear
in D with non-zero coefficients. We write D<E, if Supp(D) &Supp(E) and if there is
no element D’ eI such that Supp(D) = Supp(D’) =Supp(E).

Then we state our main result as follows.

THEOREM. Let A be as above and R be a local ring such that R> A. Then the
following conditions are equivalent.
(1) R is an Abelian extension of A which is a complete intersection.
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(2) There exists a datum (I', w) such that

RxA[Y, | EeI’]/(Y)E”(E’—aE I Y» | EeF)
D<E
where A[Yg | EerI] is a polynomial ring and ag is an element of A satisfying div(ag)=
WE)E=Y , . D.

A datum was first defined by Watanabe [ 15] for normal simplicial semigroup rings
(cf. Definition 1.1 of [15]). He used it to determine normal simplicial semigroup rings
which are complete intersections. In his case, an affine semigroup ring can be regarded
as a Z"-graded ring in natural way. In our case, an Abelian extension R is graded by
its Galois group. (See (4.1).) By this reason, the concept of rings graded by an Abelian
group 1is essential for us. In particular, we state a group graded version of the divisor
group theory (in section 1).

1. Preliminaries.

Let us recall some concepts of graded rings and graded modules from [6], [11]
and [9].

Let G be an Abelian group. We say that a ring R is a G-graded ring, if there exists
a family {R,},.; of additive subgroups of R such that R= @ gec Ry and RyR,c R,
for every g, he G. Similarly, a G-graded R-module is an R-module M for which there is
given a family {M,},.; of additive subgroups of M such that M=@ _, M, and
R,M,=M,,, for every g, heG.

A homomorphism f : M— N of G-graded R-modules in an R-linear map such that
SM)cN, for all geG.

Let R be a G-graded ring and M a G-graded R-module. For ge G, we define a
G-graded R-module M(g) by M= M(g) as the underlying R-module and graded by
[M(g)],=M,,, for all he G. We say that M is free, if it is isomorphic to a direct sum
of G-graded R-modules of the form R(g) (g€ G).

We denote by Homg(M, N), the Abelian group of all the G-graded homomorphisms
from M to N(g). We put Homg(M, N)=€+—)geG_Ho_mR(M, N), and consider it as a
G-graded R-module.

The elements of ), M, are called homogeneous elements of M. Every non-zero
element xe M, is said to be homogeneous of degree g, and we denote deg(x)=g. For a
subset Nc M, we set A(N)=| ) gec (NN M, ). Any element x € M has a unique expression
as a sum of homogeneous elements, x=z 96 Xg where x, € M, and x,=0 for almost all
g€ G. With this notation, we call nonzero x, the homogeneous component (of degree g)
of x.

Let H be a subgroup of G and geG. We define R®=@,_,R, and M&P =
®cuMy+p Then R® is a subring of R and M@? is an R™®-submodule of M. We

geG
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define a G-grading on M@ as

[M(-"'H)],={Mg,’ if g—g'eH
7L, if g—g'¢H

for all g’eG. If g—g’e H, then we have M@ = M@-H 35 3 G-graded R‘®-module.
Hence M has the following decomposition as a G-graded R*®-module

M= C_D M@0
iel
where {g;};.r is a system of representatives of G mod H. Also, we have R@+%pf@;H)
M@*9>0 for all i,jeI'. Hence a G-graded ring R (resp. G-graded R-module M) can
be regarded as a G/H-graded ring (resp. G/H-graded R-module).

We say that R is a G-domain (resp. G-simple), if every nonzero G-homogeneous
element of R is a nonzero divisor of R (resp. a unit of R).

A G-graded ideal B of R is said to be a G-prime ideal (resp. a G-maximal ideal),
if the G-graded ring R/B is a G-domain (resp. G-simple). Note that a G-prime ideal is
not necessarily a prime ideal, if G has a torsion. We denote by Vg(R) the set of all
G-prime ideals of R. For P e V;(R), we denote by M g, the module of fractions of M
with respect to the multiplicatively closed subset A(R\ B) and call it the homogeneous
localization of M at B. We set V(M) ={Be Vg(R) | Mg #(0)}. For an ideal P of R,
we denote by P* the maximal graded ideal of R contained in P (or the graded ideal
generated by A(P)). If P is a prime ideal of R, then P* is a G-prime ideal of R.
Furthermore, for a G-graded R-module M and Pe Spec(R), PeSuppgr(M) if and only
if P*e V4(M). We denote by dim(M) the largest length of a chain of G-prime ideals in
V(M) (cf. section 2 of [9]).

REMARK 1.1. Let H be a subgroup of G such that G/H is torsion. If P e V;(R),
then PP e Vy(R™). Furthermore, if pe Vy(R¥), then a G-graded ideal (\/pR)* is
G-prime. This gives a bijective correspondence between Vy(R™) and V(R). M g =
M @ gan (R™) pan, holds for a G-graded R-module M and Pe Vg(R).

DEerFINITION 1.2. R is said to be a G-Noetherian graded ring, if every strictly
ascending chain of G-graded ideals of R has finite length.

DEFINITION 1.3. We say that R is a G-local graded ring, if it has a unique
G-maximal ideal. Often we use the notation (R, 9R) to say that R is a G-local ring with
the unique G-maximal ideal M.

Next, we state a G-graded version of the theory of divisors. All propositions shall
be proved in the same way as in the non graded case or Z"-graded case (cf. Anderson
[1]). Therefore, we omit proofs.

Let R be a G-domain and K be the homogeneous localization of R at (0).
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DEFINITION 1.4. A G-domain R is called G-normal, if every element of 4(K), which
is integral over R, is in R.

DEFINITION 1.5. R is said to be completely G-normal, if it satisfies the following
condition; if x € (K) and R[x] is contained in a finitely generated G-graded R-submodule
of K, then xe R.

A G-graded R-submodule 0#7 of K is said to be a G-fractional ideal of R, if
there exists a€ R such that alc R. We denote by I(R) the set of all G-fractional ideals
of R and by P(R) the set of all homogeneous principal idelas. We set divg(l)=

ﬂOa&xeh(K),lcRx Rx fOl‘ IGl(R)

DEFINITION 1.6. A G-fractional ideal 7 is said to be a G-divisorial ideal of R, if
I=divg(I). We denote by Div(R) the set of all G-divisorial ideals of R.

ReMARK 1.7. Let I, JeI(R). Then the following hold.
(0) Homg(I, J)=[J: I].

(D) [ IIk=Nxennx 1.

(2) If IeDiv(R), then sois [/: J]k.

(3) divg()=[R: [R: Iklx

4) divg(I)c=divg(J) if and only if [R: Ix=[R: J]k.

DEFINITION 1.8. We define a commutative monoid structure on Div(R) by
dive(D) +divg(J) : =divg(lJ) for I,Jel(R). Also, we denote divg(l)~divg(J), if
dive(]) =divg(J) +divg(a) for some 0#aeh(K). Here we denote divg(a) =divg(aR) for
0#aeh(K). We put CI(R)=Div(R)/~.

The following proposition is proved in the same way as in the non-graded case
(cf. Chap. VII, §1.2, Theorem 1 of [3]).

PROPOSITION 1.9. R is completely G-normal if and only if Div(R) is an Abelian
group.

DEerFINITION 1.10. Let I' be an ordered Abelian group and v: A(K\{0})—>T be a
map. We call v a G-valuation on K, if it satisfies the following two conditions; for
x, y€ h(K\{0}),

1) vxp)=v(x)+v(y)

2) v(x+y)=min(v(x), v(y)), if deg(x)=deg(y) and x+y #O0.

Let v be a G-valuation on K. Then v | k, is a valuation on K : =K, \ {0}. We denote
by R,, the valuation ring of v .. We set R,=R,o[xeh(K\{0}) | v(x)>0] and call it
the G-valuation ring of v.

A G-valuation v: A(K\{0})>TI is said to be equivalent to a G-valuation v’:
h(K\{0})—T"’, if there exists an isomorphism ¢ : Im(v)—Im(v') of ordered Abelian
groups such that v'=¢ov.
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DEerFINITION 1.11. A G-valuation v on K is said to be discrete, if Im(v)>Z.
We say that R is a G-discrete valuation ring (G-DVR), if there exists a discrete
G-valuation v on K such that R=R,.

As in the non-graded case, the following hold.

ProrosITION 1.12. Let (R, IR) be a G-Noetherian G-local G-domain of dim(R)=1.
Then the following are equivalent.

(1) R is G-DVR.

(2) R is G-normal.

(3) M is a principal ideal.

(4) Every proper G-homogeneous ideal is a power of M.

ExaMPLE 1.13. Let (R, M) be a G-DVR and xeA(R) such that M=xR. We put
H={geG|R,#M,} (={ge G| R, contains a unit of R}). (Note that H is a subgroup
of G.) Then M =M, RD (cf. (1.4) of [9]).

o If M,=(0) (i.e. M =(0)), then R® is H-simple and x"¢ R for every n>0. Hence
ndeg(x) ¢ H for every n>0 (or H® Z deg(x) = G) and R= R"W[x] the polynomial ring
over R,

o If M,#0, then (R,, M,) is a DVR. We take x,€IR, such that My, =x,R,. Then
there exists a positive integer e > 0 such that x, = ux® for some homogeneous unit ue R*.
Hence R= @ R®x'.

ExamPLE 1.14. Let K=@,_, K, be a simple Z-graded ring. We assume that
K#K,. Then there exists te (K \ {0}) such that ¢ is algebraically independent over K,
and K=K,[t,t~1]. We define Z-valuations as follows;

(i) v A(K\{0)—Z by v(at")=n (ae Ko),

(ii) v,-1: A(K\{0})>Z by v(at")= —n (ae K)),

(i) vée: A(K\{0})>Z(1/e) (=Q) by vi4(at™)=vo(a)+n(d/e) (aeK,) where v,
is a discrete valuation of K, and d, ee Z such that e>0 and either d=0 or (e, d)=1.

Let v be a discrete Z-valuation of K and (R, xR) be a Z-valuation ring of v. We
put m>0 such that Zm={neZ| R, contains a unit of R}. Then, by (1.13), either (1)
R=R™[x] or 2) R=@ ;74 R™x".

Case (1) Since Zm@ Z deg(x)=Z, m=0 and R= Ry[x]. On the other hand, K is
a homogeneous localization of R at (0) (i.e. K= R,[x, x~']). Hence R,=K, and either
x=t or x=t"'. Namely, either v=v, or v=v,_,.

Case (2) We put v(f)=d and vo=(1/€}v | . Then v, is a normalized discrete
valuation of R,. Furthermore, for ae K,\{0} and neZ, v(at")=e(vo(a)+n(d/e)=
evg*(at™). Hence v is equivalent to v§° and R=R,s..= D, Ryxh~ "€t where x, is the
primitive element of R, and [a] is the largest integer not larger than a for ae Q.

We set V4(R)={Pe Vg(R) | dim(R g, =1}.
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DEFINITION 1.15. A G-domain R is said to be G-Krull, if it satisfies the following
conditions:
(1) R is G-DVR for every Pe Vi(R),

(2) R= ﬂmew (R) R(‘B)’
(3) every nonzero element of A(R) is contained in only a ﬁmte members of V(R).

PRrOPOSITION 1.16 (cf. Chap. VII, §1 of [3]). (1) A G-domain R is G-Krull, if R
is G-Noetherian and G-normal. Conversely, a G-Krull R is completely G-normal.

(2) A G-graded Krull domain is G-Krull.

(3) Let R be a G-Krull G-domain and S be a multiplicatively closed subset of h(R).

-Then a G-graded ring S™'R is G-Krull and S~ R= (Nqea Repy where A={Pe

VAR)| B S=a5).

(4) Let R be a G-Krull G-domain and K be the homogeneous localization of R at
(0). If X' is a simple graded subring of K, then R n K' is a G-Krull G-domain. In particular,
R"™ s an H-Krull H-domain for a subgroup H of G.

Throughout this section, we assume that R is G-Krull.

ProposITION 1.17 (cf. Chap. VII, §1 of [3]). (1) For IeI(R), divg(D)=

ﬂ‘BeV}_;(R) IR(‘B)'
(2) For 1,JeDiv(R), I=J if and only if Iip,=J g, for every Pe VE(R).

COROLLARY 1.18. Let H be a subgroup of G such that G/H is torsion and {g,};.,
be a system of representatives of G mod H. Then a G-fractional ideal I is G-divisorial if
and only if 1°™ is H-divisorial for any ieT.

Let PBe Vi(R). Then, by (1.12), BRy, defines a discrete G-valuation on K. We
denote it by vg.

We define a map u : Div(R)—> @ gy ) ZB by u(dive(D) = Z%w & V8()B. Then
p is an isomorphism of Abelian groups and, for I, JeDiv(R), I <7 if and only if

p()=p(J) (i.e. vg()=vy(J) for all Pe Vi(R)).

Let H be a subgroup of G such that G/H is torsion.

DEerFINITION 1.19. Let pe Vi(R™) and Pe V{(R) such that PH=p. We put
er(P) =vp(PRy)

REMARK 1.20. The correspondence I+ divg(IR) (I€Div(R‘*®)) defines a homo-
morphism Div(R®™)— Div(R) and there is the following commutative diagram of exact
sequences:
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0 0
! !
0— P(R™) —  Div(R®) —— CIR®)—0
o ! !
0— P(R) — Div(R) — CUR) —0
L !
GIH — @ ,Z/(ex(®))
! !
0 0

where G'={ge G| K,#0}, H' is a subgroup of G generated by (G'nH)uU {geG | R,
contains a unit of R} and the map P(R)—G/H' is defined by x € h(K)+> the image of
deg(x) in G'/H’.

ExaMPLE 1.21 (Demazure’s construction of normal graded rings [4]). Let
R=@®,, , R,beaKrulldomain such that R# Ry, and K=K,[¢t, ¢~ 17 be the homogeneous
localization of R at (0) with deg(z)>0.

We put {B,, - B} ={Qe Vi(R) | Q# R.}. Then, by (1.14), vg, is equivalent to
v for some d,, e;e Z.

Weset X=Proj(R)and D=)}_, (di/e;)V;e Div(X) ® Q where Vs the prime divisor
of X corresponding to B;.

Then, for ae K, and n>0,

at"e R <> divg(a)+ndivg(?) =0
<= divy(a) +nD>0e Div(X)®Q
<= aec H°X, Ox(nD)) .

(Note that if R, :=@ . , R,€ Vz(R), then v5 =v,.) Hence we have

n>0

R=R(X, D):= D H(X, Ox(nD))T" (= Ko[T]).
n>0
Weset R(E)= @, _, H(X, Ox(E+nD))T" for E e Div(X). Then, the correspondence
E— divg(R(—E)) (E€ Div(X)) defines a homomorphism Div(X)—Div(R) and we have -
the following commutative diagram,;
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0 0
! ! ‘

0—s P(X) — DifX) — CIX)—0
! ! !

0— P(R) — Div(R) —— CIR)——0
! i)
I — @, Zfe)
! l
0 0

where 7= Z and is generated by the image of divg(T). (See, for instance, Watanabe [16].)

2. A description of R from R‘®,

Let R be a G-Noetherian G-normal G-domain and K be the homogeneous
localization of R at (0). We assume that K,#0 for every geG.

Let H be a subgroup of G such that G/Hx~ ®_, Z/(d;) and put A=R®. We put
Div(4)y =Div(4) ®, Q. For D=Zpewa(,4) app € Div(A4)e, we set

Supp(D)={p | a,#0},  D(p)=a,,
(D] =ZpeV}3(R) [ap]p {D}=D-[D],
where we denote by 4(D) the H-divisorial ideal of 4 generated by {aeh(K) | div (a)+
D >0}. Note that A(D)=A([D]) and div ,(4(D))= —[D].
Tomari-Watanabe [14] constructed normal Z, -graded rings using an element of
P(A)q. In this section, we repeat Tomari-Watanabe’s construction.

We put K’ the homogeneous localization of 4 at (0). Then K'= K® and K=R® , K.
Furthermore, there exists x;e A(K\ {0}) (1 <i<r) such that x%=f,e 4 and

K= @ K'xmMmxr--. x™~K'[X,, - ...’Xr]/(de__fl’ s, X f)
Oxmi<ds

where K'[ Xy, - - -, X,] is a polynomial ring over K’ (cf. (1.6) of [9]).
We put D, =(1/d;)div ,(f;) € Div(A4)q for 1 <i<r.

ProPOSITION 2.1. We have

R= & A<.—im,~Di)-lL[xi'"i.

1<i<r
0<m;<d;

We can give a proof in the same way as in Proposition 1.4 of Tomari-Watanabe [14].

REMARK 2.2. (1) The converse of (2.1) is also true. Let 4 be an H-Noetherian
H-normal H-domain and D;eDiv(4), such that d,D;=div(f;) (1<i<r). Put G=
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H®Z']Y | _ | Z(deg(f;), —de;) where e;=(0, - - -, 0, ll, 0, ---,0)eZ" Then a G-graded
subring

R(A;Dla"',Drafly.'.9,/;):: @ A(ZmlDl)Hx'm:
i=1 i=1

1<i<r
0<m;<d;

of K'[Xy, -+, X,J/(X{'—f1, -, X*—f) is a G-normal G-domain where K’ is the
homogeneous localization of 4 at (0).

(2) It is easy to verify that egx(p)>1 if and only if D,(p)¢Z for some 1<i<r.
Furthermore, if we denote D;(p)=a;/b;e Q with (a;, b;)=1, then egx(p) is equal to
LCM({b;| a;#0, 1 <i<r}).

ExXAMPLE 2.3. Let k be a field and 4 =k[s®, t'*]<k[s, t] and D, =1div (s°'2),
D, =1%div (s°?%). Then we have

R(A ; Dy, D,, s121'2, s502%) = k[ 55, 5t1°, 528, 5316, s%1%, 5512, 117].

For EeDiv(A4)q, we define a G-graded R-module R(E ; Dy, ---, D,, f1, -, f.) as

R(E;Dh'.'sDr’fl,...’./;): @ A<E+Zm1Dl>1—[xlm‘
i=1 i=1

l<i<r
0<m;<d;

Then R(E; Dy, -+, D,, fi, -+, f,) is a G-divisorial ideal of R. We denote the G-
divisorial ideal as above simply by R(E), if no confusion is possible.

PROPOSITION 2.4. We define a map

¢o: P Z

peVi4) er(p)

E }—’R(_E;Dla'“sanla'”af;-)'

p—— Div(R)

Then ¢ is an isomorphism of Abelian groups.

PrOOF. Since divg(R(D)R(E))=R(D+E) (cf. (1.17)), ¢ is a group homomor-
phism. Let Pe V§(R) and p=PH. Then divg(pR)=R(—p) (cf. (1.17) and (1.18)).
Since  ex(p)dive(B) =dive(pR) = d(p) =er(P)p((1/ex(®))p) (in Div(R)), we have
d((1/eg(p))p) =divg(*B) and ¢ is an isomorphism. O

REMARK 2.5. (1) Wenote that ¢(D,)=divg(Rx,) for 1 <i<rand, therefore, P(R)
is isomorphic to {E+)"]_, m;D;| EeP(4), 0<m;<d;, 1 <i<r}.

(2) For 0<m;<d;, (1<i<r), A} ;. m;D)[];_, x™ contains a G-homogeneous
unit of R if and only if Y |_ m;D,eP(A).

We put D=3, . ((er(P)—1)/ex(p))p € Div(A),.

LEMMA 2.6. For Ee€Div(A), there is the following isomorphism
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MA(R5 A(E)),ER(E+DR > Dl, o '9Dra f19 T, f;') .

ProoF. Let 0<m;<d, (1<i<r) and g=)_,m,deg(x;). Then, for heH,
[Hom (R, A(E))], +,=[Hom ((R™%™, A(E))],+» and

R(_-"'H)=A( Z (di_mi)Di> H x?i—mi=A< Z ((di_mi)Di—@A(fi))>

m;>0 m;>0 m;>0

(15

i=1

Hence we have

Hom ,(R‘"¢™ A(E))=Hom, ( ( Z )H x; ™. A(E)

|
o (g fpe-o(e S

=A<E+|:DR+ Z m,-D,-:Di]jlx (E+DR+ Y. m;D; >,-1j1x

i=1 =

i :]-.
II

II

and

M*
\_/
:|~.
_s
E
S
~——

Hom (R, A(E))= @ Hom,(A(—

1<i<r
0<m;<d;

;R(E+DR;D19“'sDrafla".sf;-)- D

If (4, m) is H-local, then an H-canonical module K, is defined as an H-graded
A-module satisfying K, ® 4, Ao =[H%4(A)]" where A=A® 4, A, and d=dim(4) (cf.
section 3 of [9]). Furthermore, if 4 is H-normal and K, exists, then K, is H-divisorial.
We denote by & , € Div(4) the H-divisor satisfying K,=A(K,), if K, exists.

As a direct consequence of (2.6), we have the following:

1

PROPOSITION 2.7 (Theorem 3.2 of Tomari-Watanabe [14]). Assume that A is
H-local and has an H-canonical module K =div (& ).

(1) K_R=R(RA+DR 5 Dla T, Dr’ fls B fr)

(2) Ky is free if and only if R,+Dg—) _,mD;eP(A) for some 0<m;<d;
(1<i<r).

3. Complete intersections.

We keep notations as in section 2. Suppose that R has a unique G-maximal ideal
M. We put m=MH = 4 and assume that 4/m=A4,/m,.

In this section, we consider a condition for R to be (locally) a complete intersection
under the following assumptions.
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AssUMPTION 3.1. (1) A4 is a factorial domain and locally a complete intersection.
(@) RIM=Ajm (=Aofmo) (or Y1, mDi¢ P(A) for (my, -+, m)#(0, -, ).

Throughout this section, we assume the above conditions (1) and (2).

We set Deg(R)={{}.|_, m;D;} |0<m;<d, (1<i<r)} and denote by Fund(R) the
set of minimal elements of Deg(R) with respect to the order of Div(A4),.

Since [Y}_ m;D;1eP(A), {3.}_, m;D,} is a principal ideal of R and Deg(R) = P(R).
For EeFund(R), we put yzeh(R) a homogeneous element satisfying divg(yg)=E.
Also, by (3.1), a: G/H——)(—BPGV1 ) Z/(er(p)) is injective where « is as in (1.20).

Put A={peVi(A) | exr(p)> 1} For A’ = A, we denote by G 4. a subgroup of G such
that G, o H and G, /H=u« ‘1((—DpeA Z/(eg(P))).

LEMMA 3.2. (1) For EeP(R) with E>0 and E¢P(A), there exists D e Fund(R)
such that D<E (i.e. Fund(R) is the set of minimal elements of {EeP(R) | E>0 and
E¢P(4)}).

(2) R=A[yg| EecFund(R)].

(2)  Every element of Deg(R) is a sum of elements of Fund(R).

(3) Fund(R%*")={EeFund(R) | Supp(E)c= A’} for A’ A.

Proor. (1) For every E€P(R)\P(A) with E>0, there exist 0<m;<d, (1<i<r)
and E’eP(A) such that E=E’+Z:=1 m;D; and E'+[)7_ m;D;]=0 (cf. (1) of (2.5)).
Hence E>{)7_, m;D,}. This implies the assertion (1).

(2) Let DeP(R) such that D>0 and D¢P(A). Then there exists E; € Fund(R)
such that D>E, by (1). Since 0<D—E, eP(R), if D—E, ¢P(A4), then there exists
E,eFund(R) such that D—E,>E,. Continuing this process, we can write D=
div,(a)+) ;_, p.E; where ae h(A), E,;e Fund(R) and p,’s are non- negative integers. This
implies that R is generated by {yg | EeFund(R)} as an A-algebra.

(3) For yeh(R), deg(y) € G, if and only if Supp({divg(»)}) = A’ by (1.20). Hence,
by (1), Fund(R©4”) is the set of minimal elements of {EcP(R) |[E]#E, E>0 and
Supp({E}) = A’} and coincide with {Ee Fund(R) | Supp(E)=A'}. O

For A'= A, we define a polynomial ring S, by S, = A[ Y| E€ Fund(R¢47)] and
M, =mS, + (Y | Ee Fund(R“+")). We define a surjective 4-algebra homomorphism

Yp Sy — R(©G) by Y (Yp)=yg

for Ee Fund(R°+”) and put J . =ker(y .). It is easy to verify that J,. is generated by
elements of the form Y*—aY? (#£0) (aeh(4), Y, Y? are monomials of S,) and
Jp=J408,.

For Ee Fund(R), there exists an element of J, of the form Y3 —aY?, where ac h(A)
and Y’ is a monomial of S,, since G/H is torsion. Put dg=inf{d|0# Yi—a¥Y?eJ,}.
We fix an element
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For A’ A, if Supp(E)<A’, then F(E)eJ,.. Moreover, {F(E) | EeFund(R¢4")} is a
part of minimal basis of (J ;) ,.-

PROPOSITION 3.3. For A’c A, R®4) s locally a complete intersection if and only
if J 1. is generated by {F(E) | E€ Fund(R‘°+")}.

To prove Proposition 3.3, we need some preliminaries.

For A'c A, we define a directed graph %, of a vertex set V(9,)={Yg|Ee
Fund(R¢+”)} and directed edges DE(%,,) as follows: an ordered pair (Y, Yp) is in
DE(%,), if Yp, divides Y#= where Y*= is as above.

LEMMA 3.4. ((3.5) of Nakajima [10] and (2.1) of Eto [S]). Suppose that (J4)u .
is generated by {F(E) | Fund(R¢47)}.

(1) There exists a linear ordering <, on V(% ,) such that Yy =, Yp, if (Yg, Yp)€
DE(% ).

(2) {F(E)| Ee Fund(R“4")} forms a regular sequence (in any order).

ProoF. (1) We have only to show that ¢ ,. has no cycle. Therefore, we assume
the contrary. Then there exist (Yg, Yg), (Ye, Ye)s ~ s (Yge_y» YE)s (Y5, YE)E
DE(%,). We may assume that E;#E; for i#j. Then, by definition of DE(%,),
{F(E,), - -, F(E)} is contained in (Yg,, -, Yg,). Since (J,)u, is generated by
{F(E) | Ee Fund(R¢47)}, the number of minimal generators of (J4)u, +(Yg, """,
Yi)u . is at most | Fund(R47)|—k+k=|Fund(R‘“4?)|. On the other hand, since
R©47 is G ~-domain, Yg, is not a zero divisor of S,./J, and

|Fund(R(GA')) | =ht((JA')MAr) <ht((J 4, Ye,, 00, YEk)MA')) .

This is a contradiction. Hence 4. has no cycle.

(@) We put J'=({F(E)| E€Fund(R°+”)}) and extend <, to a monomial
ordering of S,, lexicographically. Then, for EeFund(R“+), Y#> ,Y?% and
{F(E) | E€ Fund(R®+")} forms a Grobner basis of J' (cf. Proposition 9.2(b) of [13]).
In particular, the initial term in(J’) of J' is generated by {Y#* | E€ Fund(R°+”)}. By
standard arguments of the theory of Grobner basis, this implies { F(E) | EeFund(R¢47)}
is a regular sequence. (See for instance [13].) O

PRrROOF OF (3.3). The “if” part follows from (3.4). We shall show the “only if”
part.

We put S=S,, M=M,, and J=J,.. Since R+ is A-free, we have J/mJ=
ker(y , ® 4 A/m). Thus the number u(J,,) of minimal generators of J, is equal to the
number u(J,,+mS,,/mS,). Then, since (R¢47), is complete intersection, wu(Jy)=
| Fund(RS4%) | (cf. Theorem 2 of [2]). Namely, if we put J'=({F(E) | E€ Fund(R°4")}),
then J,, =Jj since {F(E) | Ee Fund(R°4")} is part of minimal generators of Jj. Thus
J=J'+MJ and J=J +M"J for every n>0. For EeFund(R¢1), we put d=
[Ty, < .y, 9o Where <, isasin (1) of (3.4). By (2) of (3.1), there exists D € Fund(R¢47)
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such that Y, <, Yz and F(D)= Y& —a,, for some ap € m. This implies that YgeJ' 4+ mS.
Hence, for n>»0, M%JcJ'+mS and J+mS/mS=J'+mS/mS (or S/J +mS=
(S/J)® 4 A/m=RC+)® , A/m). On the other hand, S/J' is A-free, by the proof of
(2) of (3.4). Then rank (S/J")=dim ,n((S/J)® 4 A/m)=dim ,,(RE ® 4 A/m)=
rank ,(R©4”) and the canonical surjection S/J'—R(¢4” is isomorphism. Hence we have
J=J. O

COROLLARY 3.5. If R is locally a complete intersection, then so is R€4” for any
A < A.

PROOF. Suppose that R is locally a complete intersection. Then, by (3.3), J, is
generated by { F(E) | E e Fund(R)}. Also, by the proof of (3.4), J ;. =J , N S 4 is generated
by {F(E) | Ee Fund(R), F(E)€ S/} = {F(E) | E€ Fund(R‘®4?)} for A’ A. Thus R“*”is
locally a complete intersection for A’ < A. O

DEFINITION 3.6. Let I' be a finite subset of Div(4)o\{0} and w: I'>N, be a
map. Here we denote by N the set of all positive integers. We call that (I', w) is a
datum, if it satisfies the following conditions;

(1) for D, EeI' (D+#E), one of the following cases occurs;

(2) Supp(D) & Supp(E), (b) Supp(D) 2Supp(E), (¢) Supp(D) () Supp(E) =,
(2) for EeTr, there is a relation w(E)E=Z'i‘=1 Ei+Z;=1 p; where {E,, ' -, Ex} =
{DelI'| D<E} and {p;, -, p;}=Supp(E)\|J;i-; Supp(E;). (We write D<E if
Supp(D) < Supp(E) and there is no element D’el’ such that Supp(D) < Supp(D’) &
Supp(E).)
Let (I', w) be a datum. For E€ I’ and p e Supp(£), we set

I'g,={Der | peSupp(D)<=Supp(E)},
ex(p)= H w(D) .

Delg,p

Then we have E=) ¢ (1/ex(P))p. |

DEerFINITION 3.7. Let (I', w) be a datum.
(1) LetA[Yg | EeI'] be apolynomial ring over A. We put ag € h(4) a homogeneous
element satisfying div (ag) =w(E)E—Y . D for E€I and set
RN =A[Yg| Eef]/(Y;;(E)—aE IT vp| EeF) .
D<E
(2) We put G(&)=H and define an Abelian group G(I') such that R(IN) is a
G(I')-graded ring by

G(IN=Z" / <w(E)eE— Y ep| Ee r> ,
D<E
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where Z"'= @, _, Ze, is a free abelian group with free basis {e, | E€ Fund(R)}.
(3) Let{E,, - -, E;}={EeT | Supp(E) is maximal in {Supp(D) | Der}} and pe
Vi(A). We put

ex,(p) if p e Supp(E;) for some i
e(p)= )
1 otherwise .

ExamPLE 3.8. Let & be a field. We put 4=k[[a, b, ¢, d]] the formal power series
ring and
E|=15div (ac)+} div (bd) ,
=3div(a)+1div,(b), E;=3%div,(c)+3div,(d),
=3 diVA(a) s Es=idivyd), Es=1divy(c), E,=}div,(d),
andF'={E,, - - -, E,}. Wedefine themap w : I'>N_, by w(E,)=w(E,) =w(E;)=w(Es) =
w(E;)=2 and w(E,)=w(Eg)=3. Then (I', w) is a datum and
R(r)=A[YE,9 T YE7]/J

Whel‘e J=(YE21_ YEZYE3’ YE22_ YE4YE5’ YE23— YEGYE7’ Y§4—a, YEzs_b, YE35_C’ Y§7—d).

PROPOSITION 3.9. Let (I', w) be a datum. Then the following hold.
(1) R(I) is G(I')-normal and Div(R(I')= P peVid) Z(1/e(p))p.
@) divg(YgR(I)=E for EcT by the zdentzﬁcatzon as in (2.4).

(3) Fund(R(IN))=T.

The above proposition follows from the next remark.

REMARK 3.10. Let B be a G'-normal and ae h(B). We put G” =G’ @ Z/{(deg(a),
—n)). Then, by (2.1) and (2.2), B':=B[X]/(X"—a) is G"-normal if and only if
divg(a)(q)<1 for every qeV§.(B). In this case, Div(B')=@ qevy, & Z(1/e(q))q and
divs(XB')=(1/n)divg(a) where e(q)=n (resp. e(q)=1), if qeSupp(divy(a)) (resp. q¢
Supp(divg(a))) (cf. (2.4)).

We state our main result as follows.

THEOREM 3.11. The following conditions are equivalent.

(1) R is locally a complete intersection.
(2) There exists a datum (I, w) such that G=G(I') and R~ R(I).

The proof of (2) = (1) of (3.11) is easy. Therefore, it is enough to show the following
proposition.

PROPOSITION 3.12.  Suppose that R is locally a complete intersection. We put
I'=Fund(R). Then the following hold.
(1) There exists a map w: I'->N such that (I', w) is a datum.
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(2 RIN=S84J4(=R).
(3) G=G().

Proor. (1) We prove the assertion by induction on |A|. If A=, then R=4
and Fund(R)= . We assume that A # ¢J. Then, by (3.5), R(°+” is locally a complete
intersection and, by induction hypothesis, Fund(R“+”) is a datum for all A’ &< A. Since
A is factorial, ), _,peP(4) and, by (2) of (2.7), D:=Y ,.4(1/ex(p))p € Deg(R). The
proof is divided into two cases: (1) D ¢ Fund(R), (2) D € Fund(R).

Case (1). We can write D=E;+ - +E, for E;, -+, E,eFund(R) (p=2) by
(3.2), (2). Then Supp(E;) n Supp(E;) = for i#j. We put A;=Supp(E;) for 1<i<p.

Let E'eFund(R). If A,cSupp(E’), then E;<E’ and, since E’eFund(R), we
have E,=E’. We assume that A;¢Supp(E’) for i=1, -, p. Since Supp(E’)c 4,
Supp(E;) N Supp(E’) # & for some j. Then A":=4;0 Supp(E’) & 4 since A; ¢ Supp(E”)
for all i and A,n A, = for i#k. By induction hypothesis and the fact that
E;, E' e Fund(R¢4") (cf. (3.2)), we have Supp(E") = Supp(E;). Hence Fund(R) is disjoint
union of Fund(R¢4?) (1 <i<p). On the other hand, Fund(R¢49) is a datum (1<i<p),
by induction hypothesis. Thus Fund(R) is also a datum.

Case (2) DeFund(R). We put {E,, - - -, E,} = {EeFund(R) | EXD}.

Claim 1. Supp(E;) N Supp(E;)= for i#j.

Assume that Supp(E;) N Supp(E;) is not empty for some i#j. Then we have that
A=Supp(E;) U Supp(E,), since Fund(R‘“4?) is a datum for any A4’ < A. Since E; + E;> D,
we have a relation E;+ E;=nD + E where 0 < E€ P(R) and Supp(E) < A. In other words,
Yy, Yy, —aYpY?eJ, where aeh(4) such that divg(ay 4(Y?))=E. Then, by (3.3), there
exists E’ € Fund(R) such that Y*#= divides Y, Yy, and ag is unit where az Y= is the
term of the polynomial F(E')eS,. Since E;, E;e Fund(R), we have Yfe =Yg Yy, and
FE)=YfEi—apYgY g, Also, since Supp(E "y 2Supp(E;), we have E’'=D. Namely,
dpD=E;+E;. On the other hand, if there exists 1<k<p, k#i,j, then Supp(E;)u
Supp(E,)=A by induction hypothesis. Then E;+E,=dpD and E,=E; This is a
contradiction. Hence we have p=2.

We put Supp(E,)\Supp(E;)={Py, " * *, Ps}> SUPP(E;) N Supp(Ez)={Pss1, = "> Pu}
and Supp(E,) \Supp(E,)={Pi+1> "> Pm}- Since dpD=E; + E,, we can write

s dp S I m dp
! Z ex(P:) i=sz+1en(p.-) 2T S er) i ex(P))

where n;+n] =d,, for s+ 1<i<t. Without loss of generality, we may assume that n,, 4
is minimal in {ng,, -, Ay Ng4q, =", B} We put E=E +) 1, Pj—ns+1DeP(R).
Then EE, for i=1, 2. Since E={E}, there exists E’€ Fund(R)\{D, E;, E,} such that
E'<E and Supp(E)n{p;, ", P} #F. We note that, for every E” e Fund(R)\
{D, E,, E,}, either Supp(E”) = Supp(E;) or Supp(E")<=Supp(E,). Hence Supp(E") <
Supp(E,) and E'<} | .o, EP) <E;. This contradicts E; € Fund(R).

The proof of Claim 1 is completed.




72 YUJI KAMOI

We put{py, - - -, p,} =Supp(D)\ U?_, Supp(E)).

Claim 2. w(D)D=3}7_, E;+} %_, p; for some w(D)>0.

There exists an integer w>0 such that E:=)7?_ E,-+Z;f= ,P—wD>0 and
Supp(E)&A. If E#0, then there exists E’e Fund(R)\{D} such that E'’<E. On the
other hand, we have Supp(E’) = Supp(E;) for some i. Since Supp(E;) N Supp(E;) =
(i#7)s E'<Y,csuppy E®IP<E;. This is a contradiction. Hence E=0 and wD=

-1 B+ X5 P

Combining Claims 1, 2 and the induction hypothesis, we have that Fund(R)=
{D} U | J7_, Fund(RCswre=) is a datum.

(2) We prove that J,=(Yy®—a;[], ;Y | EeFund(R)) by induction on
| Fund(R)|. If Fund(R)=(J, then there is nothing to prove. We assume that
Fund(R)# J. Let EeFund(R) such that Supp(E) is maximal in {Supp(D) | De
Fund(R)}. Then it suffices to show that locally a complete intersection R(@surr®) satisfies
the above condition. Therefore we may assume that E =Y pea (1/€r(P))p € Fund(R). We
put {E,, -, E,} ={DeFund(R) | D<E}. Then, by induction hypothesis, R(suwrre)
satisfies the assertion (2) (1<i<p). Then we have only to show that J,=(Yy® —
ap[17-1 Ye)+ X1 1 Jsuppiso-

Let Ej, - - -, E/e Fund(R)\ {E}. Assume that there exists a relation

S t
div,(a)+dE+ Y d.E/=div,(b)+ Y. dE|.
i=1 i=s+1
Then, by definition of a datum, Ej, ---, Eje G—)pe A4 L(W(E)/eg(p))p. Hence dEe
D ,c 4 ZW(E)/eg(p))p and w(E) divides d. This implies J,=(Y® —ag[]°_, Yg)+

p
i=1 JSupp(E.-)'

The assertion (3) follows from definition of G(Fund(R)). O

4. Abelian extensions which are complete intersections.

Let 4 be a Noetherian normal domain with K=Q(A4) and L be a finite Abelian
extension of K with G=Gal(L/K). An integral closure R of 4 in L is called an Abelian
extension of 4 with a Galois group G.

REMARK 4.1.  We put G=Hom(G, U(4)), where U(4) is the multiplicative group
of units of 4. Assume that ch(4) does not divide | G|, if ch(A) is positive and 4 contains
a primitive |G|-th root of unity. Then R can be regarded as G-graded ring in the
following sense.

For ge G, we set R,={aeR | o(a)=g(c)a for every c € G}. Then

(1) R,=R%=4,

2) R,R,=R,., for every g, he G,

(3) R=deéRy= ®geéR9'

(See 2 of Itoh [8].)
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As a consequence of (3.11), we have the following.

THEOREM 4.2. Let A be a complete intersection factorial local domain and G be a
finite Abelian group of n=|G|. Assume that

(1) either ch(A)=0 or ch(4A)=p>0 and (p,n)=1,

(ii) A contains a primitive n-th root of unity.
Let (R, n) be a local ring such that R> A. Then the following are equivalent.

(1) R is an Abelian extension of A with Galois group G such that Rin=A/m and
is a complete intersection.

(2) There exists a datum (I', w) (in Div(A4)q) such that G=G(I') and R= R(I').

PRrROOF. (1) =>(2): This follows from (4.1) and (3.11). (2) = (1): Let E€I such that
Supp(E) is maximal in {Supp(D)|Del} and {E,, - -,E}={Del|D<E}. By
Proposition 1.12 of Tomari-Watanabe [14], if R{I"\ {E}) is normal domain, then so is

R(F)gR(F\{E})[YE]/( YiE—ag Is—l yEi) .

i=1

Hence R is normal domain. Also, by assumptions (i) and (ii), we have Q(R) is Galois
extension of K and Gal(Q(R)/K)=G(IN)=G. O
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