Cartan Embeddings of Compact Riemannian 3-Symmetric Spaces

Katsuya MASHIMO

Tokyo University of Agriculture and Technology
(Communicated by T. Nagano)

Dedicated to Professor Masaru Takeuchi on his sixtieth birthday

Introduction.

Let G be a compact connected Lie group and σ be an automorphism on G. We put $K = \{k \in G : \sigma(k) = k\}$. A mapping $g \mapsto g\sigma(g^{-1})$ of G into G naturally induces an embedding of G/K into G. We denote the embedding by Ψ_{σ} and call it the Cartan embedding.

If we assume that σ is an involutive automorphism, then Ψ_{σ} is a totally geodesic embedding. The author classified the compact irreducible symmetric pairs (G, K) such that the image of the corresponding Cartan embedding is a stable minimal submanifold of G ([4]).

In this paper, we study the similar problem for the case that G is a compact simple Lie group and σ is an automorphism of order 3. In this case, the image of the Cartan embedding is not necessarily a minimal submanifold. So we study

- 1. Is Cartan embedding a minimal embedding?
- 2. If it is a minimal embedding, then is the image a stable minimal submanifold?

1. Cartan embedding.

Let G be a compact connected simple Lie group and σ be an automorphism on G. We denote by g and f the Lie algebras of G and $K = \{k \in G : \sigma(k) = k\}$ respectively. Take an Ad(G)-invariant and $d\sigma$ -invariant inner product \langle , \rangle on g. We extend \langle , \rangle to a biinvariant Riemannian metric on G and denote it also by \langle , \rangle . Let m be the orthogonal complement of f in g. We identify the subspace m with the tangent space M_o of M at the origin o = eK by the projection $G \to M = G/K$. A G-invariant Riemannian metric g on M is said to be a normal homogeneous metric if it is associated with the restriction

of $c^2\langle , \rangle$ to m for some nonnegative constant c. The induced Riemannian metric by the Cartan embedding is not always a normal homogeneous metric.

LEMMA 1.1. If σ is an automorphism of order 3, then we have

$$\langle d\Psi_{\sigma}(X), d\Psi_{\sigma}(Y) \rangle = 3\langle X, Y \rangle$$
 for $X, Y \in \mathfrak{m}$.

PROOF. Since $d\sigma^2 + d\sigma + 1 = 0$ holds on m, we have

$$\langle d\Psi_{\sigma}(X), d\Psi_{\sigma}(Y) \rangle = \langle (1 - d\sigma)X, (1 - d\sigma)Y \rangle$$

$$= 2\langle X, Y \rangle - \langle d\sigma X, Y \rangle - \langle X, d\sigma Y \rangle$$

$$= 2\langle X, Y \rangle - \langle X, (d\sigma + d\sigma^{2})Y \rangle = 3\langle X, Y \rangle.$$

The following endomorphism on \mathfrak{m} naturally induces a G-invariant almost complex structure J on M

$$J(X) = (1/\sqrt{3})(1+2d\sigma)X$$
 for $X \in \mathfrak{m}$.

We call J the canonical almost complex structure on M. For a vector $Z \in \mathfrak{g}$, we denote by $Z_{\mathfrak{t}}$ and $Z_{\mathfrak{m}}$ the \mathfrak{t} -component and \mathfrak{m} -component of Z respectively.

Lemma 1.2. Let h be the second fundamental form of the Cartan embedding Ψ_{σ} corresponding to an automorphism σ of order 3. Then we have

$$h(X, Y) = (\sqrt{3}/2)[JX, Y]_t$$
 for $X, Y \in \mathfrak{m}$.

PROOF. We denote by L_g [resp. R_g] the left [resp. right] translation by $g \in G$. For an element $Y \in \mathfrak{g}$, we define a vector field Y^* on G by

$$Y^*\big|_g = d/dt\big|_0 dL_{\exp tY} dR_{\sigma(\exp(-t)Y)} g = dL_g(Ad(g^{-1})Y - d\sigma Y).$$

Since $L_g R_{\sigma(g^{-1})}$ $(g \in G)$ is an isometric transformation on G and $\Psi_{\sigma}(g) = L_g R_{\sigma(g^{-1})} e$, Y^* is a Killing vector field on G and is tangent to $\Psi_{\sigma}(M)$. Put $X' = d\Psi_{\sigma}(X) = X - d\sigma X$ for $X \in \mathbb{M}$. Since the parallel translation $\tau_0^t \colon T_e G \to T_{\exp tX'} G$ along the geodesic $t \mapsto \exp tX'$ is $dL_{\exp(t/2)X'} dR_{\exp(t/2)X'}$, we have

$$\begin{split} \nabla_{X'} dL_g A d(g^{-1}) Y &= d/dt \big|_0 \tau_t^0 dL_{\exp tX'} A d((\exp tX')^{-1}) Y \\ &= d/dt \big|_0 dL_{\exp(-t/2)X'} dR_{\exp(t/2)X'} Y = -(1/2) [X', Y] \; . \end{split}$$

Since $\nabla_{X'} dL_q(-d\sigma Y) = -(1/2)[X', d\sigma Y]$, we have

$$\nabla_{X'} Y^* = -(1/2)[(1 - d\sigma)X, (1 + d\sigma)Y]$$

= -(1/2)(1 - d\sigma)[X, Y] -(1/2){[X, d\sigmaY] - [d\sigmaX, Y]}.

By the definition of J

(1)
$$\nabla_{X'} Y^* = -(1/2)(1 - d\sigma)[X, Y] + (\sqrt{3}/4)\{[JY, X] - [Y, JX]\}.$$

Since we have ([6, p. 136])

$$[JX, Y]_{\mathfrak{m}} = -J[X, Y]_{\mathfrak{m}} = -[JY, X]_{\mathfrak{m}}, \qquad [X, Y]_{\mathfrak{f}} = [JX, JY]_{\mathfrak{f}},$$

we get the lemma by taking the normal component of (1).

Next we classify the pair (G, σ) of compact simple Lie group G and automorphism σ on G of order 3, for which the corresponding Cartan embedding is a minimal embedding.

Case 1. σ is an inner automorphism. Let G be a compact connected simple Lie group and T be a maximal torus. Let G be the Lie algebra of G. We denote by G(G) the set of all non-zero roots of G(G) with respect to G(G) and G(G) = G(G), ..., G(G) the set of all simple roots. In this note, we adopt the same numberings of simple roots as that used by Wolf and Gray [6]. We denote by G(G) are G(G) to the highest root and put

$$\mathcal{D}_0 = \{ H \in \sqrt{-1} \, \mathbf{t} : \alpha_i(H) \ge 0 \, (1 \le j \le n), \, \alpha_0(H) \le 1 \} .$$

Then we may assume that $\sigma = ad(\exp 2\pi \sqrt{-1}H)$ for some $H \in \mathcal{D}_0$.

THEOREM A. Let G be a compact connected simple Lie group with a biinvariant Riemannian metric and $\sigma = ad(\exp 2\pi \sqrt{-1}H)$ be an inner automorphism on G of order 3. Then the Cartan embedding

$$\Psi_{\sigma}: G/K \longrightarrow G; gK \longmapsto g \cdot \sigma(g^{-1})$$

is a minimal embedding if and only if (g, H, f) is one of the following:

g	Н	ť
$\mathfrak{su}(3m)$ $(m \ge 1)$ $\mathfrak{so}(4m+1)$ $(m \ge 1)$ $\mathfrak{sp}(3m-1)$ $(m \ge 2)$ $\mathfrak{so}(6m-2)$ $(m \ge 2)$ $\mathfrak{so}(8)$	$ (v_m + v_{2m})/3 $ $ 2v_{m+1}/3 $ $ 2v_{2m-1}/3 $ $ 2v_{2m-1}/3 $ $ (v_3 + v_4)/3 $	$su(m) + su(m) + su(m) + \mathbb{R}^2$ $su(m+1) + so(2m-1) + \mathbb{R}$ $su(2m-1) + sp(m) + \mathbb{R}$ $su(2m+1) + so(2m) + \mathbb{R}$ $su(2) + \mathbb{R}^2$
e ₆ e ₆ e ₇ e ₈ e ₈ f ₄	$ \begin{array}{c} v_3 \\ (v_1 + v_5)/3 \\ v_3 \\ v_6 \\ v_8 \\ v_3 \\ v_1 \end{array} $	su(3) + su(3) + su(3) $so(8) + R^2$ su(3) + su(6) $su(3) + e_6$ su(9) su(3) + su(3) su(3)

PROOF. Take a Weyl basis $\{X_{\alpha}: \alpha \in \Sigma(g)\}\$ of $g^{\mathbf{C}}$ mod $t^{\mathbf{C}}$ with respect to g and put

$$S_{\alpha} = (X_{\alpha} - X_{-\alpha})/\sqrt{2}$$
, $T_{\alpha} = -(X_{\alpha} + X_{-\alpha})/\sqrt{-2}$.

Then $\{S_{\alpha}, T_{\alpha} : \alpha(H) = 1/3 \text{ or } 2/3\}$ is an orthonormal basis of m and if $\alpha(H) = 1/3$ [resp. 2/3] then $J(S_{\alpha}) = T_{\alpha}$ [resp. $-T_{\alpha}$].

By Lemma 1.2, the mean curvature vector of the Cartan embedding Ψ_{σ} is

$$\frac{1}{2\sqrt{3} \operatorname{dim} M} \sum_{\alpha(H)=1/3,2/3} ([J(S_{\alpha}), S_{\alpha}] + [J(T_{\alpha}), T_{\alpha}])$$

$$= \frac{1}{\sqrt{3} \operatorname{dim} M} \left(-\sum_{\alpha(H)=1/3} [S_{\alpha}, T_{\alpha}] + \sum_{\alpha(H)=2/3} [S_{\alpha}, T_{\alpha}] \right)$$

$$= \frac{1}{\sqrt{-3} \operatorname{dim} M} \left(\sum_{\alpha(H)=1/3} H_{\alpha} - \sum_{\alpha(H)=2/3} H_{\alpha} \right).$$

Thus the Cartan embedding Ψ_{σ} is a minimal embedding if and only if

(2)
$$\sum_{\alpha(H)=1/3} H_{\alpha} = \sum_{\alpha(H)=2/3} H_{\alpha}.$$

In particular, if $\alpha_0(H) = 1/3$ then the Cartan embedding Ψ_{σ} is not a minimal embedding. The classification of inner automorphisms of order 3 on compact simple Lie algebras are given in [6, pp. 88–89]. The theorem is proved by the inspection of each case. We give here an

EXAMPLE. $g = \mathfrak{su}(n)$, $x = (v_p + v_q)/3$ $(1 \le p \le q < n)$. Taking a suitable orthonormal base e_1, \ldots, e_n of $t = \mathbb{R}^n$, we have

$$\Pi(g) = \{ \alpha_i = e_i - e_{i+1} : 1 \le i \le n \} ,$$

$$\Sigma(g) = \{ \pm (e_i - e_j) : 1 \le i < j \le n \} ,$$

$$v_i = (e_1 + e_2 + \dots + e_i) - (i/n)(e_1 + e_2 + \dots + e_n) .$$

We have

$$\sum_{\alpha(H)=2/3} (e_i - e_j) = \sum_{i=1}^p \sum_{j=q+1}^n (e_i - e_j)$$

$$= (n-q)(e_1 + e_2 + \dots + e_p) - p(e_{q+1} + e_{q+2} + \dots + e_{n+1}),$$

$$\sum_{\alpha(H)=1/3} (e_i - e_j) = \sum_{i=1}^p \sum_{j=p+1}^q (e_i - e_j) + \sum_{i=p+1}^q \sum_{j=q+1}^n (e_i - e_j)$$

$$= (q-p)(e_1 + \dots + e_p) + (n-p-q)(e_{p+1} + \dots + e_q)$$

$$- (q-p)(e_{q+1} + \dots + e_n).$$

Thus $\sum_{\alpha(H)=2/3} \alpha = \sum_{\alpha(H)=1/3} \alpha$ holds if and only if n=3p and q=2p.

REMARK 1.3. For each pair (g, H) listed in Theorem A,

$$\sum_{\alpha(H)=1/3} H_{\alpha} = \sum_{\alpha(H)=2/3} H_{\alpha} = kH$$

holds for some positive constant k.

Case 2. σ is an outer automorphism. Outer automorphisms of order 3 on compact simple Lie groups are classified. We denote by Cay the Cayley algebra. Take an orthonormal basis $\{e_0 = 1, e_1, \ldots, e_7\}$ of Cay such that

$$e_1e_2=e_3$$
, $e_1e_4=e_5$, $e_1e_6=e_7$, $e_2e_5=e_7$,
 $e_2e_6=e_4$, $e_3e_4=e_7$, $e_3e_5=e_6$.

Let G_{ij} be a skew-symmetric transformation on Cay defined by $G_{ij}(e_k) = \delta_{jk}e_i - \delta_{ik}e_j$. Define skew-symmetric transformations F_{ij} on Cay as follows:

$$F_{i0}(x) = -F_{0i}(x) = (1/2)e_i x$$
, $F_{ij}(x) = (1/2)e_j(e_i x)$ $(i, j > 0)$.

Then a linear mapping τ with

$$\tau(G_{i0}) = F_{0i}$$
, $\tau(G_{ij}) = F_{ij}$ $(i, j > 0)$,

is an outer automorphism on $\mathfrak{so}(8)$ of order 3 (called the *triality automorphism*). We denote also by τ the induced automorphism on Spin(8).

We put $\tau' = \tau \circ ad(\exp 4\pi (G_{45} - G_{67})/3)$ and denote also by τ' the induced automorphism on Spin(8).

If a compact simple Lie algebra g has an outer automorphism of order 3 then g is isomorphic to $\mathfrak{so}(8)$. An automorphism of order 3 on $\mathfrak{so}(8)$ is conjugate to τ or τ' in the full group of automorphisms of $\mathfrak{so}(8)$ and is conjugate to τ^{\pm} or τ'^{\pm} by an inner automorphism. Compact Lie group, whose Lie algebra is isomorphic to $\mathfrak{so}(8)$, is Spin(8), SO(8) or Ad(SO(8)). The automorphism τ (resp. τ') induces an automorphism on Spin(8) and Ad(SO(8)). We also denote by τ (resp. τ') the induced automorphism.

THEOREM B. Let G be either Spin(8) or Ad(SO(8)). Then the Cartan embeddings

$$\Psi_{\tau}: G/G_2 \longrightarrow G$$

$$\Psi_{\tau'}: G/(SU(3)/Z_3) \longrightarrow G$$

are minimal embeddings.

PROOF. We may assume that G = Spin(8).

Case τ . For each a ($1 \le a \le 7$), choose i, j, k, l, m, n such that $\{a, i, j, k, l, m, n\} = \{1, 2, 3, 4, 5, 6, 7\}$ and $e_a = e_i e_j = e_k e_l = e_m e_n$ and put

$$X_a = G_{a0}$$
, $Y_a = (G_{ij} + G_{kl} + G_{mn})/\sqrt{3}$, $1 \le a \le 7$.

By a direct computation, we see that the vectors $\{X_a, Y_a : 1 \le a \le 10\}$ form an orthonormal basis of m. Since

$$\begin{split} F_{01} = & (G_{01} + G_{23} + G_{45} + G_{67})/2 \;, \qquad F_{23} = (G_{01} + G_{23} - G_{45} - G_{67})/2 \;, \\ F_{45} = & (G_{01} - G_{23} + G_{45} - G_{67})/2 \;, \qquad F_{67} = & (G_{01} - G_{23} - G_{45} + G_{67})/2 \;, \end{split}$$

we have $J(X_1) = Y_1$ and $[J(X_1), Y_1] = 0$. Similarly we have $J(X_a) = Y_a$ and $[J(X_a), Y_a] = 0$ $(1 \le a \le 7)$. Thus the Cartan embedding Ψ_{τ} is a minimal embedding.

Case τ' . By a direct computation, we see that the following vectors $\{X_i, Y_i: 1 \le i \le 10\}$ form an orthonormal basis of m with $J(X_i) = Y_i$ $(1 \le i \le 10)$.

$$\begin{split} X_1 &= (G_{23} + G_{45} + G_{67}) \sqrt{3} \ , \qquad Y_1 = G_{01} \ , \\ X_2 &= (G_{31} + G_{64} + G_{57}) / \sqrt{3} \ , \qquad Y_2 = G_{02} \ , \\ X_3 &= (G_{12} + G_{47} + G_{56}) / \sqrt{3} \ , \qquad Y_3 = G_{03} \ , \\ X_4 &= (G_{64} - G_{57}) / \sqrt{2} \ , \qquad Y_4 = (G_{47} - G_{56}) / \sqrt{2} \ , \\ X_5 &= (G_{14} - G_{72}) / \sqrt{2} \ , \qquad Y_5 = (G_{51} - G_{26}) / \sqrt{2} \ , \\ X_6 &= (G_{71} - G_{42}) / \sqrt{2} \ , \qquad Y_6 = (G_{16} - G_{25}) / \sqrt{2} \ , \\ X_7 &= (G_{14} + G_{72} - 2G_{63}) / \sqrt{6} \ , \qquad Y_7 = (G_{51} - G_{26} - 2G_{73}) / \sqrt{6} \ , \\ X_8 &= (G_{71} + G_{42} - 2G_{35}) / \sqrt{6} \ , \qquad Y_8 = (G_{16} - G_{25} - 2G_{34}) / \sqrt{6} \ , \\ X_9 &= G_{04} / \sqrt{2} - (G_{14} + G_{72} + G_{63}) / \sqrt{6} \ , \\ Y_9 &= G_{05} / \sqrt{2} + (G_{51} + G_{26} + G_{73}) / \sqrt{6} \ , \\ X_{10} &= G_{07} / \sqrt{2} - (G_{71} + G_{42} + G_{35}) / \sqrt{6} \ , \\ Y_{10} &= G_{06} / \sqrt{2} + (G_{16} + G_{25} + G_{34}) / \sqrt{6} \ . \end{split}$$

With the above basis, we see that $\Psi_{\tau'}$ is a minimal embedding.

2. Stability.

In this section, we classify the Riemannian 3-symmetric pairs to which the corresponding Cartan embeddings are stable minimal embeddings.

Let $\{M_t\}$ be a smooth variation of M = G/K in G and V be its variational vector field. Take a local orthonormal frame $\{e_i\}$ of M and define a section S and A of $\operatorname{End}(N(M))$ by

$$\langle S(\xi), \eta \rangle = \sum_{i} \langle R^{G}(e_{i}, \xi)e_{i}, \eta \rangle, \qquad \langle A(\xi), \eta \rangle = \sum_{i,j} \langle h(e_{i}, e_{j}), \xi \rangle \langle h(e_{i}, e_{j}), \eta \rangle$$

for ξ , $\eta \in N(M)$. We denote by $\Delta^{N(M)}$ the rough Laplacian of the normal connection on N(M). Then the second variational formula is given by

(3)
$$d^{2}Vol(M_{t})/dt^{2}|_{t=0} = \int_{M} \langle (-\Delta^{N(M)} + S - A)(V^{N}), V^{N} \rangle dvol_{M}.$$

The differential operator $-\Delta^{N(M)} + S - A$ is called the *Jacobi differential operator* and is denoted by \mathscr{J} . It is easily verified that \mathscr{J} is a G-homogeneous, self-adjoint, strongly elliptic linear differential operator of $\Gamma(N(M))$. Hence it has discrete eigenvalues

$$\lambda_1 < \lambda_2 < \cdots \rightarrow \infty$$

and all eigenspaces are of finite dimension. We denote by E_{λ} the eigenspace of \mathscr{J} corresponding to λ and we call the number $i(M) = \sum_{\lambda < 0} \dim E_{\lambda}$ the index of M in G. A minimal submanifold M with i(M) = 0 is said to be a stable minimal submanifold of G.

Let \widetilde{G} be the universal covering group of G and $p: \widetilde{G} \to G$ be the covering map. We denote by $\widetilde{\sigma} \in \operatorname{Aut}(\widetilde{G})$ the lift of σ and put $\widetilde{K} = \{k \in \widetilde{G} : \widetilde{\sigma}(k) = k\}$. If σ is an inner automorphism then the homogeneous space G/K is simply connected, since it has a G-invariant almost complex structure ([6, p. 95]). We have the unique lift $\widetilde{\Psi}_{\sigma}: G/K \to \widetilde{G}$ of the Cartan embedding Ψ_{σ} . Furthermore, we have $G/K = \widetilde{G}/\widetilde{K}$ and $\widetilde{\Psi}_{\sigma}$ coincides with the Cartan embedding $\Psi_{\widetilde{\sigma}}: \widetilde{G}/\widetilde{K} \to \widetilde{G}$. Thus $\Psi_{\sigma}(G/K)$ is a stable minimal submanifold if and only if $\Psi_{\widetilde{\sigma}}(\widetilde{G}/\widetilde{K})$ is a stable minimal submanifold. If σ is an outer automorphism then the pair (G, σ) is either $(Spin(8), \tau)$ or $(Spin(8), \tau')$.

THEOREM C. Let G be a compact simple Lie group and σ be an automorphism of order 3 on G. Then the image of the Cartan embedding

$$\Psi_{\sigma}: G/K \longrightarrow G; \qquad g \longmapsto g \cdot \sigma(g^{-1})$$

is a stable minimal submanifold of G if and only if $(\tilde{G}, \tilde{\sigma})$ is one of the following:

$ ilde{G}$	$ ilde{\sigma}$	$ ilde{K}$
E_6	$ad(\exp 2\pi \sqrt{-1}v_3)$	$\{SU(3) \times SU(3) \times SU(3)\}/Z_3$
E_7	$ad(\exp 2\pi \sqrt{-1}v_3)$	$\{SU(3)\times SU(6)\}/Z_3$
E_8	$ad(\exp 2\pi \sqrt{-1}v_6)$	$\{SU(3)\times E_6\}/Z_3$
E_8	$ad(\exp 2\pi \sqrt{-1}v_8)$	$SU(9)/Z_3$
G_{2}	$ad(\exp 2\pi \sqrt{-1}v_1)$	SU(3)
Spin(8)	τ	G_2
Spin(8)	τ'	$SU(3)/Z_3$

where \tilde{G} is the universal covering group of G and $\tilde{\sigma}$ is the lift of σ on G.

We divide the proof into two cases.

Case 1. K has non-trivial center.

PROPOSITION 2.1. Let G be a compact simple Lie group and $\sigma = ad(\exp 2\pi \sqrt{-1} H)$ be an automorphism of order 3. If $K = K_{\sigma}$ has non-trivial center, then the image $\Psi_{\sigma}(M)$ of the Cartan embedding is an unstable minimal submanifold of G.

PROOF. Let g and f be the Lie algebras of G and K respectively. We denote by m the orthogonal complement of f in g. Define a normal vector field \tilde{H} along Σ by

$$\tilde{H}|_{aK} = dL_a(dR_{\sigma(a^{-1})}(H))$$
.

Consider a surface $(t, s) \mapsto \exp tX \exp(-s) d\sigma X$ and a vector field \overline{H} along this surface defined by

$$\bar{H}(t, s) = dL_{\exp tX} dR_{\exp(-s)d\sigma X} H$$
.

Then we have

$$\nabla_{d\Psi_{\sigma}(X)}\tilde{H} = \nabla_{d\Psi_{\sigma}(X)}\bar{H} = \nabla_{X-d\sigma X}\bar{H}$$

$$= \nabla_{X}\bar{H} - \nabla_{d\sigma_{\sigma}(X)}\bar{H} = (1/2)[X, H] - (1/2)[-d\sigma X, H]$$

$$= (1/2)[(1+d\sigma)(X), H] \in [\mathfrak{m}, H] \subset \mathfrak{m}.$$

This implies $\nabla^{\perp}_{d\Psi_{\sigma}(X)}H=0$ and $\nabla^{\perp}\tilde{H}=0$ for \tilde{H} is G-invariant. Let Ψ_{t} be a one parameter variation of Ψ_{σ} whose variational vector field is \tilde{H} . Since \tilde{H} is a parallel normal vector field, we have

$$d^2/dt^2\big|_{t=0}Vol(\Psi_t(M)) = \langle S(\tilde{H}) - A(\tilde{H}), \tilde{H} \rangle \big|_{o} \cdot Vol(M)$$
.

Since $R^G(X, Y)Z = (-1/4)[[X, Y], Z]$ for $X, Y, Z \in \mathfrak{g}$, we have

$$S(H)|_{o} = -(1/4) \sum_{\alpha(H) = 1/3, 2/3} ([[X_{\alpha}, H], X_{\alpha}] + [[Y_{\alpha}, H], Y_{\alpha}])$$
$$= -(1/2) \sum_{\alpha(H) = 1/3, 2/3} \alpha(H)H_{\alpha} = -(1/2)kH$$

and

$$\begin{split} A(H)\big|_{o} &= -(1/2) \sum_{\alpha(H) = 1/3, 2/3} \left(\left\langle \left[J(X_{\alpha}), X_{\alpha} \right], H \right\rangle \left[J(X_{\alpha}), X_{\alpha} \right] \right. \\ &+ \left\langle \left[J(Y_{\alpha}), Y_{\alpha} \right], H \right\rangle \left[J(Y_{\alpha}), Y_{\alpha} \right] \right) \\ &= -(1/6) \sum_{\alpha(H) = 1/3, 2/3} \alpha(H) H_{\alpha} = -(1/6) kH \end{split}$$

where we put $\sum_{\alpha(H)=1/3} H_{\alpha} = kH$ by Remark 1.3. Thus we have

$$d^2/dt^2\big|_{t=0} Vol(\Psi_t(M)) = -(1/3)k\|H\|^2 \cdot Vol(M) < 0.$$

- Case 2. K has trivial center. Ikawa calculated the Jacobi differential operator under the following condition;
- 1. Let G [resp. U] be a compact connected Lie group with Lie algebra g [resp.

 \mathfrak{u}] and K [resp. L] be a closed Lie subgroup with Lie algebra \mathfrak{t} [resp. \mathfrak{t}],

- 2. the Riemannian metrics on the homogeneous spaces M = G/K and P = U/L are normal homogeneous metrics,
- 3. let ρ be a homomorphism $G \to U$ with $\rho(K) \subset L$ and the mapping $f: G/K \to U/L$; $gK \mapsto \rho(g)U$ is a minimal immersion.

Let \mathfrak{m} [resp. \mathfrak{p}] be the orthogonal complement of \mathfrak{k} in \mathfrak{g} [resp. \mathfrak{l} in \mathfrak{u}]. We denote by \mathfrak{m}^{\perp} the orthogonal complement of

$$\{(\rho_*(X))_{p}: X \in m\} = \{(X, -X): X \in m\}$$

in p. Then $(\mathfrak{m}^{\perp}, (Ad \circ \rho)^{\perp})$ is a representation of K and the normal bundle N(M) of the immersion f is identified with the associated bundle $G \times_{(Ad \circ \rho)^{\perp}} \mathfrak{m}^{\perp}$. Let $C^{\infty}(G; \mathfrak{m}^{\perp})$ be the space of smooth \mathfrak{m}^{\perp} -valued functions on G and $C^{\infty}(G; \mathfrak{m}^{\perp})_{K}$ be the subset of elements with $f(uk) = Ad(k^{-1})f(u)$ for $u \in G$ and $k \in K$. A section ξ of N(M) is identified with an element of $C^{\infty}(G; \mathfrak{m}^{\perp})_{K}$ in a natural manner. Each element of the Lie algebra g acts on $C^{\infty}(G; \mathfrak{m}^{\perp})$ as a left invariant differential operator. The action of g on $C^{\infty}(G; \mathfrak{m}^{\perp})$ is extended to that of the universal enveloping algebra U(g) of g in a natural manner. An element $L \otimes X$ of $Hom(\mathfrak{m}^{\perp}, \mathfrak{f}) \otimes U(g)$ acts, as a differential operator, on $C^{\infty}(G; \mathfrak{m}^{\perp})$ by

$$(L \otimes X)(f) = L(Xf)$$
, $f \in C^{\infty}(G; \mathfrak{m}^{\perp})$.

LEMMA 2.2 ([2]). If we assume that (U, L) is a compact symmetric pair, then the Jacobi differential operator of the minimal immersion $f: G/K \to U/L$; $gK \mapsto \rho(g)U$ is given as follows

$$\mathcal{J}\phi = (-1 \otimes C + ad_{u}(C) \otimes 1 - 2\mathcal{J}_{1})\phi$$

where

$$\mathcal{J}_1 \phi = \sum_{i=1}^{p} \left[\rho_* E_i, E_i \phi \right]_{\mathfrak{m}^{\perp}} + \sum_{i=1}^{p} \left[\rho_* E_i, \left[\rho_* E_i, \phi \right] \right]_{\mathfrak{m}^{\perp}}.$$

We put

$$\begin{split} U \! = \! G \times G \;, \qquad L \! = \! \{ (g,g) : g \! \in \! G \} \;, \\ \mathsf{I} \! = \! \{ (X,X) : X \! \in \! \mathfrak{g} \} \;, \qquad \mathfrak{p} \! = \! \mathsf{I}^{\perp} \! = \! \{ (X,-X) : X \! \in \! \mathfrak{g} \} \;, \end{split}$$

and define a homomorphism ρ of G into U by $\rho(g) = (g, \sigma(g))$. The Cartan embedding is an equivariant embedding with respect to ρ and we have

$$\mathfrak{m}^{\perp} = \{ (X, -X) : X \in \mathfrak{k} \}.$$

Take an orthonormal basis $\{E_i\}_{1 \le i \le p}$ of g such that $\{E_i\}_{1 \le i \le m}$ is an orthonormal basis of m and $\{E_i\}_{m+1 \le i \le p}$ is an orthonormal basis of f. We denote by C the Casimir element $\sum_{i=1}^p E_i E_i$ of the universal enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} .

We denote by D(G) the set of all equivalence classes of the complex irreducible representations of G and by $(V(\lambda), \lambda)$ a representative of λ in D(G). By Schur's lemma

 $\lambda(C)$ is a scalar operator. We denote by a_{λ} the eigenvalue of $\lambda(C)$ on $V(\lambda)$.

LEMMA 2.3. Let σ be an automorphism of order 3 on a compact simple Lie group G and Ψ_{σ} be the corresponding Cartan embedding. Then

(1) the Jacobi differential operator of the Cartan embedding is

$$\mathcal{J} = -1 \otimes C + ad_{u}(C) \otimes 1$$
,

(2) the index i(M) is given as follows:

$$i(M) = \sum_{\lambda \in D(G), a_{\lambda} > a_{\alpha_0}} \dim \operatorname{Hom}_{K}(V(\lambda), (\mathfrak{f}^{\perp})^{\mathbf{C}}) \dim V(\lambda).$$

PROOF. (1) Put
$$\phi = \sum_{j=m+1}^{p} f_j(E_j, -E_j), f_j \in C^{\infty}(G)$$
. For $E_i \in \mathbb{M}$, we have
$$[\rho_* E_i, \phi]_{\mathfrak{M}^{\perp}} = [(\rho_* E_i)_{\mathfrak{l}} + (\rho_* E_i)_{\mathfrak{p}}, \phi]_{\mathfrak{M}^{\perp}} = [(\rho_* E_i)_{\mathfrak{l}}, \phi]_{\mathfrak{M}^{\perp}}$$

$$= (1/2) \sum_{j=m+1}^{p} f_j((1+d\sigma)[E_i, E_j], -(1+d\sigma)[E_i, E_j])_{\mathfrak{M}^{\perp}} = 0.$$

Similarly we have $[\rho_*E_i, E_i\phi]_{\mathfrak{m}^1}=0$. For $E_i\in\mathfrak{k}$, we have

$$(E_i\phi)(g) = d/dt|_0 \phi(g \exp tE_i) = -[\rho_*(E_i), \phi(g)] \in \mathfrak{m}^{\perp}.$$

Thus we have

$$[\rho_{\star}(E_i), E_i\phi(g)]_{m^{\perp}} + [\rho_{\star}E_i, [\rho_{\star}(E_i), \phi(g)]]_{m^{\perp}} = 0.$$

Thus we have $J_1 = 0$.

(2) is a consequence of (1) and the Frobenius reciprocity theorem ([5, p. 118]).

Let u be a complex simple Lie algebra and v be a complex simple Lie subalgebra. Take an ad_u -invariant [resp. ad_v -invariant] inner product \langle , \rangle_u [resp. \langle , \rangle_v] on u [resp. v] such that the square of the length of the longest root is equal to 2. Since \langle , \rangle_u is also ad_v -invariant, there exists a complex number j such that $\langle X, Y \rangle_u = j \langle X, Y \rangle_v$ for any $X, Y \in v$. It is known that the number j is a positive integer, and is called the *index* of v in u (in the sense of Dynkin).

PROPOSITION 2.4. Let G be a compact simple Lie group and σ be an automorphism on G of order 3. If the subgroup $K = K_{\sigma}$ is semi-simple and each simple factor of $\mathfrak{t}^{\mathbf{C}}$ is a subalgebra of $\mathfrak{g}^{\mathbf{C}}$ of index 1, then $\Psi_{\sigma}(G/K)$ is a stable minimal submanifold of G.

The proof of this proposition is the same as that of Theorem in [4]. For the sake of convenience, we shall briefly sketch the proof.

Assume that $\Sigma(G/K)$ is an unstable minimal submanifold of G. Then by Lemma 2.2, there exists $\lambda \in D(G)$ such that

$$\dim \operatorname{Hom}_{K}(V(\lambda), \mathfrak{t}^{\mathbf{c}}) > 0 \text{ and } a_{\lambda} > a_{\alpha_{0}}.$$

In our case f is a simple Lie algebra or a direct sum of simple Lie subalgebras. We take a direct sum decomposition of f by simple ideals: $\mathfrak{k} = \mathfrak{k}_1 \oplus \cdots \oplus \mathfrak{k}_s$. Let K_i $(1 \le i \le s)$ be the subgroup of K generated by \mathfrak{k}_i . Since $\dim \operatorname{Hom}_K(V(\lambda), \mathfrak{k}^c) > 0$, we have $\dim \operatorname{Hom}_{K_i}(V(\lambda), \mathfrak{k}^c) > 0$ for some i $(1 \le i \le s)$. By the following Lemma 2.5, we have $a_{\lambda} \le a_{\alpha_0}$ which is a contradiction.

Lemma 2.5. ([4]). Let G be a compact simple Lie group and K be a closed subgroup of index 1. Let $\lambda \in D(G)$ and $V(\lambda)$ be its representative. If $V(\lambda)$ contains ($\mathfrak{t}^{\mathbf{C}}$, $Ad_{\mathbf{K}}$) as a K-irreducible component, then we have

$$a_{\lambda} \leq a_{\alpha_0}$$
.

PROPOSITION 2.6. The Cartan embedding corresponding to the inner automorphism $ad(\exp 2\pi \sqrt{-1}v_3)$ on F_4 is an unstable minimal embedding.

PROOF. Since the extended Dynkin diagram of f₄ is

the Lie algebra \mathfrak{k} of the subgroup K of elements fixed by the automorphism $\sigma = Ad(\exp 2\pi \sqrt{-1}v_2)$ is $\mathfrak{su}(3) + \mathfrak{su}(3)$. As K-modules, the irreducible representation $V(\varpi_4)$ decomposes as follows ([3, p. 306]):

Thus we have dim $\operatorname{Hom}_K(V(\varpi_4), \mathfrak{f}^c) = 1$. On the other hand, the highest weight of the adjoint representation of \mathfrak{f}_4 is ϖ_1 . Since we have $a_{\alpha_0} = a_{\varpi_1} = 6$ and $a_{\varpi_4} = 18$, the corresponding Cartan embedding is an unstable minimal embedding.

The proof of Theorem C is completed by summing up Theorem A, Theorem B, Proposition 2.1, Proposition 2.4 and Proposition 2.6.

References

- [1] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Geometriae Dedicata 19 (1985), 7-63.
- [2] O. IKAWA, Equivariant minimal immersions of compact Riemannian homogeneous spaces into compact Riemannian homogeneous spaces, Tukuba J. Math. 17 (1993), 169–188.
- [3] W. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras, Marcel Dekker (1981).
- [4] K. Mashimo, On the stability of Cartan embeddings of compact symmetric spaces, Archiv Math. 58 (1992), 500-508.
- [5] N. WALLACH, Harmonic Analysis on Homogeneous Spaces, Pure Appl. Math. 19 (1973), Marcel Dekker.
- [6] J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I, J. Differential Geometry 2 (1968), 77–114.

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO UNIVERSITY OF AGRICULTURE AND TECHNOLOGY, FUCHU, TOKYO, 183 JAPAN.

e-mail: mashimo@cc.tuat.ac.jp