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1. Introduction.

The study of holomorphic vector fields (or a complex one dimensional foliation).
has a long history (see [1], [3], [7] and [19]). There are already many studies in this
field. Especially, in the last decades, Camacho, Neto and Sad have been studying actively
and shed light on the geometrical and topological aspects of holomorphic vector fields
(see [2], [4], [6] and [13]). In 1978, Camacho exhibited several topological invariants
of holomorphic vector field $Z$ defined on an open neighborhood of an isolated singular
point $0=(0,0)$ of $C^{2}$ when the vector field $Z$ has anon-zero linear term in the Taylor
development at $0$ . In 1984, Camacho and Sad obtained a more general topological
invariant near a singularity of a holomorphic vector field $Z$ in $C^{n}(n\geqq 2)$ (see [4] and
also [5]). In their paper [4], they defined the Milnor number $\mu$ of a vector field $Z$ at
its singularity $0\in C^{n}$ as $\mu=\dim_{\mathbb{C}}\mathcal{O}_{n}/l(Z_{1}, Z_{2}, \cdots, Z_{n})$ , where $\mathcal{O}_{n}$ means the ring of all
germs of the holomorphic functions defined on some neighborhood of $0\in C^{n}$ and
$I(Z_{1}, \cdots, Z_{n})$ means the ideal generated by the germs at $0\in C^{n}$ of the coordinate func-
tions of $Z$ . When $0\in C^{n}$ is an isolated singularity of $Z$, they asserted that the number
$\mu$ coincides with the topological degree of the Gauss mapping induced from a real vector
field constructed by $Z$ in a small $(2N-1)$-sphere around $0\in C^{n}(n\geqq 2)$ , and obtained
that the Milnor number $\mu$ of $Z$ is a topological invariant of the holomorphic foliation
$F_{Z}$ induced from the vector field $Z$ (the foliation $F_{Z}$ is the integral of the holomorphic
vector field $Z$ defined on an open neighborhood $U$ of $0\in C^{n}$). Simultaneously, they
studied generalized curves, the special vector fields on $C^{2}$ whose singularities become
non-zero simple singularities after performing several blowing-ups. And also they
obtained that the algebraic multiplicity of a generalized curve is a topological invariant,
where the algebraic multiplicity means the degree of the first non zero term in the Taylor
development of the vector field at $0$ .

On the other hand, W. D. Neumann and W. Eisenbud studied plane curve
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singularities by using powerful tools, i.e., splice diagrams of multi-links (see [8], [15]
and [16]). Also Lee Rudolph and W. D. Neumann developed a new invariant of a real
vector field around an isolated singularity from the view points of the link theory and
the multi-link theory (see [17]). It seems that Neumann’s techniques are also very useful
to study the topological invariants near an isolated singularity ofthe generalized curve.

Thus we start to study relationships between topological invariants near a singulari-
ty of a generalized curve and splice diagrams or the multi-links. Firstly, we pay our
attentions to the separatrices which are the leaves passing through an isolated singularity
in $C^{2}$ . After performing desingularizations of a vector field $Z$ with a singularity at
$o\in C^{2}$ , a neighborhood changes into a certain real 4-submanifold (called a plumbed
4-manifold) whose boundary is a 3-sphere of the connected sum $kCP^{2}\#C^{2}$ of $k$ copies
of $CP^{2}’ s$ and $C^{2}$ . Now the intersection of the above separatrices and the boundary of
the plumbed 4-manifold can be considered as a graph multi-links. In this paper we
define a plumbing diagram for a given generalized curve $Z$ . Our plumbing diagram is
analogous to the one for a plane curve singularity. We denote this diagram by $P_{Z}$ . As
we mention in \S 2, the diagram $P_{Z}$ consists of the vertex denoted by a black dot $\bullet$ , the
special vertex (a so called critical component) denoted by $O\circ,$ the line which connects
two vertices, and the arrowhead line which represents a separatrix. By using plumbing
diagrams which have no critical components we can obtain a graph called the splice
diagram (see Figure 2). The splice diagram is a certain decorated tree. The decorations
consist of an integer weight at each end of some edge and an integer weight at certain
vertices called arrowhead vertices. The former is called the edge weight and the latter
the vertex weight. In general, this diagram represents a graph link in a homology 3-
sphere and arrowhead vertices correspond to components of the link. The vertex weights
define the orientation and the multiplicity of the components of the given graph link.
In our cases, the splice diagrams represent multiple links which are intersections between
the separatrices and the boundary of the plumbed 4-manifold. We denote this diagram
by $\Gamma_{Z}$, which enables us to calculate the Thurston norm and the Alexander polynomials.
So, for a given generalized curve $Z$, we define the one variable Alexander polynomial
$\Delta_{Z}$ which is induced from the splice diagram $\Gamma_{Z}$ of which all vertex weights are +1,
and denote the cardinal number of critical components of $P_{Z}$ by $n_{Z}$ . Here $n_{Z}$ may be
zero. Now we consider the pair $(\Delta_{Z}, n_{Z})$ . When the splice diagram $\Gamma_{Z}$ has no arrowhead
vertices, we write $(\Delta_{Z}, n_{Z})$ as $(\emptyset, n_{Z})$ , where the symbol $\emptyset$ means an empty set. Then
we obtain the following theorem.

THEOREM A. Suppose that $Z$ is a generalized curve with a singular point $0\in C^{2}$ and
that $Z^{\prime}$ is any vector field topologically equivalent to $Z$ around $0\in C^{2}$ . Then $Z^{\prime}$ is also a
generalized curve, and the pair $(\Delta_{Z}, n_{Z})$ coincides with the pair $(\Delta_{Z’}, n_{Z^{\prime}})$ .

As we mentioned before, a splice diagram represents a graph link. Especially, we
consider the splice diagram $\Gamma_{Z}$ ofwhich all vertex weights $are+1$ induced from a vector
field $Z$ and the link $L_{Z}$ represented by $\Gamma_{Z}$ . Then we can define the Thurston norm of



ISOLATED SINGULARITIES OF VECTOR FIELDS I 291

the link $L_{Z}$ . We will call this norm the Thurston norm of the vectorfield $Z$, and denote
it by $\Vert Z\Vert$ . If $\Gamma_{Z}$ has no arrowhead vertices, we define its norm to be $0$ . It is clear that
the value $0$ is a topological invariant. Now we obtain the following main theorem.

THEOREM B. Suppose that the holomorphic vector field $Z$ which satisfies the
condition $Z(0)=0$ is a generalized curve, and is defined on a neighborhood $U$ of $0$ in $C^{2}$

which is homeomorphic to an open 4-ball. Then the Thurston norm $\Vert Z\Vert$ is a topological
invariant of the vector field $Z$, that is, if a holomorphic vector field $Z^{\prime}$ is topologically
equivalent to $Z$ around $0\in C^{2}$ , then $\Vert Z^{\prime}\Vert=\Vert Z\Vert$ .

REMARK. The Thurston norm of a generalized curve $Z$ is an extension of the
geometric (original) Milnor number in the case of the analytic curve. (See [12] for the
definition of the original geometric Milnor number.) In fact, if $Z$ is a Hamiltonian
vector fields, (the Milnor number of $Z$) $-1$ is equal to the norm of $Z$ (see \S 5). Our
studies are motivated by this fact.

ACKNOWLEDGEMENT. The author is grateful to Professors K. Shiraiwa and K.
Katase for many advices and encouragements.

2. The definition of the plumbing diagram of the vector fields.

In this section, we introduce the concept of the plumbing diagram of the vector
fields. Firstly, we state the blowing-up method. (For the details, we refer to [4] and [5]).

Let $Z$ be a holomorphic vector field defined in an open set $U\subset C^{2}$ with $Z(0)=0$ .
We assume that $0\in C^{2}$ is the isolated singularity of $Z$ in $U$. Suppose that the folia-
tion $F_{Z}$ is induced by the Pfaffian form $\omega=Z_{2}(x, y)dx-Z_{1}(x, y)dy=0$ , where $Z=$

$Z_{1}(x, y)\partial/\partial x+Z_{2}(x, y)\partial/\partial y$ , and $F_{Z}$ is regular in $U-\{0\}$ .
DEFINITION 1 ([5]). The singularity is said to be simple if the eigenvalues $\lambda_{1},\lambda_{2}$

of $dZ(0)$ satisfy one of the conditions:
(1) $\lambda_{1}\lambda_{2}\neq 0$ , and $\lambda_{1}/\lambda_{2}\not\in Q_{+}$ where $Q_{+}=\{x\in Q|x>0\}$ ,
(2) $\lambda_{1}=0$ and $\lambda_{2}\neq 0$ .

The blow-up of $0\in C^{2}$ consists of replacing $0$ by a one dimensional projective line
$CP^{1}$ considered as the set of limit directions at $0$ . We introduce complex coordinates
in $U^{\langle 1)}=U-\{0\}uCP^{1}$ as follows: Any open subset of $U-\{0\}$ keeps its coordinates;
in order to cover $CP^{1}$ we use two charts, $\phi_{1}$ : $V_{1}\times C^{1}\rightarrow U-\{y=0\}\cup CP^{1}-\{0\}$ and
$\phi_{2}$ : $C^{1}\times V_{2}\rightarrow U-\{x=0\}\cup CP^{1}-\{\infty\}$ related by $\phi_{2}^{-1}\phi_{1}(x, t)=(t^{-1}, tx)$ for $t\neq 0$ . These
charts cover the neighborhoods of $CP^{1}-\{\infty\}$ and $CP^{1}-\{0\}$ . The projection $\pi^{\langle 1)}$ :
$U^{1}\rightarrow U$ is given by $\pi^{\langle 1)}(p)=p$ for $p\in U^{1}-CP^{1}$ and $\pi^{\langle 1)}(p)=0$ for $p\in CP^{1}$ and is
written in these coordinates as $(x, t)\rightarrow(x, xt)$ and $(u, y)\rightarrow(uy, y)$ respectively. We now
lift the foliation $F_{Z}$ to $U^{\langle 1)}$ . $Z$ is written as
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$\dot{x}=a_{v}(x, y)+R_{1}(x, y)$ ,
$\dot{y}=b_{\nu}(x, y)+R_{2}(x, y)$ ,

where \langle $a_{\nu}(x, y),$ $b_{v}(x, y))$ is the first non zero jet of $Z$ at $0\in C^{2}$ and the positive integer
$v=v_{Z}\in N$ is called the algebraic multiplicity of $Z$ (or $F_{Z}$) at the singularity $0$ . Then we
have the following equations for $\pi^{*}Z$ :

$\dot{x}=x^{v}(a_{v}(1, t)+xR_{1}^{\prime}(x, t))$ ,
$(*)$

$i=x^{v-1}(b_{v}(1, t)-ta_{v}(1, t))+x^{v}(R_{2}^{\prime}(x, t)-tR_{1}^{\prime}(x, t)))$ ;

$\dot{u}=y^{v-1}(a_{\nu}(u, 1)-ub_{v}(u, 1))+y^{v}(R_{1}^{\prime\prime}(u, y)-uR_{2}^{\prime\prime}(u, y))$ ,
$\dot{y}=y^{v}(b_{v}(u, 1)+yR_{2}^{\prime\prime}(u, y))$ ,

where $R_{1}^{\prime}(x, t),$ $R_{2}^{\prime}(x, t),$ $R_{1}^{\prime\prime}(u, y)$ and $R_{2}^{\prime\prime}(u, y)$ are higher terms in the Taylor developments
at $0$ . Then all the points of $CP^{1}$ are the singularities of $\pi^{*}Z$ . To desingularize the
singularities we have two ways (1) and (2) below (see [4]).

(1) Nondicritical case. Suppose that $b_{v}(1, t)-ta_{v}(1, t)\neq 0$ . Dividing $(*)$ by $x^{v-1}$

we get

$\dot{x}=x(a_{v}(1, t)+xR_{1}^{\prime}(x, t))$ ,
$(**)$

$i=b_{v}(1, t)-ta_{v}(1, t)+x(R_{2}^{\prime}(x, t)-tR_{1}^{\prime}(x, t))$ .
The expression found in the other coordinate system fits with $(**)$ , and we can define
a foliation $F_{Z}^{\langle 1)}$ in $U^{\langle 1)}$ having $CP^{1}$ as an invariant set. More precisely, some of isolated
singularities are given by the roots of $b_{\nu}(1, t)-ta_{\nu}(1, t)=0$ and $CP^{1}$ is a leaf of $F_{Z}^{(1)}$ . We
can see that $F_{Z}^{\{1)}$ and $\pi^{*}F_{Z}$ coincide outside $CP^{1}$ .

(2) Dicritical case. Suppose that $b_{\nu}(1, t)-ta_{\nu}(1, t)\equiv 0$ . After dividing $(*)$ by $x^{v}$ we
find

$\dot{x}=a_{\nu}(1, t)+xR_{1}^{\prime}(x, t)$ ,
$i=R_{2}^{\prime}(x, t)-tR_{1}^{\prime}(x, t)$ .

In this case, we also see that $F_{Z}^{\langle 1)}$ and $\pi^{*}F_{Z}$ coincide outside $CP^{1}$ , but the projective
line $CP^{1}$ is not an invariant set. The foliation $F_{Z}^{\langle 1)}$ is transverse to $CP^{1}$ except at a finite
number of points (the roots of the equation $a_{v}(1, t)=0$ , which may or may not be
singularities).

It is important to notice that foliations of both cases are locally given by analytic
expressions. Therefore, we can repeat the process at any singular point in $F_{Z}^{\langle 1)}$ . The
process can be applied repeatedly. After kth blow-up, we have a foliation $F^{\langle k)}$ defined
in a neighborhood $U^{\langle k)}$ of a union $CP^{1\langle k)}$ of projective lines with normal crossings and
we have a proper analytic projection $\pi^{(k)}$ : $U^{\langle k)}-CP^{1\langle k)}\rightarrow U-\{0\}$ which is an iso-
morphism between the foliations $F^{(k)}$ and $F_{Z}$ . We will write $(U^{(k)}, \pi^{\{k)}, CP^{1\langle k)}, F^{(k)})$ to
denote akth blow-up of $Z$ at $0\in C^{2}$ , where $\pi^{(k)}$ will be called its projection and $CP^{1\langle k)}$

its divisor.
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The Desingularization Theorem for vector fields ([1], [10], [19] and [20]) asserts
that all singularities become simple after a finite times of blow-ups. Therefore, if we
start the procedure at $0\in C^{2}$ and if we do not need to perform the further explosions
for all simple singularities after kth blow-up, we call the desingularization of $Z$ at $0$

for this situation. (See Lemma 3 in \S 3 and Theorem 5 in [4].) And also the situation
defines uniquely the blow-ups $(U^{\langle k)}, \pi^{\langle k)}, P^{\langle k)}, F_{Z}^{\langle k)})$ as the desingularization of $Z$ at $0$ . An
alternative notation we use for desingularization of $Z$ is $(U_{Z}, \pi_{Z}, P_{Z}, F_{Z})$ .

DEFINITION 2 ([4]). The vector field $Z$ is a generalized curve if $F_{Z}$ in the
desingularization of $Z$ has no singularities with zero eigenvalues.

DEFINITION 3 ([4]). The divisor is a union of embedded projective lines inter-
secting transversely at a finite number of points called corners.

DEFINITION 4 ([4]). A separatrix of $Z$ is a connected integral curve $V$ of $Z$ such
that $\overline{V}=Vu\{0\}$ .

Now we represent the desingularization of a generalized curve $Z$ at $0$ in a graphic
form as in Figure 1; we will represent a separatrix by an arrowhead line $\uparrow$ , an invariant
componemt of the divisor by a straight line , and a non-invariant component of the
divisor by a symbol $\Vert$ . We exclude leaves which do not intersect the divisor and those
which intersect a non-invariant component of the divisor from the last stage of
desingularizations, because these leaves do not relate to simple singularities of the final
stage of the desingularizations. We call this graphic form the final resolution picture.

Also we define a plumbing diagram of a vector field in which we have also written
the self-intersection numbers of the components of the divisor as in Figure 1. This
graph also represents the final stage of the desingularization of a generalized curve and
is a dual graph of the final resolution picture. The symbol $‘‘\rightarrow$ means the separatrix
of the vector field. We call this vertex an arrowhead vertex. The symbol “

$\bullet$

” denotes
an invariant component of the divisor in the desingularizations, and the symbol “

$O\circ’’$

denotes a non-invariant component of the divisor. The edges of the plumbing diagram
represent the normal crossing points. Here, the normal crossing point means a comer
or an intersection point between the divisor and a separatrix of a simple singularity in
the last stage of the resolution. Thus we exclude all intersection points in non-invariant
divisors of the final stage of the resolution from our normal crossing points.

DEFINITION 5. We call a vertex corresponding to the non-invariant component
of the divisor of the final resolution picture a non-invariant vertex of the plumbing
diagram.

Each component $CP_{i}$ of the divisor has the self-intersection number $CP_{i}\cdot CP_{i}=-1$

at first, since it appears as an exceptional curve (cf. [9]). And whenever a singular point
is blown-up on it, the self-intersection number decreases by 1. Then we put the absolute
value of self-intersection number on every vertex. We call this value a vertex weight of
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plumbing diagram. Now we will present some examples.

$\dot{x}=x^{4}y$

EXAMPLE 1 (critical case).
$\copyright_{\sim^{O5}}^{\prime\sim}\copyright(2)\copyright\sim@(1)$

$\dot{y}=x^{9}+y^{4}+2x^{3}y^{2}$

$\iota<^{O1}r_{o^{\vee O8}}4\copyright\sim\copyright(1)\rightarrow\otimes(2)$

Flow chart of computations

$O1$ $(x, y)\rightarrow(x, xt_{1})$

$\dot{x}=x^{2}t_{1}$

$i_{1}=x^{5}+t_{1}^{4}+xt_{1}^{2}$

\copyright $(x, t_{1})\rightarrow(x, xt_{2})$

$\dot{x}=i_{2}$

$i_{2}=x+t_{2}^{4}$

\copyright $(x, t_{2})\rightarrow(x, xt_{3})$

$\dot{x}=t_{3}x$

$i_{3}=1+t_{3}^{4}x^{3}-t_{3}^{2}$

The point $(x, t_{3})=(0,0)$ is
non-singular.

$O6(2)$ $(x, t_{3}+1)\rightarrow(x, t_{3})$

$\dot{x}=-x+t_{3}x$

$i_{3}=2t_{3}+$ ($higher$ oder)

$O8(1)$ $(t_{1}, u_{2})\rightarrow(u_{2}t_{4}, u_{2})$

$\dot{u}_{2}=-u_{2}-u_{2}^{7}t_{4}$

$i_{4}=2t_{4}+1+2u_{2}^{6}t_{4}^{2}$

The point $(t_{4}, u_{2})=(0,0)$ is
non-singular.

$O9$ $(t_{1}, u_{2})\rightarrow(t_{1}, t_{1}u_{4})$

$i_{1}=t_{1}+u_{4}t_{1}+t_{1}^{7}u_{4}^{5}$

$\dot{u}_{4}=-2u_{4}-u_{4}^{2}-2u_{4}^{6}t_{1}^{6}$

See Figure 1 (cf. [4]).

\copyright $(x, y)\rightarrow(yu_{1}, y)$

$\dot{y}=y+y^{6}u_{1}^{9}+2y^{2}u_{1}^{3}$

$\dot{u}_{1}=-u_{1}-yu_{1}^{4}-u_{1}^{10}y^{5}$

$O4$ $(x, t_{1})\rightarrow(t_{1}u_{2}, t_{1})$

$j_{1}=t_{1}+u_{2}+t_{1}^{2}u_{2}^{5}$

$\dot{u}_{2}=-u_{2}-t_{1}u_{2}^{6}$

$O6(1)$ $(x, t_{3}-1)\rightarrow(x, t_{3})$

$\dot{x}=x+t_{3}x$

$i_{3}=-2t_{3}+$ ($higher$ order)

$O7$ $(x, t_{2})\rightarrow(t_{2}u_{3}, t_{2})$

$i_{2}=t_{2}u_{3}+t_{2}^{4}$

$\dot{u}_{3}=-u_{3}^{2}-t_{2}^{3}u_{3}+1$

The point $(t_{2}, u_{3})=(0,0)$ is
non-singular.

$O8(2)$ $(u_{2}, t_{4}+1/2)\rightarrow(u_{2}, t_{4})$

$\dot{u}_{2}=-u_{2}-u_{2}^{7}(t_{4}-1/2)$

$i_{4}=2t_{4}+$ ($higher$ order)
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A final resolution picture A plumbing diagram

FIGURE 1

EXAMPLE 2.
$2^{-O\iota}\sim\copyright\rightarrow\copyright\rightarrow\copyright\backslash _{O4}(1)\rightarrow\copyright(2)$

$\dot{x}=-3y^{2}$

$\dot{y}=2x$ Flow chart of computations

$O^{1}$ $(x, y)\rightarrow(yu_{1}, y)$

$\dot{y}=2yu_{1}$

$\dot{u}_{1}=-3y-2u_{1}^{2}$

\copyright (1) $(u_{1}, t_{2})\rightarrow(u_{1}, u_{1}t_{3})$

$i_{3}=6t_{3}+6t_{3}^{2}$

$\dot{u}_{1}=-2u_{1}-3u_{1}t_{3}$

$O4$ $(u_{1}, t_{2})\rightarrow(t_{2}u_{3}, t_{2})$

$i_{2}=3t_{2}+4t_{2}u_{3}$

$\dot{u}_{3}=-6u_{3}-6u_{3}^{2}$

A final resolution picture

\copyright $(y, u_{1})\rightarrow(u_{1}t_{2}, u_{1})$

$i_{2}=4t_{2}u_{1}+3t_{2}^{2}$

$\dot{u}_{1}=-2u_{1}^{2}-3u_{1}t_{2}$

\copyright (2) $(u_{1}, t_{3}+1)\rightarrow(u_{1}, t_{3})$

$i_{3}=-6t_{3}+6t_{3}^{2}$

$\dot{u}_{1}=u_{1}-3u_{1}t_{3}$

\copyright $(x, y)\rightarrow(x, xt_{1})$

$\dot{x}=-3x^{2}t_{1}^{2}$

$i_{1}=2+3t_{1}^{3}x$

$-3$ $-1$ $-2$

A plumbing diagram

$FlGURE2$

EXAMPLE 3.
$\dot{x}=3x$

$\dot{y}=y$

A plumbing diagram
$-1$ $-2$ $-2$

FIGURE 3
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EXAMPLE 4.
$\dot{x}=3x$

$\dot{y}=-y$

A plumbing diagram

FIGURE 4

Observe that the nondicritical generalized curve must have at most a finite number
of separatrices.

There is a notion of minimality for plumbing diagrams, which is stated as follows.

DEFINITION 6 (Minimal plumbing diagram [8]). If a plumbing diagram does not
contain any of the configurations on the left hand sides of part $1$ )$-4$) of Figure 5,
then we call it minimal plumbing diagram.

1)

$\rightarrow$

or

$\rightarrow$

2)

$\rightarrow$

3)

$\rightarrow$ $I|’\backslash ’\backslash --\backslash \Delta 1^{1:}\gg e_{1}+1$

or

$\rightarrow$ $Il^{\prime^{\prime}}\backslash \backslash -\Delta^{\backslash }\gg_{1^{1:}}e_{1}+1$

4)

$\Delta_{1}+-1\bullet$ $\rightarrow$
$\Delta_{1}$

FIGURE 5
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In the diagrams $1$ )$-4$) of Figure 5, the left hand side is equivalent to the right hand
side. Therefore, if the left hand side diagram appears in a plumbing diagram, then it
can be replaced by the right hand side diagram.

To prove main theorems we need the concepts of splicing of two graph links, splice
diagrams and their minimality. First we state the notion of splicing of two graph links
and splice diagrams and then explain about the notion of minimality.

DEFINITION 7 ([8]). Let $L=(\Sigma, K)$ and $L^{\prime}=(\Sigma^{\prime}, K^{\prime})$ be links and choose com-
ponents $S\subset K$ and $S^{\prime}\subset K^{\prime}$ . Let $N(S)$ and $N(S^{\prime})$ be tubular neighborhoods and $M,$ $ L\subset$

$\partial N(S)$ and $M^{\prime},$ $L^{\prime}\subset\partial N(S^{\prime})$ be standard meridians and longitudes, and construct $\Sigma^{\prime\prime}=$

( $\Sigma$ -int $N(S)$) $\cup$ ( $\Sigma^{l}$ -int $N(S^{\prime})$) pasting along boundaries by matching $M$ to $L^{\prime}$ and $L$

to $M^{\prime}$ . Then the link $(\Sigma^{\prime\prime}, (K-S)\cup(K^{\prime}-S^{\prime}))$ is called asplice of $L$ and $L^{\prime}$ along $S$ and $S^{\prime}$

and is denoted by $L-L^{\prime}$ or $L_{ss}\overline,L^{\prime}$ , where both manifolds $\Sigma$ and $\Sigma^{\prime}$ are homology
spheres.

It is easily checked that the manifold $\Sigma^{\prime\prime}$ is a homology sphere. We describe a
multi-link which is first introduced by Neumann. It is a natural extension of the concept
of link. Let $(\Sigma, K)$ be an unoriented link and $L=(\Sigma, S_{1}\cup\cdots\cup S_{n})$ be a link obtained
by orienting $(\Sigma, K)$ . By a multi-link on $(\Sigma, K)$ we mean $L$ together with integer multi-
plicity $m_{i}$ associated to each component $S_{i}$ , with a convention that a component $S_{i}$ with
multiplicity $m_{i}$ means the same link component as $-S_{i}(S_{i}$ with reversed orientation
with multiplicity $-m_{i}$). We write the multi-link $L(m_{1}, \cdots, m_{n})=(\Sigma, m_{1}S_{1}\cup\cdots\cup m_{n}S_{n})$ .
A link is thus simply a multi-link with all multiplicities $\pm 1$ .

A multi-link on $(\Sigma, K)$ as above determines an integral cohomology class $\underline{m}\in$

$H^{1}(\Sigma-K)=H_{1}(\Sigma-K)^{*}$ as follows: $\underline{m}$ evaluated on a l-cycle $S$ is the linking number;
i.e.,

$\underline{m}(S)=1ink(m_{1}S_{1}+\cdots+m_{n}S_{n}, S)=\sum m_{i}1ink(S_{i}, S)$ .
By Alexander duality the $n$ linear forms 1ink$(S_{i}, -)\in H_{1}(\Sigma-K)(i=1, \cdots, n)$ are iden-
tified with a base of $Z^{n}$ . Then we can write $\underline{m}=(m_{1}, \cdots, m_{n})$ . We may also write
$LCm)$ for $L(m_{1}, \cdots, m_{n})$ . Given nz and a link $(\Sigma, K)$ , one computes $m_{i}$ by $m_{i}=\underline{m}(M_{i})$ ,
where $M_{i}$ is a standard oriented meridian of an oriented link component $S_{i}$ .

Now we show some examples of splice diagrams. Recall that the splice diagram is
a tree having edge weights and vertex weights. Also some of the vertices of the diagram
are drawn as arrowheads, which correspond to components of the link. We call the
vertices arrowhead vertices. For example if we construct a torus link by iterated cabling,

FIGURE 6. n-Hopf link $(n=3)$
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we will start from the n-component Hopf link $H_{n}=(S^{3}, K_{1}u\cdots\cup K_{n})$ consisting of $n$

fibers of the Hopf fibration. We represent this link by the splice diagram with $n$

arrowheads:

If $\Gamma\rightarrow is$ a splice diagram for a link $L$ and the indicated arrowhead corresponds to a
component $K$, then each of the diagrams

is the result of $(\alpha, \beta)$ cabling operation to $L$; namely either by replacing component $K$

or adding d-parallel $(\alpha, \beta)$ cables on $K$. Thus we can construct a splice diagram for any
toral link. The splice diagram

represents the Seifert link $(\pm\Sigma(a_{1}, a_{2}, \cdots, a_{n}), S_{1}\cup\cdots\cup S_{n})$ .
DEFINITION 8 (Minimal splice diagram [8]). Minimal splice diagram is a splice

diagram which does not contain any of the configurations on the left hand sides of
part $1$ )$-4$) of the following ( $\approx means$ an equivalence):

1)

$\Gamma(\underline{m}_{1})-\Gamma(\epsilon\underline{m}_{2})$

where $\epsilon(=\pm)$ is two different orientations, and $m_{i}(1\leqq i\leqq r)$ means the multiplicity of
the link, and $\Gamma(\underline{m_{i}})$ represents a piece of a splice diagram.

2)

$\Gamma_{1}(\underline{m}_{1})\rightarrow$

$+$

: (disjoint union)
$+$

$\Gamma_{r}(\underline{m}_{r})\rightarrow$
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3) $\tau Cm$) $+-$ (disjoint union) $\approx$ $\tau Cm$)

4) If $a_{0}a_{\acute{0}}=\epsilon\epsilon^{\prime}a_{1}\cdots a_{r}a_{1}^{\prime}\cdots a_{s}^{\prime}$ , then

$+\cdot+=+$

$+\cdot-=-$

$-\cdot-=+$

FIGURE 7

where $\delta=\pm 1$ is chosen so that

$a_{0}=\delta\epsilon a_{1}^{\prime}\cdots a_{s}^{\prime}$ , $a_{\acute{O}}=\delta\epsilon^{\prime}a_{1}\cdots a_{r}$ .
For details of the splice diagram, see [15], [16] and [8].

3. Preparations.

We prepare in this section several lemmas and theorems needed to prove the main
theorems. Firstly, we describe some notations concerning the graph theory. When one
endpoint of an edge of a graph coincides with the other endpoint of this edge, we call
this edge a loop. A closed path which has more than two edges is called a cycle of a graph.

LEMMA 1. Let $P_{Z}$ be a plumbing diagram induced by the desingularization
ofa vectorfield $Z$, and let $X$ be a plumbed 3-manifold which is the boundary of the plumbed
4-manifold $Y$ corresponding to the above plumbing diagram $P_{Z}$ . If the 3-manifold $X$ is a
rational homology sphere, then $P_{Z}$ is a tree.

PROOF. Since $Y$ is of the same homotopy type as the divisor and $H_{1}(X;Q)=0$ ,
we see that $H_{1}(Y;Q)=0$ by using the following exact sequence:

$\rightarrow H_{1}(X;Q)\rightarrow H_{1}(Y;Q)\rightarrow H_{1}(Y, X;Q)\rightarrow H_{0}(X;Q)\rightarrow$

11?
$H^{3}(Y;Q)=0$

Each component of the divisor is an embedded 2-sphere, and hence the diagram $P_{Z}$

contains no loop. If $P_{Z}$ is a cycle (see Figure 8), then doing CW-complex configuration
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on each component of the divisor represented by the final resolution picture like Figure
9 (a) and (b), we can compute that $H_{1}(Y, Q)\neq 0$ . In the general case as in Figure 10,
since the intersection points of the two complex projective line $CP^{1}$ are zero dimensional
CW-complexes, we have also $H_{1}(Y, Q)\neq 0$ by using Mayer-Vietoris exact sequence.
This contradicts $H_{1}(Y, Q)=0$ . Thus the final resolution picture has no cycles and the
corresponding plumbing diagram also has no cycles and no loops, in other words, $P_{Z}$

is a tree.

FIGURE 8. A final resolution picture and a plumbing diagram corresponding to it.

(b)

$O$ denotes a component of a divisor.

FIGURE 9

A final resolution picture Corresponding plumbing diagram

FIGURE 10

REMARK. In general, there exist some examples of the plumbing diagram having
a loop. But these plumbing diagrams can not be induced from a desingularization of
vector fields. To check it see Figure 11 and see [14]. (In Figure 11, the left plumbing
diagram and the right one represent the same plumbed 3-manifold. The symbol “–,,
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on the edges of the left graphs means an edge sign. For the definition of this edge sign,
see [14].)

$-2-2-2-2-2$

$\cong$

$-2-2-2-2-2-2-2-2$

FIGURE 11

LEMMA 2. Let $A(P_{Z})$ be an intersection form inducedfrom a plumbing diagram $P_{Z}$

of a generalized curve Z. Then $\det(A(P_{Z}))=\pm 1$ .
PROOF. The plumbed 3-manifold is the boundary of a plumbed 4-manifold which

is induced by the desingularizations of the vector field $Z$ . Hence the plumbed 3-manifold
is a 3-sphere. Let $U$ be a neighborhood of isolated singularity of $Z$ in $C^{2}$ such that
$\partial U=S^{3}$ . Let $(U_{Z}, CP_{Z}^{1}, \pi_{Z}, F_{Z})$ be a desingularization of $Z$ . Let the plumbed 3-manifold
$X$ be the boundary of a plumbed 4-manifold $Y$. Since $\pi_{Z}^{-1}(\partial U)=\pi_{Z}^{-1}(S^{3})=S^{3}=\partial U_{Z}$ ,
we have $H_{1}(Y, Z)=0$ by the following exact sequence.

Here $\psi$ denotes the correlation associated with the quadratic form which is induced by
the intersection number of 2-cycles of $H_{2}(Y, Z)$ and is represented by the matrix $A(P_{Z})$ .
(See [9]). Using the above exact sequence, we see that cokernel $\psi=0$ , and hence
$UA(P_{Z})V=E$ , where $U$ and $V$ are unimodular matrices and $E$ denotes the identity
matrix. Thus $\det(A(P_{Z}))=\pm 1$ .

DEFINITION 9 ([4]). Let $Z$ be a vector field defined on a neighborhood of $p\in C^{2}$

and let $S$ be a smooth curve through $p$ which is not invariant under Z. $(x, y)$ denotes
the local coordinates with $p=(0,0)$ and $S=\{(x, 0)\}$ . Let $\dot{x}=a(x, y),\dot{y}=b(x, y)$ be the
equation for $Z$ in this coordinate system. We define the order of tangency of $Z$ with $S$
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as the multiplicity of $O\in C$ as a root of $b(x, 0)=0$ . We denote it by $\eta_{Z}(p, S)$ . (The case
$\eta_{Z}(p, S)=0$ is allowed.) If $F$ is the foliation induced by $Z$, then we write $\eta_{F}(p, S)$ instead
of $\eta_{Z}(p, S)$ .

If a vector field is a degenerate generalized curve, the next Lemma 3 and Theorem
1 in [4] guarantee that all separatrices intersect transversely with the divisor.

LEMMA 3 ([4]). Let $F$ be a foliation defined in a neighborhood of $p\in C^{2}$ with
algebraic multiplicity $v$ . Let $S$ be a smooth curve through $p$ and not invariant by F. Let
$F^{\langle 1)}$ be the foliation obtained by blowing-up at $p\in S$. Then

(1) If $p\in S$ is a nondicritical singularity, then $\eta_{F\langle 1)}(p, S)=\eta_{F}(p, S)-v$ .
(2) If $p\in S$ is a dicritical singularity, then $\eta_{F\langle 1)}(p, S)=\eta_{F}(p, S)-(v+1)$ .
(3) If$p\in S$ is not a singularity and $\eta_{F}(p, S)\neq 0$ then $p(\in S)$ is a simple nondicritical

singularityfor $F^{\langle 1)}$ with eigenvalues 1 and-l and the equality: $\eta_{F(1)}(p, S)=\eta_{F}(p, S)$ holds.

We need the following lemma to prove the next theorem.

LEMMA 4 ([4]). Suppose that

$\dot{x}=a_{v}(x, y)+a_{\nu+1}(x, y)+\cdots$ ,
$\dot{y}=b_{\nu}(x, y)+b_{v+1}(x, y)+\cdots$

are differential equations for $Z$ and $b_{\nu}(1, t)-ta_{\nu}(1, t)\equiv 0$. If $P$ is the projective line and
$F^{\langle 1)}$ is the foliation which results from the explosion of $0\in C^{2}$ , then $v-1=\sum\eta_{F\langle 1)}(p, P)$ .

THEOREM 1 (Theorem 7 in [4]). Let $Z$ and $Z^{\prime}$ be vectorfields with $Z(0)=Z^{\prime}(0)=0$

and having $S_{Z}$ and $S_{Z’}$ as the sets of separatrices. Assume that $Z$ is a generalized curve
and that $S_{Z}$ and $S_{Z^{\prime}}$ have isomorphic desingularizations. Then $\mu(Z^{\prime}, 0)\geqq\mu(Z, 0)$, andequality
holds if and only if $Z^{\prime}$ is a generalized curve.

$PR\infty F$ . If the vector field $Z$ is nondegenerate, the proof is given in [4]. So we
assume that the vector field $Z$ is degenerate. We prove by induction on the number of
explosions that $Z$ needs to become desingularized.

If $Z$ needs just one explosion to become desingularized, then the divisor appearing
in the first explosion is not invariant under $Z$ . There is a fomula which relates the
Milnor number of the vector field to the Milnor numbers of the singularities appearing
in the first explosion, which is written as

$\mu(Z, 0)=v^{2}+v-1+\sum\mu(F_{Z}^{(1)}, C)$ (1)

where $v$ is the algebraic multiplicity of Z. (We call this formula thefirst blow-upformula
of dicritical singularities [11].) The separatrices $S_{Z}$ intersect with the divisor $CP^{1\langle 1)}$

transversely. Thus $Z$ has no singularity in $CP^{1\langle 1)}$ . Since $Z$ and $Z^{\prime}$ have the same
desingularizations, the separatrices $S_{Z’}$ intersect with the divisor $CP^{1\langle 1)}$

’

transversely.
By Lemma 4, we see that the algebraic multiplicity $v$ of $Z$ and the algebraic multiplicity
$v^{\prime}$ of $Z^{\prime}$ are 1. Thus $\mu(Z, 0)=\mu(Z^{\prime}, 0)=1$ . Notice that $Z^{\prime}$ is also a generalized curve.
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Assume that the theorem has been proved for singularities of $Z$ whose set of
separatrices need $m\in N$ explosions to become desingularized. If $Z^{\prime}$ needs $m+1$ explosions
to reach the final resolution picture, then explode $Z$ once. We see that the singularities
$P_{1},$ $P_{2},$ $\cdots,$ $P_{s}$ in $F_{z^{1)}}$ are also singularities of $F_{z^{1)}},$ . Now we consider the next cases.

(1) Suppose that $CP^{1\langle 1)}$ is an invariant divisor. By the same argument as in
Theorem 4 in [4] we can get the conclusions.

(2) Suppose that $CP^{1\langle 1)}$ is a non-invariant divisor. If $Z^{\prime}$ is a generalized curve,

the points $P_{1},$ $\cdots,$ $P_{s}$ are all singularities of $Z^{\prime}$ . Since $Z$ and $Z^{\prime}$ have isomorphic
desingularizations, $Z$ and $Z^{\prime}$ have the same non-zero tangency points in $CP^{1\langle 1)}$ . Thus,

by the induction hypothesis, Lemma 4 and the formula (1), we see $\mu(Z, 0)=\mu(Z^{\prime}, 0)$ .
Assume that $Z^{\prime}$ is not a generalized curve. Then the following two cases occur:
Case 1. The points $P_{1},$ $\cdots,$ $P_{s}$ are all the singularities of $F_{Z’}^{\langle 1)}$ , and at least one of the
vector field around them is not a generalized curve,
Case2. $F_{Z’}^{\langle 1)}$ has additional singularities $P_{s+}{}_{1}P_{s+}$ ${}_{2}P_{k}$ .

In the first case we have $\sum\mu(F_{Z^{\prime}}^{(1)}, P_{i})>\sum\mu(F_{Z}^{(1)}, P_{i})$ by the induction hypothesis; in
the second case the inequality $\sum\mu(F_{Z’}^{(1)}, P_{i})>\sum\mu(F_{Z}^{\langle 1)}, P_{i})$ holds. Since $v_{Z’}\geqq v_{Z}$ from
Lemma 4 we have $\mu(Z^{\prime}, 0)>\mu(Z, 0)$ from the formula (1).

The following three theorems play important roles in our proof of main theorems.
Here we state them without proofs. See [4] and [5] for the proofs.

THEOREM 2 ([5]). For any holomorphic vector field $Z$, there exists a complex
analytic subvariety which passes through $0\in C^{2}$ and is invariant by Z. Especially, any
separatrix of vector fields is a complex analytic subvariety.

THEOREM 3 ([4]). Let $Z$ be a generalized curve with an isolated singularity at
$o\in C^{2}$ . If $S$ is the set of separatrices of $Z$, then $S$ and $Z$ have the same desingularizations.

THEOREM 4 ([4]). Let $Z$ be a vector field and let $f=0$ represent its separatrices.

Suppose that a vector field $Z_{f}$ is given by $\dot{x}=-\partial_{y}f(x, y),\dot{y}=\partial_{x}(x, y)$, i.e., $Z_{f}$ is a

Hamiltonian system. If one has $\mu(Z, 0)=\mu(Z_{f}, 0)$ , then the vector field $Z$ must be a
generalized curve where $\mu(Z, 0)$ and $\mu(Z_{f}, 0)$ are the Milnor numbers of the vector fields
$Z$ and $Z_{f}$ respectively.

We state some notations concerning the separatrices of a generalized curve. By

Theorem 3, we can identify the separatrices with the set of analytic curves passing
through the origin $0\in C^{2}$ . So we define the final resolution picture of separatrices by

proceeding desingularizations of separatrices till all separatrices intersect transversely

to the divisor. We can represent the last stage of desingularizations by a graphical form

as in the case of the vector field. We call this graph afinal resolutionpicture ofseparatrices.

Also we call its dual graph a plumbing diagram of separatrices. Here, we represent

separatrices by a symbol $\uparrow$ in a dual graph, and represent a divisor which intersects

infinitely many separatrices by a symbol “
$Oo’$ . We omit arrowhead vertices which
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represent separatrices intersecting to this divisor.
Theorem 5 and Lemma 5 are needed to compute the Thurston norm of a graph

link represented by a splice diagram.

THEOREM 5 (Theorem 11.1 in [8]). Let $\Gamma$ be a splice diagram which has arrowheads
$V_{1},$ $\cdots,$ $V_{n}$ and remaining vertices $V_{n+1},$ $\cdots,$ $V_{k}$ , and $L(\Gamma\cup m)=L(\Gamma(m_{1}, \cdots, m_{n}))$ be a
multi-link on a graph link $L(\Gamma)=(\Sigma, S_{1}\cup\cdots uS_{n})$ . Assume $L(\Gamma)$ is irreducible, and is
not the unknot $(S^{3}, S^{1})$ . Then the Thurston norm $\Vert\underline{m}\Vert$ of $L(\Gamma\cup m)$ is given by

$\Vert\underline{m}\Vert=\sum_{j=n+1}^{k}(\delta_{j}-2)|\underline{m}(S_{j})|=\sum_{j=n+1}^{k}(\delta_{j}-2)|m_{i}l_{1j}+\cdots+m_{n}l_{nj}|$ ,

where $\delta_{j}$ denotes the degree of thej-th vertex in $\Gamma$ (i.e., $\delta_{j}$ is the number of incident edges),
and $l_{ij}$ denotes the linking number of the vertices $i$ and $j$. (See [8] for the definition of
the linking number of two vertices of a splice diagram.)

$PR\infty F$ . Suppose that $L(\Gamma)$ is a given graph link, then $L(\Gamma)$ can be represented
by a splice diagram. Now we change this splice diagram to a minimal splice diagram
by using procedures (1), (2), (3) and (4) in Definition 8. Because $L(\Gamma)$ is irreducible,
its splice diagram does not have any configurations in the right hand sides of the
operations (2) and (3) in Definition 8. Ifwe check the way of calculation of the Thurston
norm of graph links represented by splice diagrams, it is easy to see that the operations
(1) and (4) do not alter the equations of this theorem (see [8]). Moreover, suppose
that $L(\underline{m})=L(\underline{m}^{\prime})_{\overline{s’ s}},,L(\underline{m}^{\prime\prime})$ and that neither $S^{\prime}$ nor $S^{\prime\prime}$ is an unknot summand of the
respective link $L^{\prime}$ or $L^{\prime\prime}$ . (If one of $S^{\prime}$ and $S^{\prime\prime}$ is an unknot summand, then $L(mD$ is the
disjoint sum of the multi links obtained by deleting $S^{\prime}$ and $S^{\prime\prime}$ from $L(\underline{m}^{\prime})$ and $L(\underline{m}^{\prime\prime}).)$

Then a minimal Seifert surface for $L(\underline{m})$ can be obtained by pasting minimal Seifert
surfaces for $L(\underline{m}^{\prime})$ and $L(\underline{m}^{\prime\prime})$ so that $\Vert\underline{m}\Vert=\Vert\underline{m}^{\prime}\Vert+\Vert\underline{m}^{\prime\prime}\Vert$ . (See Theorem 3.3 in [8]). Thus
reversing orientation if necessary, we may assume that $\tau Cm$) is given as follows:

$m_{1}$

$m_{n}$

We number the central node $k+1$ and put $q_{i}=a_{1}\cdots a_{k}/a_{i}$ for $1\leqq i\leqq k$ . Then the
following equalities hold:

$l_{ij}=q_{i}/a_{j}$ for $1\leqq i\leqq n$ and $n+1\leqq j\leqq k$ ,
$q_{i}$ for $1\leqq i\leqq n$ and $j=k+1$ .

If we put $l=\sum q_{i}m_{i}$ then $\underline{m}(S_{j})=1/a_{j}$ for $n+1\leqq j\leqq k$ and $\underline{m}(S_{k+1})=l$. Thus it remains
to prove that $\Vert m\Vert=(k-2-\sum 1/a_{j})|l|$ .

We use the analytic model
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$\Sigma=\Sigma(a_{1}, a_{2}, \cdots, a_{n})$

$=$ { $z\in C^{n}|a_{i1}z_{1}^{a_{1}}+\cdots+a_{in}z_{n}^{a_{n}}=0$ for $i=1,2,$ $\cdots,$ $n-2$} $\cap S^{2n-1}$

with the $S^{1}$ -action $t(Z_{1}, \cdots, Z_{n})=(t^{q_{1}}Z_{1}, t^{q_{2}}Z_{2}, \cdots, t^{q_{n}}Z_{n})$ , where $q_{i}=a_{1}\cdots a_{n}/a_{i}$ . Recall
that $ S_{i}=\{Z_{i}=0\}\cap\Sigma$ in that model. Let $\Sigma^{\prime}=\Sigma-(S^{1}\cup\cdots\cup S^{n})$ . We claim that $\Lambda$ : $\Sigma^{\prime}\rightarrow S^{1}$

given by $\Lambda(Z_{1}, Z_{2}, \cdots, Z_{n})=Z_{1}^{m_{1}}Z_{2}^{m_{2}}\cdots Z_{n}^{m_{n}}/|Z_{1}^{m_{1}}\cdots Z_{n}^{m_{n}}|$ is a representative for
$\underline{m}\in H^{1}(\Sigma^{\prime})=[\Sigma^{\prime}, S^{1}]$ . Since $\Lambda=\Lambda_{1}^{m_{1}}\cdots\Lambda_{n}^{m_{n}}$ where $\Lambda_{i}(Z)=Z_{i}/|Z_{i}|$ and since the group
structure in $[\Sigma^{\prime}, S^{1}]$ is induced from the group structure of $S^{1}$ , we need only check our
claim for each $\Lambda_{i}$ . In fact, the canonical isomorphism;

$H^{1}(\Sigma)=[\Sigma^{\prime}, S^{1}]\rightarrow Hom(H_{1}(\Sigma^{\prime}), Z)$

u)

$[\Lambda_{i}]$ $\rightarrow 1ink(S_{i}, -)$

satisfies the conditions

{ $\arg\Lambda_{i}(f(2\pi))$ -arg $\Lambda_{i}(f(0))$ } $/2\pi$

$=$ { $\arg(f^{i}(2\pi)/|f^{i}(2\pi)|)$ -arg $(f^{i}(0)/|f^{i}(0)|)$ } $/2\pi$

$=\delta_{ik}=1ink(S_{i}, M_{k})$ .

Here $M_{k}$ denotes the meridian of $S_{k}$ in $H_{1}(\Sigma^{\prime})$ which is represented by the imbedding
map $f:S^{1}\rightarrow\Sigma^{\prime}$ with

$f((t))=(f^{1}(t), \cdots,f^{n}(t))=(\epsilon_{1}, \cdots, \epsilon_{k}e^{it}, \cdots, \epsilon_{n})$ ,

where $(\epsilon_{1}, \cdots, \epsilon_{k}e^{it}, \cdots, \epsilon_{n})$ satisfies the conditions $a_{i1}z_{1}+\cdots+a_{in}z_{n}=0(i=1, \cdots, n-2)$ .
The set $\Lambda^{-1}(\xi)\cap\partial N(S_{i}, \epsilon_{i})(\xi\in S^{1})$ consists of a union of circles, where $\partial N(S_{i}, \epsilon)$

denotes the boundary of e-tubular neighborhood of the link $S_{i}$ . We assume that the
imbedding maps $g_{is}$ : $S^{1}\rightarrow\Sigma^{l}$ denotes these circles, where $s=1,2,$ $\cdots,$ $d,$ $i=1,$ $\cdots,$ $n$ and
the number $d$means the cardinal number of the above circles. Let $\theta_{i}$ denote the parameter
of the i-th component $S_{i}$ of the multi-link $L(\underline{m})$ defined by the imbedding map $\theta_{i}$ : $ S^{1}\rightarrow\Sigma$

with $\theta_{i}(0)=\theta_{i}(2\pi)$ . By using this parameter $\theta_{i}$ , we can construct a new circle $S^{*}$ on
$\partial N(S_{i}, \epsilon_{i})$ which is homologous to $S_{i}$ in $\Sigma^{\prime}$ . That is, we consider two points $g_{is}(0)$ and
$g_{is}(t_{0})$ which are contained in the meridian circle at the point $\theta_{i}(0)$ of $S_{i}$ . (Here the circle
$g_{is}(S^{1})$ firstly intersects to this meridian circle at the point $g_{is}(t_{O})$ after starting from the
point $g_{is}(0).)$ Take an arc $L_{s}^{i}$ by joining above two points in the meridian circle and a
subarc $A_{s}^{i}$ which joins the points $g_{is}(0)$ and $g_{is}(t_{0})$ in the circle $g_{is}(S^{1})$ . By combining $L_{s}^{i}$

and $A_{s}^{i}$ at the two points $g_{is}(0)$ and $g_{is}(t_{0})$ , the circle $S^{*}$ is constructed. Since the circle
$S^{*}$ is homologous to $S_{i}$ and $\Lambda(g_{is}(S^{1}))=\Lambda_{1}^{m_{1}}\Lambda_{2}^{m_{2}}\cdots\Lambda_{n}^{m_{n}}(g_{is}(S^{1}))=\xi$ , we see that

{ $\arg\Lambda_{i}^{m}{}^{t}(g_{is}(t_{0}))$ -arg $\Lambda_{i}^{m_{i}}(g_{is}(0))$ } $/2\pi$

$=\{m_{i}(\arg(g_{is}^{i}(t_{0})/|g_{is}^{i}(t_{0})|)-\arg(g_{is}^{i}(0)/|g_{is}^{i}(0)|))\}/2\pi$

$=-m_{1}1ink(S_{1}, S^{*})-\cdots-m_{i-1}1ink(S_{i-1}, S^{*})$
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$-m_{i+1}1ink(S_{i+1}, S^{*})-\cdots-m_{n}1ink(S_{n}, S^{*})$

$=-m_{1}1ink(S_{1}, S_{i})-\cdots-m_{i-1}1ink(S_{i-1}, S_{i})$

$-m_{i+1}1ink(S_{i+1}, S_{i})-\cdots-m_{n}$ link $(S_{n}, S_{i})$ .
Thus

{$\arg\Lambda_{i}(g_{is}(t_{0}))$ -arg $\Lambda_{i}(g_{is}(0))$ } $/2\pi$

$=-\{m_{1}1ink(S_{1}, S_{i})+\cdots+m_{n}1ink(S_{n}, S_{i})\}/m_{i}$ .
Now we see that $\Lambda^{-1}(\xi)\cap\partial N(S_{i}, \epsilon)$ are configurated by the d-parallel $(\alpha, \beta)$ toral

link, where $\alpha=-(m_{1}1ink(S_{1}, S_{i})+\cdots+m_{n}1ink(S_{n}, S_{i}))/d),$ $\beta=m_{i}/d$ and $d=G.C.D$ .
$(m_{i}, m_{1}1ink(S_{1}, S_{i})+\cdots+m_{n}1ink(S_{n}, S_{i}))$ . Thus $\Lambda^{-1}(\xi)$ is the Seifert surface of a
multi-link $L(\underline{m})$ (see the definition of the Seifert surface of multi-links [8]). Since the
$S^{1}$ -action on $\Sigma^{\prime}$ is given by $t(Z_{1}, \cdots, Z_{n})=(t^{q_{1}}Z_{1}, t^{q_{2}}Z_{2}, \cdots, t^{q_{n}}Z_{n})$ , we have $\Lambda(tZ)=$

$t^{q_{1}m_{1}+q_{2}m_{2}+\cdots+q_{n}m_{n}}\Lambda(Z)=t^{i}\Lambda(Z)$ .
Assume first that $1\neq 0$ . Then the fibers of $\Lambda$ are transverse to the $S^{1}$ -action on $\Sigma^{\prime}$ ,

so $\Lambda$ is a fibration. Moreover, a typical fiber $F$ of $\Lambda$ meets each non-singular orbit of
$S^{1}$ -action on $\Sigma^{\prime}$ in $|\underline{m}(S_{k+1})|=|l|$ points and meets the singular orbit $S_{j}$ for $n<j<k$ in
$|\underline{m}(S_{j})|=|l/a_{j}|$ points. Thus $F$ is an $|l|$-fold branched cover of $F^{\prime}=\Sigma^{\prime}/S^{1}$ branched over
$k-n$ points with branch-indices $a_{n+1},$ $\cdots,$ $a_{k}$ . Since $F^{\prime}$ is an n-fold punctured sphere,
the formula for the Euler characteristic of branched cover gives

$\chi(F)=|l|(\chi(F^{\prime})-\sum 1)+\sum|l|/a_{j}$

$=|l|(2-n-\sum(a_{j}-1)/a_{j})=|l|(2-k+\sum 1/a_{j})$ .
Also, the Seifert surface is a fiber of a fibration $\Lambda$ . Hence $F$ is a minimal Seifert surface
(see Proposition 4.1 in [8]), and that $\Vert\underline{m}\Vert=\chi_{-}(F)=|l|(k-2-\sum 1/a_{j})$ hold. Now if $l=0$ ,
then the fibers of $\Lambda$ are the union of $S^{1}$ -orbits. And if an orientable surface has a
non-singular flow (or a codimension one foliation), then the surface is an annulus. That
is, any non-singular fiber $F$ of $\Lambda$ is a union of annuli. Hence $\chi_{-}(F)=0$ and we have
$\Vert\underline{m}\Vert=0$ .

Suppose that the intersections of the separatrices and a 3-sphere are a reducible
link. When we compute the Thurston norm of this link by using its splioe diagram, it
requires that the diagram is decomposed so that each connected component represents
an irreducible link. The next lemma shows that every splice diagram representing a
reducible link satisfies this condition.

LEMMA 5. Let $L$ be a reducible graph link in $S^{3}$ and $\Gamma_{L}$ be a splice diagram which
represents the link L. Suppose $\Gamma_{L}$ is connected and has the arrowhead vertices $v_{1},$ $\cdots\cdot,$ $v_{n}$

and the remaining vertices $v_{n+1},$ $\cdots,$ $v_{k}$ . Then, $\Gamma_{L}$ has at least one vertex $v$ such that $v=v_{j}$

for some $j$ with $n+1\leqq j\leqq k$, and $(l_{1j}, \cdots, l_{nj})=(0, \cdots, 0)$ . (We call $v$ a zero vertex.)
Moreover, among zero vertices, there is a vertex at which the diagram is decomposed
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into a disconnected splice diagram as in Figure 12(a) or (b) where all connected component
represent irreducible links in $S^{3}$ and $\Gamma_{0}$ contains no arrowheads.

(a)

(b)

$(1\leq k<m)$

FIGURE 12

PROOF. Let $v_{i}(i=1, \cdots, n)$ represent the i-th component $S_{i}$ of the link $L$ and let
$X_{1}\cup\cdots\cup X_{m}$ be the finest partition of $\{v_{1}, \cdots, v_{n}\}$ for which 1ink$(S_{i}, S_{j})=0$ whenever $v_{i}$

and $v_{j}$ belong to distinct $X_{k}’ s$ . Here we have $m\geqq 2$ since $L$ is a reducible link. If $\Gamma_{i}$

is the smallest connected subgraph of $\Gamma_{L}$ containing $X_{i}(i=1, \cdots, m)$ , then $\Gamma_{i}$ is irreduci-
ble. Also $\Gamma_{i}$ is disjoint from $\Gamma_{j}$ for $i\neq j$ . Then, by Theorem 10.1 in [8], the path in $\Gamma_{L}$

connecting $\Gamma_{i}$ to $\Gamma_{j}$ must pass through a vertex $v$ which has an adjacent edge of weight
$0$ . Define $\Gamma_{0}$ to be the largest connected subgraph of $\Gamma_{L}$ which is joined to the vertex $v$

through an edge of weight $0$ . If $\Gamma_{0}$ contains an arrowhead, then the path from $v$ to this
arrowhead passes through a vertex of the same type as $v$ . But the subgraph $\Gamma_{O}$ for this
vertex is smaller than the former one. Thus if we choose our vertex $v$ with $\Gamma_{0}$ as small
as possible, $\Gamma_{0}$ will contain no arrowheads. At this stage, $v=v_{j}$ for some $j$ with $n+1\leqq j\leqq k$

and $v_{j}$ satisfies $l_{1j}=\cdots=l_{nj}=0$ , and $\Gamma_{0}$ contains no zero vertices. We see that the
diagram $\Gamma_{L}$ is written as follows:

$FlGURE13$

where $\Gamma_{i}(i=1, \cdots, m)$ represent irreducible links.
First we assume that ($\tau_{0}p$ represents a trivial knot. Then we see that the diagram

$\Gamma_{L}$ is decomposed as in Figure 12 (a) by using the operation 2) in Definition 8. So we
suppose that the subgraph $D\Gamma_{o}\rightarrow$ represents a non-trivial knot. Now we consider
the torus corresponding to the cut point on the edge which connects $v$ to $\Gamma_{0}$ in the
graph $\Gamma_{L}$ . We deal with the link in a 3-sphere and every embedded torus in a 3-sphere
bounds a solid torus in one side ofit. Also the graph defined by $\Gamma_{0}$ represents a non-trivial
knot by our assumption. Thus we can assume that the above torus bounds the solid
torus in the side which contains a link represented by
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(which we refer to as $\Gamma^{*}$). Let us show this situation in Figure 14.

FIGURE 14

The core of the knotted torus in Figure 14 defines a non-trivial knot represented by
$B\Gamma_{0}\rightarrow$ and we see that the link represented by $\Gamma^{*}$ is spliced to $D\Gamma_{O}\rightarrow$ along this core of the
solid torus. If there exists a 2-sphere in this 3-sphere which separates all link components
represented by some $\Gamma_{j}$ from others, then the diagram $\Gamma_{L}$ is decomposed into the
diagram $\ovalbox{\tt\small REJECT}\Gamma_{0}\Gamma_{j}$ which represents an irreducible link and the remaining diagram

since the diagram $\Gamma_{0}$ has no zero vertices by our construction. We repeat this operation
to the latter diagram till its remaining diagram represents an irreducible link. Eventually,
after changing the indices of the $\Gamma_{i}’ s$ if necessary, the diagram $\Gamma_{L}$ decomposes into several
diagrams as in Figure 12 (b), each ofwhich represents an irreducible link. This completes
the proof. (It can be also shown that a diagram of the form (b) cannot be reduced to
a diagram of the form $(a).)$

REMARK. The splice diagram which has a zero vertex is not always decomposed
at the vertex, because it may represent an irreducible link. (See Figure 15.)
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FIGURE 15. The diagram on the left which has a zero vertex
represents the irreducible link on the right.

4. Proof of Theorem A and Theorem B.

In this section, we give the proof of main theorems.

PROOF OF THEOREM A. Let $S_{Z}$ (resp. $S_{Z},$) be the set of separatrices of the vector
field $Z$ (resp. $Z^{\prime}$). The separatrices are analytic varieties by Theorem 2, and the ar-
rowhead vertices in the plumbing diagram $P_{Z}$ (resp. $P_{Z^{\prime}}$) represent the leaves $ofF_{Z}$ (resp.
$F_{Z^{\prime}})$ . These leaves are contained in $S_{Z}$ (resp. $S_{Z’}$) before desingularizations of the isolated
singularity $0\in C^{2}$ . By Lemma 1 and Lemma 2 $P_{Z}$ (resp. $P_{Z^{\prime}}$) is a tree, and the determinant
of the intersection form $A(P_{Z})$ (resp. $A(P_{Z},)$) induced from $P_{Z}$ (resp. $P_{Z^{\prime}}$) is $\pm 1$ . Thus
we can apply the technique of Neumann to the case of a plane curve and transform
the plumbing diagram to a certain type of splice diagram (see [8]). Here we state this
technique.

Step 1. The underlying graph of the splice diagram $\Gamma$ is obtained from the
plumbing diagram $P$ by replacing each maximal chain as in Figure 16 by a single edge.
All nodes are weighted (or of an orientation weight) +1 (see [8] for the definition of
a weight of node).

FIGURE 16

Step 2. The weight at the end of an edge of $\Gamma$ is $\det(-A(P_{1}))$ where $P_{1}$ is the
subgraph of $P$ cut off by the corresponding edge of $P$ and $A(P_{1})$ is the intersection form
of the plumbing diagram $P_{1}$ . If $P_{1}$ is a single arrowhead, we define $\det(-A(P_{1}))=1$ .
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For example, the plumbing diagam in Example 1 (see Figure 1) transforms to the
splice diagram

by performing Step 1 and Step 2 (see the proof of Theorem 5.1 [14], Theorem 20.1 [8]
and Lemma 20.2 [8]).

Now we retum to the proof ofTheorem A. If $Z$ and $Z^{\prime}$ are topologically conjugate,
then $S_{Z}$ and $S_{Z’}$ have isomorphic desingularizations. Thus $S_{Z}$ and $S_{Z^{\prime}}$ have isomorphic
plumbing diagrams. If the separatrices $S_{Z}$ are desingularized, then the vector field $Z$ is
also desingularized by Theorem 2. Thus the final resolution pictures of $S_{Z}$ and $Z$ are
isomorphic. So the plumbing diagrams of $S_{Z}$ and $Z$ are isomorphic. Since the Milnor
number is invariant up to topological equivalence, we obtain that $Z^{\prime}$ is a generalized
curve by Proposition 2 and Theorem 4. Then $S_{Z’}$ and $Z^{\prime}$ have isomorphic de-
singularizations, and we can define the plumbing diagram of $Z^{\prime}$ . Also $S_{Z’}$ and $Z^{\prime}$ have
isomorphic plumbing diagrams. Hence both plumbing diagrams $P_{Z}$ and $P_{Z’}$ are
isomorphic, and the self-intersection numbers are equal for each corresponding vertices
of $Z$ and $Z^{\prime}$ . Thus applying the above Step 1 and Step 2 to these plumbing diagrams
$P_{Z}$ and $P_{Z’}$ , we obtain two isomorphic splice diagrams $\Gamma_{Z}$ and $\Gamma_{Z’}$ .

Now we assume that $\Gamma_{Z}$ has the arrowhead vertices $V_{1},$ $\cdots,$ $V_{n}$ and non-arrowhead
vertices $V_{n+1},$ $V_{n+2},$ $\cdots,$ $V_{k}$ . Since $\Gamma_{Z}$ and $\Gamma_{Z’}$ are isomorphic, two diagrams have the
same number of arrowhead vertices and non-arrowhead vertices. By renumbering the
vertices of $\Gamma_{Z’}$ , we can assume that the i-th vertex of $\Gamma_{Z}$ corresponds to the i-th one of
$\Gamma_{Z’}$ under the above graph isomorphism. The multiplicities of all arrowhead vertices of
$Z$ and $Z^{\prime}$ are one. Computing Alexander polynomials of $L_{Z}$ and $L_{Z^{\prime}}$ from the splice
diagrams $\Gamma_{Z}$ and $\Gamma_{Z^{\prime}}$ by Theorem 12.1 of [8], we have

$\prod_{j=n+1}^{k}(t_{1}^{i_{1j}}t_{2}^{i_{2j}}t_{3}^{i_{3j}}\cdots t_{n}^{i_{nj}}-1)^{\delta_{j}-2}$ (if $n\geqq 2$).

If the splice diagram contains only one arrowhead vertex, the Alexander polynomial is
given by

$(t_{1}-1)\prod_{j=2}^{k}(t_{1}^{l_{1j}}-1)^{\delta_{j}-2}$

In the case that $n\geqq 2$ , we get the one-variable Alexander polynomial by specializing
the above polynomial at $t_{i}=t$ and multiplying by $t-1$ (Proposition 5.1 in [8]). So this
Alexander polynomial does not depend on the indices of vertices of $\Gamma_{Z}$ . The numbers
of non-invariant vertices of $P_{Z}$ and $P_{Z’}$ are equal, since $Z$ and $Z^{\prime}$ have isomorphic
desingularizations. Thus if $Z$ and $Z^{\prime}$ are topologically equivalent, then the pair $(\Delta_{rz}, n_{Z})$
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coincides with $(\Delta_{r_{Z}},, n_{Z’})$ .

We also show the set of n-variable Alexander polynomials defined below is a
topological invariant. We will state this fact in the next corollary.

Suppose that the splice diagram $\Gamma_{Z}$ of a vector field $Z$ has $k$ vertices $(k\geqq 3)$ including
$n$ arrowhead vertices $(n\geqq 2)$ . The set of n-variable Alexander polynomials of $Z$ is defined
by

$\{\Delta_{Z}^{\sigma}(t_{1}, t_{2}, \cdots, t_{n})=\prod_{i=n+1}^{k}(t_{1}^{i_{\sigma\langle 1)i}}\cdots t_{n}^{i_{\sigma(n)i}}-1)|\sigma\in s_{n}\}$ ,

where $S_{n}$ means a symmetric group of which order is $n!$ and $l_{ji}$ denotes the linking
number for thej-th arrowhead vertex and the i-th non-arrowhead vertex. We firstly label
the $n$ arrowhead vertices of $\Gamma_{Z}$ integers 1, 2, $\cdots$ and $n$ . We can choose this numbering
arbitrarily, because the set of Alexander polynomials does not depend on the choice
of the numbering, i.e., the Alexander polynomial of the first numbering $\Delta_{Z}(t_{1}\cdots t_{n})=$

$\prod_{i=n+1}^{k}(t_{1}^{i_{1i}}t_{2}^{i_{2i}}\cdots t_{n}^{l_{ni}}-1)$ alters to $\Delta_{Z}^{\sigma}(t_{1}\cdots t_{n})=\prod_{i=n+1}^{k}(t_{1}^{l_{\sigma(1)i}}t_{2}^{l_{\sigma(2)i}}\cdots t_{n}^{l_{\sigma(n)i}}-1)$ by
changing the numbering for the arrowheads.

COROLLARY 1. Let $Z$ and $Z^{\prime}$ be as in Theorem $A$ , and $\Gamma_{Z}$ be the splice diagram of
$Z$ which has $k$ vertices including $n$ arrowhead vertices $(n\geqq 2)$ . Then the set of n-variable
Alexander polynomials of $Z^{\prime}$ coincides with the one for $Z$ .

PROOF. Since $Z$ is topologically equivalent to $Z^{\prime}$ , the splice diagram of $Z^{\prime}$ agrees
with $\Gamma_{Z}$ . Then the Alexander polynomials of Z’ is defined by $\prod(t_{1}^{l_{\sigma\langle 1)i}}t_{2}^{l_{\sigma\langle 2)i}}\cdots t_{n^{\sigma(n)i}}^{l}-1)$

$(^{\exists}\sigma\in S_{n})$ for a certain numbering of arrowhead vertices of $\Gamma_{Z’}$ , and it belongs to the set
ofn-variable Alexander polynomials $ofZ$. Thus the set for $Z^{\prime}$ coincides with the one for $Z$.

$PR\infty F$ OF THEOREM B. Since the generalized curves $Z$ and $Z^{\prime}$ are topologically
equivalent, they induce the same splice diagrams $\Gamma_{Z}$ and $\Gamma_{Z’}$ through the same argument
as in the proof of Theorem A. Note that this process includes Steps 1 and 2 in the
proof of Theorem A. Then a leaf preserving homeomorphism $h$ defined on an open
neighborhood of $0\in C^{2}$ induces a graph isomorphism between these splice diagrams $\Gamma_{Z}$

and $\Gamma_{Z’}$ , and multiplicities are one for all arrowhead vertices of $\Gamma_{Z}$ and $\Gamma_{Z},$ . Let $L_{Z}$ (resp.
$L_{Z’})$ be a link in $S^{3}$ represented by $\Gamma_{Z}$ (resp. $\Gamma_{Z’}$). If $L_{Z}$ is irreducible, then $L_{Z’}$ is also
irreducible. Let $m_{Z}$ (resp. $m_{Z},$) be a cohomology class in $H^{1}(S^{3}-L_{Z})$ (resp. $H^{1}(S^{3}-L_{Z},)$)
which represents the link $L_{Z}$ (resp. $L_{Z^{\prime}}$). Since the multiplicities take the same values
on the corresponding arrowhead vertices of the diagrams $\Gamma_{Z}$ and $\Gamma_{Z^{\prime}}$ , we have $\Vert m_{Z}|$ } $=$

$\Vert m_{Z^{\prime}}\Vert$ by Theorem 5. If $L_{Z}$ is reducible, then $L_{Z}$ , is also reducible. Since the diagrams
$\Gamma_{Z}$ and $\Gamma_{Z^{\prime}}$ are isomorphic, both $\Gamma_{Z}$ and $\Gamma_{Z’}$ are decomposed into the isomorphic splice
diagrams by Lemma 5. We can assume that all of these decomposed splice diagrams
are irreducible. Suppose that $\Gamma_{Z}^{i}$ (resp. $\Gamma_{Z^{\prime}}^{i}$) $(i=1, \cdots, m)$ are the decomposed splice
diagrams of $\Gamma_{Z}$ (resp. $\Gamma_{Z’}$), and that $m_{Z}^{i}(i=1, \cdots, m)$ (resp. $m_{Z^{\prime}}^{i}$) is acohomology class
in $H^{1}(S^{3}-L_{Z})$ (resp. $H^{1}(S^{3}-L_{Z^{\prime}})$) representing the link $L_{Z}^{i}$ (resp. $L_{Z}^{i},$). Then $\Vert m_{Z}^{i}\Vert=\Vert m_{Z’}^{i}\Vert$
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$(i=1, \cdots, m)$ and, by the additivity of the Thurston norm, we have $\Vert m\Vert=\Vert m^{\prime}\Vert$ .

REMARK. If the homeomorphism which gives the topological equivalence between
$Z$ and $Z^{\prime}$ is an orientation preserving map, the assumption that all vertex weights of
$\Gamma_{Z^{\prime}}$ are +1 in the proofs of Theorems A and $B$ can be removed. We need here only the
assumption for $\Gamma_{Z}$ . The orientation preserving and leaf preserving homeomorphism may
change the orientations of all link components simultaneously. Hence it may change
the signs of all vertex weights simultaneously. Thus we obtain the invariants con-
sidering the sign of vertex weights of the splice diagrams. In fact, take the form of the
Alexander polynomial $A(t_{1}\cdots t_{n})$ in Theorem $A$ , and then Alexander polynomial
$A(t, t^{-1})(mod \pm t^{N})$ for some integer $N$ is invariant under such a homeomorphism, and
so is the Thurston norm in Theorem B.

We list all the Thurston norms and Alexander polynomials of the diagrams in
Examples 1 to 4.

The next proposition asserts that the $\Delta_{Z}$ in the pair $(\Delta_{Z}, n_{Z})$ of Theorem A is not
equal to $\emptyset$ , except for certain special vector fields.

PROPOSITION 1. Suppose that $Z$ is a holomorphic vector field defined on a
neighborhood of the origin $0\in C^{2}$ . Assumefurther that $Z$ is not topologically equivalent to
the following vector field;

$Z_{0}(z_{1}, z_{2})=z_{1}\frac{\partial}{\partial z_{1}}+z_{2}\frac{\partial}{\partial z_{2}}$ , $(z_{1}, z_{2})\in C^{2}$

Then the splice diagram $\Gamma_{Z}$ induced by $Z$ has at least one arrowhead vertex.

$PR\infty F$ . If $Z$ has no zero eigenvalues, $Z$ is topologically equivalent to one of the
following (see [4] and [6]).

(1) $Z_{1}(z_{1}, z_{2})=z_{1}(\lambda_{1}+a_{1}(z_{1}, z_{2}))\partial/\partial z_{1}+z_{2}(\lambda_{2}+a_{2}(z_{1}, z_{2}))\partial/\partial z_{2}$ where $\lambda_{1}/\lambda_{2}\in Q_{+}$ .
(2) $Z_{2}(z_{1}, z_{2})=(\lambda_{1}z_{1}+az_{2}^{n})\partial/\partial z_{1}+(\lambda_{2}z_{2})\partial/\partial z_{2}$ , where $\lambda_{1}=n\lambda_{2}$ and $a\neq 0$ .
(3) $Z_{3}(z_{1}, z_{2})=pz_{1}\partial/\partial z_{1}+z_{2}\partial/\partial z_{2}$ (or $z_{1}\partial/\partial z_{1}+pz_{2}\partial/\partial z_{2}$) where $p\in N$ . Here $p$ is

not equal to 1 by the assumption.
(4) $Z_{4}(z_{1}, z_{2})=pz_{1}\partial/\partial z_{1}+qz_{2}\partial/\partial z_{2}$ where $p,$ $q\in N,$ $G.C.D.(p, q)=1$ and both $p$

and $q$ are not equal to 1 by the assumption.
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We assume that $Z$ is topologically equivalent to $Z_{1}$ which has two invariant curves
defined by $z_{i}=0(i=1,2)$ . So the final resolution picture of $Z_{1}$ has two arrowhead lines.
Then we see the splice diagram $\Gamma_{Z_{1}}$ derived from $Z_{1}$ has two arrowhead vertices, and
so does $\Gamma_{Z}$ (see the proof of Theorem A).

We assume that $Z$ is equivalent to $Z_{2}$ . We can directly check that $Z_{2}$ has only one
integral curve passing through the origin by using the following differential equations;
$dz_{1}/dt=\lambda_{1}z_{1}+az_{2}^{n},$ $dz_{2}/dt=\lambda_{2}z_{2}$ . Thus $\Gamma_{Z_{2}}$ has one arrowhead vertex, and so does $\Gamma_{Z}$ .

Next we consider the case (3). The vector field $Z_{3}$ has the following final resolution
picture. Thus the splice diagram $\Gamma_{Z_{3}}$ has only one arrowhead vertex, and so does $\Gamma_{Z}$ (cf.
Example 3).

$\times$

$p-1$ $pp-3$ $p-2$ 1

The final resolution picture of $Z$ of the case (4) has one arrowhead line, since this
case is similar to the case (3). Then $\Gamma_{Z}$ of this case has only one arrowhead vertex (see
the following diagram).

If $Z$ has at most one non-zero eigenvalue, we can check that the desingulariza-
tion $(U_{Z}, \pi_{Z}, P_{Z}, F_{Z})$ has at least one leaf which transversely intersects to an invariant
component of $P_{Z}$ by using the same methods as in the proof of the main theorem in
[5]. Thus the splice diagram $\Gamma_{Z}$ has arrowhead vertex. Now we obtain the desired results.

REMARK. If $Z$ is topologically equivalent to $Z_{0}=z_{1}\partial/\partial z_{1}+z_{2}\partial/\partial z_{2}$ , we see that the
pair $(\Delta_{Z}, n_{Z})$ is equal to $(\emptyset, 1)$ .

5. A multiple link as a topological invariant near an isolated singularity.

Suppose that a vector field $Z$ is a nondegenerate generalized curve. Then the set
of separatrices of $Z$ represents an analytic curve $f(x, y)=0$ in $C^{2}$ with the isolated
singularity $0\in C^{2}$ . A vector field $Z$ and its separatrices $f(x, y)=0$ have isomorphic
desingularizations by Theorem 3. If analytic curves are desingularized, we can define
the multiplicities on every arrowhead vertices (see [8]). The arrowhead vertices of the
plumbing diagram of separatrices $f(x, y)=0$ correspond to those of the plumbing
diagram of the vector field, because the separatrices $f(x, y)=0$ are leaves of $F_{Z}$ passing
through the origin $0\in C^{2}$ . Thus the multiplicities on the arrowhead vertices ofa plumbing
diagram is defined. We call the plumbing diagram which has arrowhead vertices with
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multiplicity a weightedplumbing diagram. Using the weighted plumbing diagram which
induces the one-variable Alexander polynomials, we get the splice diagram furnishing
arrowhead vertices with multiplicity. Also we have the Thurston norm of a multi-link
$L_{Z}(m_{1}, \cdots, m_{n})$ , where the number $m_{i}\in Z$ defines the multiplicity of the link component
$S_{i}$ of $L_{Z}$ corresponding to the arrowhead vertex of a splice diagram of the vector field
$(i=1, \cdots, n)$ . Now we have the following propositions for Alexander polynomials and
Thurston norms.

PROPOSITION 2. In the case of a nondegenerate generalized curve, one-variable
Alexander polynomial of the splice diagram inducedfrom a weighted plumbing diagram
is a topological invariant near the isolated singularity $0\in C^{2}$ .

$PR\infty F$ . Suppose that $Z$ and $Z^{\prime}$ are topologically equivalent and that $Z$ is a
nondegenerate generalized curve. Then the both separatrices have isomorphic
desingularizations. By using the same arguments as in the proof of Theorem $A$ , we see
that the plumbing diagram of $Z$ is isomorphic to that of $Z^{\prime}$ , which also coincides with
those of separatrices of $Z$ and $Z^{\prime}$ . The multiplicity of arrowhead vertices of separatrices
is invariant up to sign under a map which gives the topological equivalence between $Z$

and $Z^{\prime}$ . Hence the two splice diagrams with the weighted arrowhead vertices are
equivalent if we first put the +1 weight on all the arrowhead vertices of both splice
diagrams. The Alexander polynomial induced from the splice diagram of which all
arrowhead vertices have multiplicity one is a topological invariant by Theorem A. Also
the one-variable Alexander polynomials are given by the substitution $t_{i}\rightarrow t^{m_{i}}$ in
$\Delta_{\Gamma_{Z}}(t_{1}, \cdots, t_{n})$ , where the number $m_{i}$ is the multiplicity of the link component $S_{i}$

corresponding to an arrowhead vertex of the splice diagram $\Gamma_{Z}$ , and then multiplying
the polynomial $t^{d}-1(d=G.C.D.(m_{1}, m_{2}, \cdots, m_{n}))$ . Since the multiplicities of analytic
curves are positive, all of the multiplicities of arrowhead vertices are positive. Thus
one-variable Alexander polynomials $\Delta_{\Gamma_{Z}}(t)$ are topological invariant.

PROPOSITION 3. The Thurston norm ofmultiple link $L(m_{1}, \cdots, m_{n})$ induced by the
splice diagram of a nondegenerate generalized curve is a topological invariant near an
isolated singularity.

The proof is similar to that of Proposition 2. So we omit the proof.

For the case of the Hamiltonian systems defined in an open neighborhood of the
origin $0\in C^{2}$ , it is easy to know its separatrices. Thus we can obtain the Thurston norm
and the one-variable Alexander polynomial concretely. For example, the equation

$\dot{x}=-x^{11}-6x^{8}y^{2}+8x^{6}y^{3}-5x^{5}y^{4}-8y^{7}$

$\dot{y}=12x^{11}+16x^{7}y^{3}+11x^{10}y-12x^{5}y^{4}+5x^{4}y^{5}$

is a Hamiltonian system which are defined by an analytic curve $f(x, y)=(x^{6}-y^{4})^{2}+$

$x^{5}y(x^{3}+y^{2})^{2}=0$ . The splice diagram with weighted arrowhead vertices for this vector
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field is as follows. (The numbers (1) and (2) mean the multiplicities of arrowhead
vertices.)

FIGURE 17

The one-variable Alexander polynomial is $(t-1Xt^{12}+1)(t^{25}+1Xt^{16}+t^{8}+1)$ since the
ordinary Alexander polynomial is given by

$\Delta_{\Gamma_{z_{f}}}=(t_{1}^{13}t_{2}^{12}-1)^{-1}(t_{1}^{24}t_{2}^{24}-1)(t_{1}^{12}t_{2}^{12}-1)^{2}(t_{1}^{4}t_{2}^{4}-1)^{-1}(t_{1}^{6}t_{2}^{6}-1)^{-1}$

And the Thurston norm is 53 (which is obtained by using Theorem 5). The following
two corollaries are direct consequences of Propositions 2 and 3.

COROLLARY 2. Suppose that $Z_{f}$ and $Z_{f’}$ are Hamiltonian systems. If $Z_{f}$ and $Z_{f’}$

are topologically equivalent, then the Thurston norm of $Z_{f}$ is equal to that of $Z_{f},$ .
COROLLARY 3. Let $Z_{f}$ and $Z_{f’}$ be as above. If $Z_{f}$ and $Z_{f}$ , are topologically

equivalent, then the one-variable Alexander polynomial of $Z_{f}$ is equal to that of $Z_{f’}$ .
If a vector field $Z$ is the non-degenerate generalized curve of which separatrices

are defined by $f=0$ , then the Milnor number $\mu(Z)$ for $Z$ is equal to the Milnor number
$\mu(Z_{f})$ for the Hamiltonian system defined by the equation $\dot{x}=-\partial f/\partial y,\dot{y}=\partial f/\partial x$ (see
[$4J$). On the other hand, the foliation of the Hamiltonian $Z_{f}$ around the isolated
singularity is topologically equivalent to the Milnor fibration defined by$f=c,$ $ 0\leqq|c|\leqq\epsilon$ ,
where $\epsilon$ is a sufficiently small real number (see [4]). Thus the Milnor number $\mu(Z_{f})$ is
equal to the Milnor number of the analytic curve $f=0$ . Hence the Thurston norm of
$Z_{f}$ is equal to $\mu(Z_{f})-1$ . Thus the Thurston norm in Proposition 3 is equal to $\mu(Z)-1$

for the cases of nondegenerate generalized curves.
Now, it seems to be hard to calculate the multiplicity $(m_{1}, \cdots, m_{n})$ of arrowhead

vertices, unless a given vector field is integrable as Hamiltonian systems. And yet we
can obtain the multiplicity for certain vector fields. For the purpose it is effective to
observe the holonomy of the vector field around a singularity. We will discuss this
method in the forthcoming paper [18].
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