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1. Introduction.

If a set of local moves can transform every knot into a trivial knot, it is called a
generalized unknotting operation. Note that there are many generalized unknotting
operations. The n-gon moves ([A1]) and the n(i)-moves ([Ohl]) are typical examples.
In this paper, we generalize these local moves to new local moves of “polygonal type”

P,,(‘b’)-moves and “rotational type” R,,(Z

them up to “local equivalence” (Theorem 2.7). We conclude that any local move of
“polygonal type” or “rotational type’ is a generalized unknotting operation except for
a few cases. In Section 6, we give a table of the A-unknotting numbers of the prime
knots with ten or fewer crossings (Table A), which expands the table of [Ok2].

)-moves (Definition 2.4), and we classify
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2. Fundamental results and main theorem.

Let Tand T’ be tangle diagrams with 0T=0T’. By replacing T with T’ on a link
diagram L, we obtain a new link diagram L’. Then we say that L’ is obtained from L
by a local move T— T'. Let T T’ denote a set of local moves T—» T’ and T'—> T.

Let M={T} — Ty}ic; and N={T% — T}/};c; be sets of local moves. We say that
M induces N if each local move 7§ — Ty in N can be realized by local moves in M,
i.e., if each TY can be transformed into Ty by performing local moves in M. If M
induces N and vice versa, then we say that M and N are locally equivalent ([A2]).
Furthermore, we say that M and N are equivalent if each local move in N can be realized
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by performing a local move in M once and vice versa.

If a set of local moves can transform every knot into a trivial knot, it is called a
generalized unknotting operation. The H(2)-move ((HNT]), the (ordinary) unknotting
operation ([W]), the unoriented #-unknotting operation ([M]), the 4-unknotting
operation ([MN]) each is a generalized unknotting operation. In [N3], Y. Nakanishi
classified the known generalized unknotting operations into six types up to local
equivalence; (Type T), (Type X), (Type #), (Type 2+ 3), (Type 4) and (Type 6).

A generalized unknotting operation M is said to be of Type T (Type X, Type #,
Type 4, respectively) if M is locally equivalent to the H(2)-move (the (ordinary) un-
knotting operation, the unoriented #-unknotting operation, the A-unknotting opera-
tion, respectively). For the definitions of “Type 2+ 3> and “Type 6, see [N3]. Then
we have the following relationship among them.

ProOPOSITION 2.1.

Type T == Type X = Type # == Type 2+3 == Type 4

i

Type 6

Here “Type » — Type xx’’ means that any generalized unknotting operation of Type *
induces that of Type xx. And “‘Type x —— Type **” means that no generalized unknotting
operations of Type * induce that of Type *x*.

The relation “Type 2+ 3— Type 4 is proved in [N1, Lemma]. The other relations
“—"" are easy to see.

For the proof of “Type 4 &= Type 6”, we note the following facts in [N3, proof of
Theorem 8.1]: (1) A 2-component trivial link and a (4,2)-torus link can be transformed
into each other by a finite sequence of generalized unknotting operations of Type 6,
but not by that of Type 4. (2) A 3-component trivial link and the Borromean rings
can be transformed into each other by a finite sequence of generalized unknotting
operations of Type 4, but not by that of Type 6.

The other relations “——" follow from [N3, Theorem 8.1].

DerFINITION 2.2. For an integer n (=2) and a sequence a=(a,a, ' - - a,) (Where
a;e{+, —},1<i<n), T, and T} are the tangle diagrams whose projections with signs
are shown in Fig. 2.1 (1), (2), respectively. Fig. 2.1 (3) illustrates the meaning of signs
at crossing points. Let 7 and 7" be tangle diagrams. If 7 can’t be transformed into 7"
by performing Reidemeister moves, we denote T T".
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FiGURE 2.1

REMARK 2.3. (1) If n#2, then T, % T, if and only if a#b.
(2) Whenever n#3, we have T, % T3.

DEFINITION 2.4. Let n be an integer (=>2), and let a=(a,a, " -a,) and b=
(b,b, " - - b,) be sequences of signs a;, b;e {+, —}, 1 <i<n.
(1) I(a, b)=4#{i|a;#b, 1<i<n}.

(2) Suppose T, # T,, then the P,,('; )-move is defined to be a local move T, T,

(3) Suppose T, % T}, then the R,,<Z )-move is defined to be a local move T, T}.

ReMARK 2.5. (1) Any P,,(Z )-move or any R3(: )-move doesn’t change the
number of components of links. The number of components may be changed by any
R,,(Z )-move (n # 3). In this paper, we perform any R,,(Z )-move (n# 3) without changing
the number of components of links.

(2) The P,,(‘; )-move and the P,,(z >-move are equivalent.

ap- - an \_ Q" candy G-y \_ :
(3) The P,,( by b,,) move and the P,,( bbby by ) move are equivalent.
(4) The R,,(a1 TG )-move and the R,,(blb2 " bl )-move are equivalent.
by---b, a2as " - andy
(5) The R,,(Z1 B 'Z" )-move and the R,,(Z"’ ‘ 'Z"Z’ - 'Z"“‘ )-move are equivalent.
Lo b, bbby
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The following give relations between these local moves and known local moves.

ProrosITION 2.6. (1) If Ka, b)=1, then the Pz(‘;)-move is the (ordinary) un-

knotting operation.

(2) The Pz( i t )-move and the local move as indicated in Fig. 2.2 (1) are equivalent.

(3) The P4( t;*‘; )-move is the unoriented %#-unknotting operation.

(4) For any integer n (>3), the P,,( i i t >-move is the n-gon move, and hence
it is of Type # ([A1], [N3, Theorem 4.3]).
(5 Ifa,+#a, or b, #b,, then the R2<Z )-move is the H(2)-move.

(6) TheR 2( i t )-move and the local move as indicated in Fig. 2.2 (2) are equivalent.

(7) The R3(II: )-move and the R3(::: )-move each is the A-unknotting

operation ([MN)]). The R3< T )-move is the A, ,-move, and hence it is of Type # ([N2],
[N3, Theorem 4.2]). Another R3<Z )-move is equivalent to some P3(:>-move.

(8) For any integer n (=4), the R,,(_t::::I)-move (i.e., n(1)-move), the

is of Type T ([N3, Theorem 2.2], [Ohl1]).

R,,( T )-move (i.e., n(1y-move) and the R,,( i t N t )-move (i.e., n(2)-move) each

o — XK

@ = XXX

FIGURE 2.2

The following is the main theorem of this paper.

THEOREM 2.7. (1) For any integer n (=3) and any pair of a=(a, - - - a,) and b=
(bl e bn),

(@) if Ka, b)=n, then the P,,(Z )-move is of Type %,
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(b) otherwise, the P,,(Z )—move is of Type X.
(2) For any integer n (=4) and any pair of a=(a, - - a,) and b=(b, - - - b,), the

R,,(: >—move is of Type T.

The proof will be given in Section 3.
++

The auther doesn’t know whether the P2( )-move is a generalized unknotting

operation. If we perform the RZ( T )-move (Rz( i I )-move, R2< - )-move) with-

out changing the number of components of links, the local move isn’t a generalized
unknotting operation ([IN3, Section 9]).

3. Proof of Theorem 2.7.

For ¢= +(—, respectively), let €= —(+, respectively). For a=(a,a, - a,), let a
denote (a,a, - - - a,). Theorem 2.7 (1) (a) follows from the following lemma: '

LemMmA 3.1. (1) Any P3<:_ )-move is of Type #%.

a; - a,
al...'n

(2) For any integer n (=>3), any P( )-move can be realized by one

ag " apq
P,,+1( ! el )-move.
ag " Qplp+g

© Qnln+1
“ Gpln+ 1

(3) For any integer n (=3), any P,,H(Z‘: )-move can be realized by one
1

aja;a a ' a
P3( 1Tt )-move and one P,,( . )-move.
aia14n+1 ay - an

Proor. By Remark 2.5 (2) and (3), any P3(;>-move is equivalent to the

p3( T+ )-move or the P3( N +; )-move. By Proposition 2.6 (4), the Ps( T )'

move is of Type #. Fig. 3.1 (1) shows that the P3(tft )-move and the P3(;“_L: )-

move are locally equivalent. Hence the proof of Lemma 3.1 (1) is completed. Lemma
3.1 (2) and (3) are proved by Fig. 3.1 (2) and (3), respectively. O
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FiGure 3.1 (1)
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FiGure 3.1 (3)

PRrOOF OF THEOREM 2.7 (1) (b). It is obvious that any P,,(: )—move can be realized
by I(a, b) (ordinary) unknotting operations. Fig. 3.2 shows that the (ordinary) unknotting

operation can be realized by one P,,(Z )-move (where a;#b,,a;,,=5b,,,). O

Theorem 2.7 (2) follows from Proposition 2.6 (8) and the following lemma:
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Qi1

FiGURE 3.2

LEMMA 3.2. (1) Any R4(: )-move induces the H(2)-move.
(2) Any Rs(: )-move induces the H(2)-move.

(3) For any integer n (=>4), any Rn(zl:”an
1

b )-move can be realized by one

a * - auq a,
Rn+2( 1 nln+1%n+2 >_move.
by - babps1bnt

(4) For any integer n (=4), any R,,(‘b' )-move can be realized by three H(n)-moves.
(5) For any integer n (=2), the H(n)-move is of Type T ([N3, Theorem 2.1]).
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PrROOF OF LEMMA 3.2. (1): Let 11={R4<‘b"?§iz4 )-move|ai, bie{+, —}}, 3,=
1V20204

{R4<Ziizzz_i >-move |a;, bie {+, —}}, I, ={R4<ZZZZ )-move a,be{+, -—}} and I, =
{R4<ZZZZ )-move |a, be{+, — }}
CLamM 3.3.  Any local move in any T; (1 <j<4) induces the H(2)-move.

Proor. See Fig. 3.3 and Proposition 2.6 (8). Then the proof is completed.

FIGURE 3.3 (2)
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CLamM 3.4. Any R4(‘; )-move belongs to some I; (1<j<4).

Let a=(a,a,asa,) and b=(b,b,b;b,) be arbitrary sequences of 4 signs,

and consider the R4<: )-move. If a;=a; and b;=b; for any pair of ;, j (1<i<j<4), then

the R4(: )-move belongs to ¥,. So we may assume a;#a; or b;#b; for some pair of

( a&cd) d=¢ ( aace )
Imno Imno
ld:c
(aacc) m=ri (aacc)ezl
Imno Inno
lm _n
( adcc ) o=n ( aacc ) < niiln )
Inno Innn caac
lo:n
< adcc ) ( aaaa ) ( afaa ) ez,
Innn nnnn ninn

aaaa nnnn
_ €I,
nnnn adaa

aaaa
€X,
nnnn

DiaGraMm 3.1
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i,j. By Remark 2.5, we may assume ( N >=(a50d ) See Diagram 3.1. The first branch

b Imno
has the following meaning: if d=E<i.e., (Zj;‘:)

=( aace )), then this move belongs to

Imno

¥ ,. Therefore we may assume d=c, and hence (‘md )=(a&cc ) The other branches
Imno Imno

have similar meanings. Then the proof is completed.
Hence the proof of Lemma 3.2 (1) is completed.

(2): The proof is similar to that of Lemma 3.2 (1). Let R, ={R5(““'Z“’“‘“5 )-movel

byazbsa.bs
a;, bi e { +, — }}’ ﬁRz = {Rs(alazasa4as)_move l a;, bi = { +, — }}’ 9{3 = {RS(ZIazzza_d;S)_
14203G405

az2b2b3a4bs

aabaa aaaaa

move | a;, b;e {+, —}}, 924={R5(aaaaa )-movela,be{+, —}} and $R5={R5<“aaaa)_
move|ae{+, —}} ‘

CLaM 3.5.  Any local move in any R; (1 <j<5) induces the H(2)-move.

ProOOF. See Fig. 3.4 and Proposition 2.6 (8). Then the proof is completéd.

= X

a, a, a; a, as
Rs(b, G, b, a, bs)

FIGURE 3.4 (1)
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(abcde ) m=5b (abcde )e‘R
Imndp Ibndp !

Jm=b
(abcde) I=b (abcde )E‘R
Ibndp bbndp 2
11=b

(abcde ) c=b (abEde )e‘R
bbndp bbndp 3

l c=b
( abbde )
bbndp

<bdeab ) a=b (bdeEb )eiR
ndpbb ndpbb !

|a=

(bdebb) n=d (bdebb) d=b (bEebb)

ndpbb ddpbb bbpbb
|n-a |a- [
. ( bdebb ) ( bbebb ) ( bbbeb ) p=_¢ ( bbbeb )e R
ddpbb bbpbb bbbpb bbbeb !
f |p=e
R a(bbBBb) p=b (bbpr) (bbEeb) e=b (bbBBb)
37\ bbebb bbebb bbbeb bbbbb
l p=>b l e=b l I
(bbEbb) e=b (bbb'bb) (bbb'bb) (bb'bb'b )e R
bbbbb bbebb bbbbb bbbbb 3
I |- f
bbbbb bbbbb bbbbb
Re a(bbbbb) (bbb'bb) (bbEbb )esm

DiaGraM 3.2 (1)
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*(bdebb) (baapb) p=b (baaab )esn
ddpbb T bdebb bdebb 1
J=»
(bbbb'b ) (bHEibb )
R,>
bbbbb bdebb

A

( bbbeb ) d=b ( bbdeb )

bBBbb bddbb
l e=b l d=bh

(bbbbb) (bbEeb) e=b (bbb'bb)

bBbbb bbbbb > bbobb
I |- [
bbBBb bbBBb bbbbb

3 pre—

Rs (bbbbb) <bbbbb) (bbbbb )em4

DiaGraMm 3.2 (2)

CLamM 3.6. Any R5<; )-move belongs to some R; (1<j<59).

PrROOF. Letaand bbearbitrary sequences of 5 signs, and consider the Rs( 5

)-move.

If the RS(: )-move doesn’t belong to {Rs(;‘:’;g; )-move}, by Remark 2.5, the R5(Z >-

move belongs to R5. So we may assume <:)=(Zi’:g; ) See Diagram 3.2. Then the

proof is completed.
Hence the proof of Lemma 3.2 (2) is completed.
(3), (4): Lemma 3.2 (3) and (4) are proved by Fig. 3.5 and 3.6, respectively. [
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4. Oriented versions.

In the previous sections, we didn’t consider the link orientation. For oriented link
diagrams, we can also define the conception of local moves, generalized unknotting
operations, local equivalence. In this section, we consider two special oriented versions

of P,,(; )-moves.
DErFINITION 4.1. For an integer n (=3) and a sequence a=(a,a, - - - a,) (wWhere

a;e{+, —}, 1<i<n), the P°(a)-move and the P, (a)-move are local moves on oriented
link diagrams as indicated in Fig. 4.1 (1) and (2), respectively.

PP(a)
<«

FiGure 4.1 (1)

Let i, j be points specified on _

If i<j, i—.

FIGURE 4.1 (2)

The PQ(+ — + —)-move is the pass-move, hence it isn’t a generalized unknotting
operation. The Pg(+ — + —)-move is the #-unknotting operation, hence it is a gen-
eralized unknotting operation. Furthermore, the #-unknotting operation induces the
pass-move ([MN, Appendix]). The following theorem is proved by H. Aida.
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FIGURE :4.2
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THEOREM 4.2. ([A2, Theorem3]). (1) The ALs-move (i.e., PS(+ + +)-move) and
the pass-move are locally equivalent.

(2) The Ay-move (i.e., P{(+ + +)-move) and the #-unknotting operation are
locally equivalent.

The following theorem generalizes the above results.

THEOREM 4.3. (1) For any integer n (> 3) and any sequence a=(a,a, - - - a,), the
PQ(a)-move and the pass-move are locally equivalent.
(2) Foranyintegern(=3),ifa=(+—++---+ —)or(+ +---+), then the P} (a)-
n—3
move and the #-unknotting operation are locally equivalent.

ProOF. (1): By Theorem 4.2 (1) and by suitably orienting strings in Fig. 3.1, the
proof is similar to that of Theorem 2.7 (1) (a).

(2): The P5(+ + +)-move and the #-unknotting operation are locally equivalent
(Theorem 4.2 (2)), and so is the P§(+ — —)-move as indicated in Fig. 4.2. '

.
N

\
\
\
\ Sl
Ky /
4
. S
\ B
. S
N —_—
\ -
\ -
.-

P+ +) 1

FIGURE 4.3
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By suitably rotating and by suitably orienting strings (i.e., by letting a, =b,, a, =
b,,ay=b,, - -,a,=b,_4,a,,,=>b,,,) in Fig. 3.1 (2), we obtain the following lemma:

LemMA 4.4. For any integer n (=3), any P} (b, - - - b,_b,)-move can be realized
by one P}, (by - b,_1b,+1b,)-move.

Fig. 4.3 shows that one P;,,(++ +---+)-move can be realized by one
P}(++---+)move and two P3(+ + +)-moves. Similarly, we obtain that one
P}, (+—++---++ + —)-move can be realized by one P)(+—++---++ —)-
move and two P$(+ — —)-moves. Hence the proof is completed. O

REMARK 4.5. Every P;(a)-move isn’t locally equivalent to the #-unknotting
operation. Fig. 4.4 shows that one P§(— — +)-move can be realized by one pass-
move. Therefore the P{(— — +)-move isn’t even a generalized unknotting operation.
The author doesn’t know whether another P, (a)-move is locally equivalent to the
#¥-unknotting operation.

FIGURE 4.4

5. M-unknotting number one.

Let K be (oriented) knot in S3. The unknotting number of K, denoted by u(K), is
the minimum number of (ordinary) unknotting operations which are necessary to
transform K into a trivial knot. Let M-move be a generalized unknotting operation.
We define the M-unknotting number of K, denoted by u™(K), using the M-moves instead
of the (ordinary) unknotting operations.

The unknotting number one knots are prime ([Sc]). On the other hand, there exists

a knot with the P,,( t i o )-unknotting number one and with arbitrary many prime

+4++

factors. For example, the connected sum of n copies of 3, has Pz,,( )-unknotting

number one.
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FIGURE 5.1

Besides, there are infinitely many oriented composite knots with “#-unknotting
number” (i.e., P{(+ — + —)-unknotting number) one ([Sa, Proposition 1.1]). By
modifying the method in [Sa, proof of Proposition 1.1], we obtain the following results.

PROPOSITION 5.1. For any integer n (=4) and any a=(a, - - - a,),
(1) There are infinitely many composite knots with P ( )—unknottmg number one.

(2) There are infinitely many oriented composite knots with P, (a)-unknotting
numberone(@=(+—++---+—)or (++---+)).
n—3

ProorF. By Lemma 3.1 (2) and Lemma 4.4, we obtain the following lemma:

LEMMA 5.2. For any (oriented) knot K and any integer n (=3),
60 uPn(:::::;:)(K)>uP..+1( : . a"a':: (K)

(2) uP,’.‘(+—++---+ ’(K)Zup"“” ++--++—)(K)

?3) uPr(t+ +’(K)2u"'f*‘(+"+++’(K).

We consider the knots
=C(—3)#C(—3)#C(2,2,2,2m)
=C(—2, —2)#C(—3)#C(2, 2, 2,2m)
=C(—2, —2)#C(2,2,2,2m)
=C(2, —2m)#C(2,2m+2)

described in Fig. 5.2. Here the symbol of C(*) means the Conway notation for two-bridge
knots ([C]). Fig. 5.2 illustrates

uP“‘t::)(K,l,,)=l uh(':i;f)(K'Zn)___l uh(f:f)(K’s;):] uPa(ffff)(K:')=1 )
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| r(rt77)

FIGURE 5.2

(1): By Remark 2.5 (2) and (3), any P4( )-move is equivalent to the P4( N N + N )-

a
a

move, the P4< Tt )-move, the P4( “_L : :i )-move or the P4( t t ti >-move. By

Lemma 5.2 (1), the proof is completed.
(2): By suitably orienting strings and rotating and turning over the figures, the

proof is similar to that of Proposition 5.1 (1). O

6. Appendix.

The u(K) for approximately a quarter of the prime knots with ten or fewer crossings
remains undetermined. Though the 4-unknotting operation seems to be more com-
plicated than the (ordinary) unknotting operation, we can determine the 4-unknotting
numbers u4(K) for the prime knots with ten crossings except for 14 knots as in Table
A. Here “N” means 1 or 3, and “M” means 2 or 4. (In [Ok2], the «*(K) for the prime
knots with nine or fewer crossings was determined.) For the diagrams of these prime
knots, we refer to [R].
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TABLE A
K ul K u? K ul K ul K ud
3, 1 96 6 10,4 2 10 2 10,4 2
4, 1 9,4 2 10,4 2 1045 2 10,,s 2
5, 3 9.8 6 10,4 1 1044 2 10,0 1
5, 2 9% 2 10,4 3 1044 3 10,50 6
6, 2 950 2 10,, 3 10,, 1 10,5, 1
6, 1 9,54 3 10,5, 4 104, M 10,,, 2
6, 1 9,5, 1 10,4 3 104, 1 104,53 2
7, 6 9,3 5 10,, 2 10,4, 2 10,,4 8
7, 3 954 1 10,5 2 10,5 2 10,5 3
7, 5 9,5 2 10,6 3 10,¢ M 10,6 5
74 4 96 2 10,, 2 104, 4 10,,4 3
75 4 9,, 2 10,4 3 10,5 3 10,8 7
76 1 9,8 1 10,4 4 10,4 5 10,50 2
7, 1 959 1 105, N 1040 6 10430 4
8, 3 910 1 105, 2 104, 3 10,35, 2
8, 2 93, 2 105, 1 104, 2 10,3, 3
85 4 9,5, 1 105, 2 1045 1 10,33 N
8, 3 9,5 1 105, 3 104, 2 10,34 6
85 3 934 1 1055 4 1045 2 10,35 3
86 2 935 7 1056 N 10g¢ 1 10,36 2
8, 2 936 3 105, 3 104, 2 10,54 2
8s 2 9,5 3 10,5 N 1045 1 10,35 3
8y 2 938 6 1054 3 1040 1 10,39 9
8,0 3 939 2 104, 3 1040 3 10,40 2
8,1 1 940 1 10,, 2 105, 2 1044, 1
8,2 3 941 2 10,, 2 104, M 10,42 8
8,3 1 9,2 2 104, 2 1055 N 10,43 3
814 2 943 3 104, 2 104, 2 10,44 2
85 4 944 2 10,5 2 10y 3 10,45 5
8.6 1 945 2 10,46 4 1046 3 10,46 2
8, 1 %6 2 10, 6 104, M 10,4+ 1
8,8 1 9, 1 10,5 4 1044 M 10,48 4
89 5 48 3 1040 7 1044 4 10,40 M
850 2 940 6 105, 3 10500 4 10,50 3
8,51 2 10, 4 10, 5 10,0, 7 10,5, 3
9, 10 10, 4 10,5, 3 105062 2 10,5, 7
9, 4 10, 6 104, 6 10,65 3 10,55 4
9, 9 10, 5 105, 4 10504 1 10,54 5
9, 7 10, 4 1045 5 10505 1 10,55 2
9, 6 104 3 1056 M 10,06 1 10,56 1
% 7 10, 1 104, 4 10,0+ 1 10,5+ 4
9, 5 104 3 1044 4 10408 2 10,45 3
9 2 10, 2 105, 1 10,00 3 10,50 2
9 8 10,0 1 1040 1 10,0 3 10560 3
950 8 104, 5 104, 4 10,4, 3 10,61 7
9.1 4 10,, 4 10, 5 10,4, 2 10,62 7
9:2 1 10,5 5 1045 6 10,,5 2 10,63 3
93 7 10,4 M 104, 3 10,4 1 10564 1
9.4 1 10,5 3 1045 4 10,,5 1 10,65 1
9.5 2 10,6 4 1046 7 10,,6 2 10,66 M
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