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Abstract. We give a criterion of the vanishing of $\lambda_{p}$-invariants for relative cyclic extensions of totally
real number fields with degree $p$ using Iwasawa’s result of Riemann-Hurwitz type which is an analogue to
Kida’s formula.

1. Introduction.

Let $p$ be a prime number and $Z_{p}$ the ring ofp-adic integers. Let $k$ be an algebraic
number field of finite degree and $K$ a Galois extension of degree $p$ over $k$ . It is considered
that properties of the cyclotomic $Z_{p}$-extension of $k$ are well reflected on those of $K$.
For example, Iwasawa proved in [4] that if $p$ is odd, then $\mu_{p}(k)=0$ implies $\mu_{p}(K)=0$ .
Here, and in what follows, for a finite algebraic extension $k$ of $Q$ , we denote by $k_{\infty}$ the
cyclotomic $Z_{p}$-extension of $k$ , and by $\lambda_{p}(k)$ and $\mu_{p}(k)$ the Iwasawa invariants of $k_{\infty}/k$ .
In this context, we study a relation between $\lambda_{p}(K)$ and $\lambda_{p}(k)$ using the result of Iwasawa
which is an analogue to Kida’s formula (cf. [5], [7]). Our purpose in this paper is to
prove Theorem 3.5 which is a criterion of the vanishing of $\lambda_{p}$-invariants for relative
cyclic extensions of totally real number fields with degree $p$ , and apply it for some real
cubic fields.

2. Preliminaries.

Throughout the following, let $Z$ and $Q$ denote the ring of rational integers and
the field of rational numbers, respectively. For an algebraic extension $F$ of $Q$ , let $E_{F}$

be the unit group of $F,$ $I_{F}$ the group of ideals of $F$ and $P_{F}$ the group of principal ideals
of $F$. Let $K$ be a Galois extension of $F$ with Galois group $G(K/F)$ . For a finite prime
vofFand an extensionw ofv on K, we denote by e$(w/v)$ the order of the inertia group
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$T(w/v)$ in $G(K/F)$ . We also denote by $H^{n}(G(K/F), M)$ the n-th cohomology group fc
a $G(K/F)$-module $M$.

In [5], Iwasawa proved the following striking result, which is considered as
“plus-version” analogue to Kida’s formula describing a relation between $\lambda_{p}^{-}- invarian$ )

for relative p-extensions of CM-fields.

THEOREM 2.1. Let $p$ be aprime number, $k$ a totally real numberfield offinite degri
and $K$ a cyclic extension of degree $p$ over $k$, unramified at every infinite prime of $k$ an
not contained in $k_{\infty}$ . Let $h_{n}$ be the dimension of $H^{n}(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})$ over the finite fiel
$F_{p}=Z/pZ$ . We assume that $\mu_{p}(k)=0$ . Then we have the following formula for $\lambda_{p}(K)$ an
$\lambda_{p}(k)$ :

$\lambda_{p}(K)=p\lambda_{p}(k)+\sum_{w}(e(w/v)-1)+(p-1)(h_{2}-h_{1})$ ,

where $w$ ranges over allfinite primes of $K_{\infty}$ which are prime to $p$ .
As a straightforward application of this theorem, we see that $\lambda_{p}(K)\equiv 0(mod p-1$

for a real cyclic extension $K$ of degree $p$ over a totally real number field $k$

$\lambda_{p}(k)=\mu_{p}(k)=0$ . Here we make a remark about $\lambda_{p}(k)$ and $\mu_{p}(k)$ . It is conjectured that
$k$ is a totally real number field, then $\lambda_{p}(k)=\mu_{p}(k)=0$ , which is often called Greenberg
conjecture (cf. [2]). In the following, using this theorem, we study cyclotomi
$Z_{p}$-extensions of relative cyclic extensions of totally real number fields with degree $pi$

connection with Greenberg’s conjecture.

3. Cohomological properties of $Z_{p}$-extensions.

Let $p$ be a prime number. From now on, let $k$ be a totally real number field $c$

finite degree and $K$ a real cyclic extension of degree $p$ over $k$, which satisfies $K\cap k_{\infty}=l$

Then the degree $[K_{\infty} : k_{\infty}]$ is equal to $p$ . Let

$S_{K_{\infty}/k_{\infty}}=$ { $w$ : prime ideal of $K_{\infty}$ I $w$ is prime to $p$ and ramified in $K_{\infty}/k_{\infty}$ } ,

$T_{K_{\infty}/k_{\infty}}=$ { $w\in S_{K_{\infty}/k_{\infty}}$ I the order of the ideal class of $w$ is prime to $p$}
and $s_{\infty}$ (resp. $t_{\infty}$ ) be the cardinality of $S_{K_{\infty}/k_{\infty}}$ (resp. $T_{K_{\infty}/k_{\infty}}$). We note that $s_{\infty}$ and $t_{(}$

are finite because any prime of $K$ is finitely decomposed in $K_{\infty}$ . Moreover, as mentione
in \S 2, we let

$h_{i}=\dim_{F_{p}}H^{i}(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})$

for $i=1,2$ .
We first consider $h_{1}$ . Put $G=G(K_{\infty}/k_{\infty})$ and

$P_{K_{\infty}}^{G}=$ { $(\alpha)\in P_{K_{\infty}}|(\alpha^{\sigma})=(\alpha)$ for all $\sigma\in G$}.
Then the exact sequence
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$1\rightarrow E_{K_{\infty}}\rightarrow K_{\infty}^{x}\rightarrow P_{K_{\infty}}\rightarrow 1$

induces the following exact sequence:

$ 1\rightarrow E_{k_{\infty}}\rightarrow k_{\infty}^{x}\rightarrow P_{K_{\infty}}^{G}\rightarrow H^{1}(G, E_{K_{\infty}})\rightarrow H^{1}(G, K_{\infty}^{x})\rightarrow\cdots$

Since $H^{1}(G, K_{\infty}^{x})=1$ , we have $H^{1}(G, E_{K_{\infty}})\simeq P_{K_{\infty}}^{G}/P_{k_{\infty}}$ .
Assume that $\lambda_{p}(k)=\mu_{p}(k)=0$ , namely, the p-primary part of $I_{k_{\infty}}/P_{k_{\infty}}$ is trivial. Then

$(I_{k_{\infty}}\cap P_{K_{\infty}})/P_{k_{\infty}}=1$ because it is a subgroup of the p-primary part of $I_{k_{\infty}}/P_{k_{\infty}}$ . Hence
$H^{1}(G, E_{K_{\infty}})\simeq P_{K_{\infty}}^{G}/(I_{k_{\infty}}nP_{K_{\infty}})$ .

Let us put

$I_{K_{\infty}}^{G}=$ { $w\in I_{K_{\infty}}|w^{\sigma}=w$ for all $\sigma\in G$}.
Note that $P_{K_{\infty}}^{G}=I_{K_{\infty}}^{G}\cap P_{K_{\infty}}$ and $ I_{K_{\infty}}^{G}=I_{k_{\infty}}\langle S_{K_{\infty}/k_{\infty}}\rangle$ (cf. \S 1 in [5]). Since

$1\rightarrow P_{K_{\infty}}^{G}/(I_{k_{\infty}}nP_{K_{\infty}})\rightarrow I_{K_{\infty}}^{G}/I_{k_{\infty}}\rightarrow I_{K_{\infty}}^{G}/P_{K_{\infty}}^{G}I_{k_{\infty}}\rightarrow 1$

is exact, it follows that

$h_{1}+\dim_{F_{p}}(I_{K_{\infty}}^{G}/P_{K_{\infty}}^{G}I_{k_{\infty}})=\dim_{F_{p}}(I_{K_{\infty}}^{G}/I_{k_{\infty}})=s_{\infty}$ .

In particular, we see that $h_{1}\leq s_{\infty}$ .
Hence Theorem 2.1 immediately implies the following proposition:

PROPOSITION 3.1. Assume that $\lambda_{p}(k)=\mu_{p}(k)=0$ . Then $\lambda_{p}(K)=0$ if and only if the
following two conditions are satisfied:

(1) $H^{1}(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})\simeq(Z/pZ)^{\oplus s_{\infty}}$ .
(2) $H^{2}(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})=1$ .
Moreover, since $P_{K_{\infty}}^{G}I_{k_{\infty}}=I_{K_{\infty}}^{G}\cap I_{k_{\infty}}P_{K_{\infty}}$ , we have

$I_{K_{\infty}}^{G}/P_{K_{\infty}}^{G}I_{k_{\infty}}\simeq I_{K_{\infty}}^{G}P_{K_{\infty}}/I_{k_{\infty}}P_{K_{\infty}}$ .
This is a p-primary abelian group. Hence, it is seen that $S_{K_{\infty}/k_{\infty}}=T_{K_{\infty}/k_{\infty}}$ if and only if
$I_{K_{\infty}}^{G}/P_{K_{\infty}}^{G}I_{k_{\infty}}=1$ , so $s_{\infty}=t_{\infty}$ if and only if $h_{1}=s_{\infty}$ .

Now, the following lemma conceming the first cohomology group is an immediate
consequence of this argument.

LEMMA 3.2. Assume that $\lambda_{p}(k)=\mu_{p}(k)=0$ . Then the following two conditions are
equivalent:

(1) $S_{K_{\infty}/k_{\infty}}=T_{K_{\infty}/k_{\infty}}$ .
(2) $H^{1}(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})\simeq(Z/pZ)^{\oplus s_{\infty}}$ .
In the proof of Lemma 3 in [6], Iwasawa noticed the following important property

of the second cohomology group. As he, however, omitted the proof, we give it for
convenience of readers.
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LEMMA 3.3. Assume that $k_{\infty}$ has only one prime ideal lying over $p$ and that the
class number of $k$ is not divisible by $p$ . Then $H^{2}(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})=1$ .

PROOF. Note that $K_{\infty}/k_{\infty}$ is an extension of degree $p$ . Let $G=G(K_{\infty}/k_{\infty})$ . Let $K$,
and $k_{n}$ be the n-th layer of $K_{\infty}/K$ and $k_{\infty}/k$, respectively. It follows from the assumption
on $k_{\infty}/k$ that the class number of $k_{n}$ is not divisible by $p$ (cf. [3]). Since $k$ is totally real
from the genus theory for $k_{n}/k_{m}$ , we have $N_{k_{n}/k_{m}}(E_{k_{n}})=E_{k_{m}}$ for $n\geq m$ , where $N_{k_{n}/k_{m}}$ is
the norm mapping of $k_{n}$ over $k_{m}$ . This implies the surjective homomorphism

(1) $N_{k_{n}/k_{m}}$ : $E_{k_{n}}/N_{K_{n}/k_{n}}(E_{K_{n}})\rightarrow E_{k_{m}}/N_{K_{m}/k_{m}}(E_{K_{m}})$ .

Also, the genus theory for $K_{n}/k_{n}$ shows that the order of $E_{k}/N_{K_{n}/k_{n}}(E_{K_{n}})$ is not more
than $p^{s_{\infty}}$ . Hence the homomorphism (1) becomes an isomorphism for sufficiently largt
integers $n\geq m$ . For such a sufficiently large $m$ , let $n$ be an integer with $n>m+s_{\infty}an\mathfrak{c}$

$u$ an element of $E_{k_{m}}$ . Since the order of $E_{k}/N_{K_{n}/k_{n}}(E_{K_{n}})$ is not more than $p^{s_{\infty}}$ , we havt
$N_{k_{n}/k_{m}}(u)=u^{p^{n- m}}\in N_{K_{m}/k_{m}}(E_{K_{m}})$ . This shows that a canonical mapping

$E_{k_{m}}/N_{K_{m}/k_{m}}(E_{K_{m}})\rightarrow E_{k}/N_{K_{n}/k_{n}}(E_{K_{n}})$

is trivial for sufficiently large integers $n\geq m$ . Hence,

$H^{2}(G, E_{K_{\infty}})=\lim_{\rightarrow}H^{2}(G, E_{K_{n}})\simeq\lim_{\rightarrow}E_{k_{n}}/N_{K_{n}/k_{n}}(E_{K_{n}})=1$ .

This completes the proof. $\square $

We obtain the next corollary by letting $k=Q$ .

COROLLARY 3.4. Let $K$ be a real cyclic extension ofdegree $p$ over Q. Then we hav‘
$H^{2}(G(K_{\infty}/Q_{\infty}), E_{K_{\infty}})=1$ .

Combining Proposition 3.1 with Lemmas 3.2 and 3.3, we obtain the followin5
theorem.

THEOREM 3.5. Let $p$ be aprime number, $k$ a totally real numberfield offinite degre‘
and $K$ a real cyclic extension ofdegree $p$ over $k$ . Assume that $k_{\infty}$ has only one prime idea
lying over $p$ and that the class number of $k$ is not divisible by $p$ . Then, the following $ar$

equivalent:
(1) $\lambda_{p}(K)=0$ .
(2) For any prime ideal $w$ of $K_{\infty}$ which is prime to $p$ and ramified in $K_{\infty}/k_{\infty},$ $th_{(}$

order of the ideal class of $w$ is prime to $p$ .

Further, we obtain the next corollary by letting $k=Q$ .

COROLLARY 3.6. Let $K$ be a real cyclic extension of degree $p$ over Q. Then $th_{t}$

following are equivalent:
(1) $\lambda_{p}(K)=0$ .
(2) For any prime ideal $w$ of $K_{\infty}$ which is prime to $p$ and ramified in $K_{\infty}/Q_{\infty},$ $th_{(}$
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order of the ideal class of $w$ is prime to $p$ .

4. Examples in the case $p=3$ .
Let $K$ be a cyclic cubic extension of Q. We treat the case that the conductor $f$ of

$K$ is a prime number not divisible by 3. Then $f$ is congruent to 1 modulo 3 and such
a $K$ is uniquely determined by its conductor (cf. Theorem 6.4.6 of [1]). It follows from
genus theory that the class number of such a $K$ is not divisible by 3. If 3 does not
decomposed in $K$, then we conclude that $\lambda_{3}(K)=0$ by Iwasawa’s theorem (cf. [3]). So
we consider the case that 3 splits in $K$. Now, if 9 does not divide $f-1$ , then the unique
prime ideal of $K$ ramified in $K/Q$ remains prime in $K_{\infty}/K$, and hence $s_{\infty}=t_{\infty}=1$ because
the class number of $K$ is not divisible by 3. Therefore, in such a case, $\lambda_{3}(K)=0$ from
Corollary 3.6. Finally we shall apply Corollary 3.6 for some non-trivial cases.

EXAMPLE 4.1. Let $K$ be the cyclic cubic field with conductor 523. Since $523\equiv 1$

(mod9) and $523\not\equiv 1$ (mod27), the prime ideal of $K$ lying over 523 splits into $p_{1}p_{2}p_{3}$ in
the initial layer $K_{1}$ of the cyclotomic $Z_{3}$-extension $K_{\infty}$ and each $P\iota$ remains prime in
$K_{\infty}/K_{1}$ . Therefore $s_{K_{\infty}/0_{\infty}}=\{\mathfrak{p}_{1}, p_{2}, \mathfrak{p}_{3}\}$ . We calculated $E_{Q_{1}}$ and $E_{K_{1}}$ by a computer and
verified that $N_{K_{1}/Q_{1}}(E_{K_{1}})=E_{Q_{1}}^{3}$ . From this and genus theory for $K_{1}/Q_{1}$ , it follows that
each $p_{i}$ is actually principal in $K_{1}$ . Hence we have $s_{\infty}=t_{\infty}=3$ . Therefore it follows from
Corollary 3.6 that $\lambda_{3}(K)=0$ . The same argument can be applied to the cyclic cubic field
of conductor 1531, 4951, 5059, 5851, 6067, 8461 and 9109.

EXAMPLE 4.2. Let $K$ be the cyclic cubic field with conductor $f=73,307,577$ ,
613 or 1009. As in the above example, we see that $S_{K_{\infty}/0_{\infty}}=\{p_{1}, p_{2}, p_{3}\}$ , where $p_{i}$ is a
prime ideal of $K_{1}$ lying over $f$ We verified that $(E_{Q_{1}} : N_{K_{1}/Q_{1}}(E_{K_{1}}))=3$ for each case.
From this, we see that at least one of ideal classes of $p_{i}$ has order 3 in the ideal class
group of $K_{1}$ . We do not know the values of $t_{\infty}$ and $\lambda_{3}(K)$ for these $K’ s$ .

EXAMPLE 4.3. Let $K$ be the cyclic cubic field with conductor 991, 1117, 1549,
2251 or 2341. Then $S_{K_{\infty}/Q_{\infty}}=\{p_{1}, p_{2}, p_{3}\}$ as in the above example. In each case, we see
that $N_{K_{1}/Q_{1}}(E_{K_{1}})=E_{Q_{1}}$ and that every ideal class of $p_{i}$ has order 3 in the ideal class
group of $K_{1}$ . We do not know the values of $t_{\infty}$ and $\lambda_{3}(K)$ for these $K’ s$ .
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