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Some Arithmetic Fuchsian Groups with
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Abstract. We determine the arithmetic Fuchsian groups $\Gamma$ with signature $(0;e_{1}, e_{2}, e_{3}, e_{4})$ which are the
subgroups of normalizer $\Gamma^{*}(A;O)$ of maximal orders $O$ in quaternion algebras $A$ over the rational number
field Q.

1. Introduction.

To begin with, we shall recall the definition of a Fuchsian group (cf. Beardon [1],

Iversen [2]). The group $SL_{2}(R)$ acts on the upper half plane $H=$ {$z\in C|$ Im(z) $>0$} as
the group of fractional linear transformations. A finitely generated discrete subgroup
$\Gamma$ of this transformation group is called a Fuchsian group. In this paper, we shall
consider only Fuchsian groups of the first kind. Let $\Gamma$ be a Fuchsian group of the first
kind. We denote by $P_{\Gamma}$ the set of the parabolic points of $\Gamma$ and put $H^{*}=H\cup P_{\Gamma}$ . Then
we can naturally introduce a structure of the compact Riemann surface on the quotient
space $ H^{*}/\Gamma$ . Denote by $g,$ $r$ and $s$ the genus of $ H^{*}/\Gamma$ , the number of the elliptic and
parabolic points of $ H^{*}/\Gamma$ respectively, and by $e_{i}(1\leq i\leq r)$ the orders of the stabilizing
groups of elliptic points of $\Gamma$ . Then we call the symbol $(g;e_{1}, e_{2}, \cdots, e_{1}, e_{r+1}, \cdots, e_{r+s})$

($ e_{i}=\infty$ for $r+1\leq i\leq r+s$) the signature of $\Gamma$ . The following equality holds conceming
the volume $vol(H^{*}/\Gamma)$ of the quotient space $ H^{*}/\Gamma$ and the signature $(g;e_{1},$ $e_{2},$

$\cdots$ ,
$e_{r},$ $e_{r+1},$ $\cdots,$ $e_{r+s}$) of $\Gamma$ (see Beardon [1]):

(1.1) $vol(H^{*}/\Gamma)=\frac{1}{2\pi}\int_{D_{\Gamma}}\frac{dxdy}{y^{2}}=2g-2+\sum_{i=1}^{r+s}(1-\frac{1}{e_{i}})$

where $D_{\Gamma}$ is a fundamental domain of $\Gamma$ in $H$ and $1/e_{i}=0$ for $r+1\leq i\leq r+s$ .
Next we also recall the definition of an arithmetic Fuchsian group (cf. Shimura

[7]). Let $k$ be a totally real algebraic number field of degree $n,$ $\varphi_{i}(1\leq i\leq n)$ be
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Q-isomorphisms of $k$ into the real number field $R$ and $\varphi_{1}$ be an identity map. Let A
be a quaternion algebra which splits at the infinite place $\varphi_{1}$ and is ramified at all othe]

infinite places $\varphi_{i}(2\leq i\leq n)$ . Then there exists an R-isomorphism
$\rho;A\otimes_{0}R\rightarrow M_{2}(R)\oplus H^{n-1}$

where $H$ is the Hamilton quatemion algebra over R. We denote by $\rho_{1}$ the composite
of the restriction of $\rho$ to $A$ with the projection to $M_{2}(R)$ . Let $O$ be an order in $A$ . Put

$O^{1}=\{x\in O|n(x)=1\}$

where $n($ $)$ denotes the reduced norm of $A$ over $k$ . If we put $\Gamma^{\langle 1)}(A, O)=\rho_{1}(O^{1})$, then
$\Gamma^{\langle 1)}(A, O)$ is a discrete subgroup of $SL_{2}(R)$ . A discrete subgroup $\Gamma$ of $SL_{2}(R)$ is called
arithmetic if $\Gamma$ is commensurable with some $\Gamma^{(1)}(A, O)$ . Furthermore, we define the
normalizer $N(O)$ of $O$ :

$N(O)=\{x\in A|xO=Ox, n(x)>0\}$ .
Put

$GL_{2}^{+}(R)=\{g\in M_{2}(R);\det(g)>0\}$ .
If we denote by $\Gamma^{*}(A, 0)$ the image of $\rho_{1}(N(O))$ by the homomorphism

(1.2) $\psi:GL_{2}^{+}(R)\ni g\rightarrow\det(g)^{-1/2}g\in SL_{2}(R)$

then $\Gamma^{*}(A, O)$ is also a discrete subgroup of $SL_{2}(R)$ .
We consider the problem to determine all arithmetic Fuchsian groups with given

signature. It is proved that there exist only finitely many arithmetic Fuchsian groups
with any given signature up to $SL_{2}(R)$-conjugation by K. Takeuchi (Takeuchi [11]).
And he has determined explicitly all arithmetic Fuchsian groups with signature
$(0;e_{1}, e_{2}, e_{3})$ (i.e. the triangle groups) and signature (1; e) (Takeuchi [10, 11]).

In this paper, we treat arithmetic Fuchsian groups with signature $(0;e_{1}, e_{2}, e_{3}, e_{4})$ .
We shall determine all subgroups $\Gamma$ of $\Gamma^{*}(A, O)$ with signature $(0;e_{1}, e_{2}, e_{3}, e_{4})$ obtained
from a quatemion algebra $A$ over the rational number field $Q$ up to $\Gamma^{*}(A, O)$-conjugation.
Since Takeuchi has determined such groups in the case $A\cong M_{2}(Q)$ (in this case, it can
be easily seen that $\Gamma^{*}(A, O)=\Gamma^{(1)}(A, O)=SL_{2}(Z))$ , we shall deal with the remaining cases
(i.e. $s=0$). We make use of the homomorphisms of $\Gamma^{*}(A, O)$ into the symmetric group
$S_{n}$ of degree $n$ (cf. Singerman [9]). This method is a generalization of the one used in
Takeuchi [12]. In the main theorem (Theorem 6), we shall give the complete list of the
groups $\Gamma$ mentioned above and the corresponding homomorphisms.

The author would like to thank Prof. K. Takeuchi for his valuable suggestions.

2. Signatures of $\Gamma^{*}(A, O),$ $\Gamma^{\langle 1)}(A, O)$.
Let $A$ be an indefinite quatemion algebra over $Q$ , which means that $A$ satisfies
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(2.1) $p:A\otimes_{Q}R\cong M_{2}(R)$ .

From now on, we identify $A$ with $\rho(A)$ by virtue of this isomorphism $\rho$ and we regard
$A$ as a subring of $M_{2}(R)$ . Then the reduced norm $n(x)$ coincides with det(x) and the
reduced trace $tr(x)$ coincides with $tr(x)$ as a matrix $x$ . As for the discriminant $D(A)$ of
$A$ , we have the following theorem (e.g. Shimura [7]).

THEOREM 1 (Hasse). Let notations be as above. The number of the places of $Q$

which are ramified in $A$ is even.
From this theorem, we can express the discriminant $D(A)$ of $A$ as follows:

$D(A)=p_{1}p_{2}\cdots p_{2m}$ ,

where $p_{i}$ are distinct rational prime numbers. Let $O$ be a maximal order in $A$ . We note
that there exists an element $\pi_{i}\in O$ such that $n(\pi_{i})=p_{i}(1\leq i\leq 2m)$ .

When we put $\Gamma^{\langle 1)}(A, O)=\rho(O^{1}),$ $\Gamma^{(1)}(A, O)$ is a discrete subgroup of $SL_{2}(R)$ (see
Shimizu [5]), and $\rho(N(O))$ is a subgroup of $GL_{2}^{+}(R)$ . When we denote by $\Gamma^{*}(A, 0)$ the
image of $\rho(N(O))$ by the map $\psi$ in (1.2), $\Gamma^{*}(A, 0)$ is also a discrete subgroup $ofSL_{2}(R)$ .

We have (cf. Vign\’eras [13])

(2.2) $\Gamma^{*}(A, O)/\Gamma^{\langle 1)}(A, O)\cong(Z/2Z)^{2m}$

The quotient spaces $H/\Gamma^{*}(A, O),$ $H/\Gamma^{\langle 1)}(A, O)$ , in our case, are compact Riemann
surfaces. The volume of the Riemann surface $H/\Gamma^{(1)}(A, 0)$ with respect to the
$SL_{2}(R)$-invariant measure $dz=(1/y^{2})dxdy(x+iy\in C)$ on $H$ is given by

(2.3) $vol(H/\Gamma^{\langle 1)}(A, 0))=\frac{1}{6}\prod_{p|D\langle A)}(p-1)$

(Shimizu [6]). And we have

$vol(H/\Gamma^{(1)}(A, O))=[\Gamma^{*}(A, 0) : \Gamma^{(1)}(A, 0)]vol(H/\Gamma^{*}(A, O))$ ,

so by (2.2), we have

(2.4) $vol(H/\Gamma^{*}(A, O))=\frac{1}{2^{2m}}vol(H/\Gamma^{\langle 1)}(A, O))$ .

On the other hand, if we denote by $(g^{(1)};e_{1}, e_{2}, \cdots, e_{r}),$ $(g^{*};e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{r}^{\prime},)$ the signatures
of $\Gamma^{\langle 1)}(A, O)$ and $\Gamma^{*}(A, O)$ respectively, by (1.1) we have

(2.5) $2g^{\langle 1)}-2=vol(H/\Gamma^{\langle 1)}(A, 0))-\sum_{i=1}^{1}\left(\begin{array}{l}l-\underline{1}\\e_{i}\end{array}\right)$ ,

(2.6) $2g^{*}-2=vol(H/\Gamma^{*}(A, 0))-\sum_{i=1}^{r^{\prime}}(1-\frac{1}{e_{i}})$ .
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As for (2.5), for any elliptic element $\gamma$ of $\Gamma^{\langle 1)}(A, 0)$ , since $|tr(\gamma)|<2$ and $tr(\gamma)\in Z,$ $w$

have $tr(\gamma)=0,$ $\pm 1$ . Hence $\gamma$ satisfies one of the equations $\gamma^{2}+1=0,$ $\gamma^{2}\pm\gamma+1=0$ . So $w$

have $e_{i}=2,3$ . When we denote by $v_{k}^{\langle 1)}$ the number of the elliptic points of $H/\Gamma^{\langle 1)}(A,$ $C$

of order $k$ , we have the following equality:

(2.7) $2g^{\langle 1)}-2=vol(H/\Gamma^{(1)}(A, 0))-\frac{1}{2}v_{2}^{\langle 1)}-\frac{2}{3}v_{3}^{\langle 1)}$ .

By (2.2), $e_{i}^{\prime}=2,3,4,6$ . Denote by $v_{k}^{*}$ the number of elliptic points of $H/\Gamma^{*}(A, 0)0$

order $k$ . Then we have

(2.8) $2g^{*}-2=vol(H/\Gamma^{*}(A, O))-\frac{1}{2}v_{2}^{*}-\frac{2}{3}v_{3}^{*}-\frac{3}{4}v_{4}^{*}-\frac{5}{6}v_{6}^{*}$ .

Now we have to calculate $v_{k}^{\langle 1)},$ $v_{k}^{*}$ .

DEFINITION 1. Let $K=Q(x)$ be a quadratic field, $B$ its order, and $p$ be a rationa
prime. We define the Artin symbol in the following way;

$(\frac{K}{p})=\left\{\begin{array}{ll}1 & if\\-1 & if\\0 & if\end{array}\right.$

We need the following theorems.

THEOREM 2 (Vign\’eras [13]).

$v_{2}^{\langle 1)}=\prod_{p|D(A)}(1-(\frac{-4}{p}))$ ,

$p$ slits in $K$

$p$ is still a prime in $K$

$p$ is ramified in $K$ .

$v_{3}^{\langle 1)}=\prod_{p|D\langle A)}(1-(\frac{-3}{p}))$

where $(\frac{-d}{p})$ denotes the Artin symbol of quadratic field $Q(\sqrt{-d})$ .

We denote by $B_{c}$ the order of the quadratic imaginary field $Q(\sqrt{-d})$ of $conducto\lrcorner$

$c(c=1,2)$ . Let $n_{d}^{c}$ be the number of $N_{O}(O)$-conjugate classes of maximal embedding
of $B_{c}$ into $A$ where $N_{O}(O)=N(O)\cup\epsilon N(O)(n(\epsilon)=-1)$ (see Michon [4]).

THEOREM 3 (Michon [4]).
(1)

$v_{2}^{*}=\sum_{d|D\langle A)}(n_{d}^{1}+n_{d}^{2})-\lambda(D)n_{1}^{1}-\mu(D)n_{3}^{1}$ ,

$v_{3}^{*}=(1-\mu(D))n_{3}^{1}$ , $\nu_{4}^{*}=\lambda(D)n_{1}^{1}$ , $v_{6}^{*}=\mu(D)n_{3}^{1}$

where

$\lambda(D)=\left\{\begin{array}{ll}1 & if D(A) is even\\0 & if D(A) is odd\end{array}\right.$



ARITHMETIC FUCHSIAN GROUPS 439

$\mu(D)=\left\{\begin{array}{ll}1 & if D(A)\equiv 0 (mod 3)\\0 & \iota fD(A)\not\equiv O (mod 3).\end{array}\right.$

(2) $n_{d}^{c}(c=1,2)$ is given asfollows: $n_{d}^{c}=0\iota fatleastonep_{i}|D(A)splitsinQ(\sqrt{-d})$,
or $c=2$ and $D(A)$ is even, or $c=2$ and $d\not\equiv 3(mod 4)$ . Otherwise

$n_{d}^{c}=\left\{\begin{array}{ll}\frac{h(-d)}{r} & for c=1\\\frac{h(-d)}{rp}(1-(\frac{-d}{2})) & for c=2\end{array}\right.$

where $\rho=[B_{1}^{x} : B_{2}^{x}]$ , and $h(-d)$ is the class number of $Q(\sqrt{-d})$ and $r$ denotes the number
of ideal classes of $L$ generated by the prime ideals dividing $p_{i}$ which do not split in $B_{c}$

$(c=1,2)$ .
Now we shall determine the signatures of $\Gamma^{*}(A, O)$ which contains the subgroups

$\Gamma$ with signatures $(0;e_{1}, e_{2}, e_{3}, e_{4})$ . We give the conditions on the discriminant $D(A)$ of $A$

and the index $n=[\Gamma^{*}(A, O):\Gamma]$ .
Put $D(A)=p_{1}p_{2}\cdots p_{2m}$ , then by (2.2) we have that $[\Gamma^{*}(A, 0):\Gamma^{\langle 1)}(A, O)]=2^{2m}$ .

And put $[\Gamma^{*}(A, 0):\Gamma]=n$ . Hence it follows from (2.3), (2.4) that

(2.9) $vol(H/\Gamma^{\langle 1)}(A, 0))=\frac{1}{6}\prod_{i=1}^{2m}(p_{i}-1)$ , $vol(H/\Gamma^{*}(A, 0))=\frac{1}{2^{2m}}vol(H/\Gamma^{\langle 1)}(A, 0))$ ,

(2.10) $vol(H/\Gamma)=n\cdot vol(H/\Gamma^{*}(A, O))$ .

Since the signature of $\Gamma$ is $(0;e_{1}, e_{2}, e_{3}, e_{4})$ , we have

$vol(H/\Gamma)=2-\sum_{i=1}^{4}\frac{1}{e_{i}}$ .

We may assume that $e_{i}=2,3,4,6(1\leq i\leq 4)$ , hence we have

$\frac{1}{6}\leq vol(H/\Gamma)=2-\sum_{i=1}^{4}\frac{1}{e_{i}}\leq\frac{4}{3}$ .

Then we see that the equalities (2.9), (2.10) lead to

$\frac{1}{6}\leq\frac{n}{6\cdot 2^{2m}}\prod_{i=1}^{2m}(p_{1}-1)\leq\frac{4}{3}$ .

This implies that

(2.11) $1\leq n\prod_{i=1}^{2m}\frac{p_{i}-1}{2}\leq 8$ .

Since



440 JUN-ICHI SUNAGA

$\frac{1}{2}\leq\prod_{i=1}^{2m}\frac{p_{i}-1}{2}$ ,

we have an upper bound on the index $n:n\leq 16$ . And since

$\prod_{i=1}^{2m}\frac{p_{i}-1}{2}\leq\frac{8}{n}\leq 8$ ,

we also have an upper bound on the discriminant $D(A):D(A)\leq 2\cdot 3\cdot 5\cdot 17=510$ .
Considering these conditions, we obtain the following table for the pair $(D(A), n)$ :

TABLE 1

We shall determine the signatures of $\Gamma^{\langle 1)}(A, O),$ $\Gamma^{*}(A, O)$ for $D(A)<100,$ $D(A)=$

$210,330,390,462$ , 510 and give a table of these signatures together with $v^{\langle 1)}=$

$vol(H/\Gamma^{\langle 1)}(A, 0)),$ $v^{*}=vol(H/\Gamma^{*}(A, 0))$ .
THEOREM 4. Let the notations be as above. The data for $\Gamma^{\langle 1)}(A, 0),$ $\Gamma^{*}(A, O)$ is

given as follows:
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3. Main theorem.

Our main purpose in this paper is to determine all Fuchsian groups $\Gamma$ with signature
$(0;e_{1}, e_{2}, e_{3}, e_{4})$ such that $\Gamma$ isasubgroup of $\Gamma^{*}(A, 0)$ of index n.

First in the case $n=1$ , we have the following result directly from Theorem 4. We
give the complete list of $\Gamma^{*}(A, 0)$ with signature $(0;e_{1}, e_{2}, e_{3}, e_{4})$ as follows:

Hereafter, we assume that the index $n\geq 2$ .
Using the signature of $\Gamma^{*}(A, 0)$ and the equalities

(3.1) $vol(H/\Gamma)=2-\sum_{i=1}^{4}\frac{1}{e_{i}}=n\cdot vol(H/\Gamma^{*}(A, 0))$

we have the necessary conditions on the signature of $\Gamma$ for each pair $(D(A), n)$ listed in
Table 1.

PROPOSITION 1. The possible signatures $(0;e_{1}, e_{2}, e_{3}, e_{4})$ of the subgroups $\Gamma$ of
$\Gamma^{*}(A, 0)$ is as follows:
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$D(A)=2\cdot 3|$ signature of $\Gamma^{*}(A, 0):(0;2,4,6)$

$D(A)=2\cdot 5|$ signature of $\Gamma^{*}(A, 0):(0;2,2,2,3)$

$D(A)=2\cdot 7|$ signature of $\Gamma^{*}(A, O):(0;2,2,2,4)$

$D(A)=3\cdot 5|$ signature of $\Gamma^{*}(A, 0):(0;2,2,2,6)$
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$D(A)=3\cdot 7|$ signature of $\Gamma^{*}(A, 0):(0;2,2,2,2,3)$

$D(A)=2\cdot 11|$ signature of $\Gamma^{*}(A, O):(0;2,2,3,4)$

$D(A)=2\cdot 13|$ signature of $\Gamma^{*}(A, O):(0;2,2,2,2,2)$

$D(A)=2\cdot 17|$ signature of $\Gamma^{*}(A, O):(0;2,2,2,2,3)$

$D(A)=2\cdot 3\cdot 5\cdot 7|$ signature of $\Gamma^{*}(A, O):(0;2,2,2,2,2)$

PROOF. We get this result by solving the equation obtained from (3.1) and the
$datalistedinTheorem4$ . $Wenotethate_{i}=2,3,4,6$ . By virtue of this fact, we can find
all solutions for the equation

$2-(\frac{1}{e_{1}}+\frac{1}{e_{2}}+\frac{1}{e_{3}}+\frac{1}{e_{4}})=n\cdot vol(H/\Gamma^{*}(A, 0))$ . Q.E.D.

Now we need the following Theorem.

THEOREM 5 (Singerman [9]). Let $\Gamma$ be a Fuchsian group of the first kind with
signature $(g;m_{1}, m_{2}, \cdots, m_{r};s)$ which satisfies

$\Gamma=\langle a_{1},$ $b_{1},$ $\cdots,$ $a_{g},$ $b_{g},$ $x_{1},$ $\cdots,$ $x_{r},p_{1},$ $\cdots,p_{s}|\prod_{i=1}^{g}[a_{i}, b_{i}]\prod_{j=1}^{1}x_{j}\prod_{k=1}^{s}p_{k}=x_{j}^{m_{j}}=1\rangle$ .
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Then $\Gamma$ contains a subgroup $\Gamma_{1}$ of index $N$ with signature $(g^{\prime}:n_{11},$ $\cdots,$ $n_{1_{\rho_{1}}},$ $\cdots,$ $n_{r_{\rho_{r}}};s$

if and only if
(1) There exist a permutation group $G$ transitive on $N$ letters and a surjectiv

homomorphism $\theta:\Gamma\rightarrow G$ satisfying the following conditions:
a) The permutation $\theta(x_{j})$ has precisely $\rho_{j}$ cycles of lengths less than $m_{j}$, the length

of these cycles being $m_{j}/n_{j1},$ $\cdots,$ $m_{j}/n_{j_{\rho_{j}}}$ .
b) If we denote the number of cycles in the permutation $\theta(\gamma)$ by $\delta(\gamma)$ then

$s^{\prime}=\sum_{k=1}^{s}\delta(p_{k})$ .

(2)
$vol(H/\Gamma_{1})=N\cdot vol(H/\Gamma)$ .

By this theorem, we can determine the signature of $\Gamma$ . Furthermore, in order $t($

determine all $\Gamma$ up to $\Gamma^{*}(A, 0)$-conjugation, we need the following proposition.

PROPOSITION 2. Let $\Gamma^{*}$ be a Fuchsian group and $\theta_{i}(i=1,2)$ be an injectiv
homomorphism from $\Gamma^{*}$ to the symmetric group $S_{n}$ of degree $n$ , whose image $ G_{i}=\theta_{i}(\Gamma$

in $S_{n}$ acts transitively. Let $H_{i}$ be the stabilizing subgroup of $G_{i}$ at 1, andput $\Gamma_{i}=\theta_{i}^{-1}(H_{t)}$

Then there exists an element $\gamma_{0}\in\Gamma^{*}such$ that $\Gamma_{2}=\gamma_{0}\Gamma_{1}\gamma_{0}^{1}$ if and only if there exists a
element $\sigma_{0}\in S_{n}$ such that

$\theta_{2}(\gamma)=\sigma_{0}\theta_{1}(\gamma)\sigma_{0}^{-1}$ for all $\gamma\in\Gamma^{*}$

PROOF. First we assume that $\Gamma_{2}=\gamma_{0}\Gamma_{1}\gamma_{0}^{1}$ . For left coset decomposition $\Gamma^{*}=$

$\bigcup_{l=1}^{n}\delta_{i}\Gamma_{1}$ , suppose that an element $\gamma\in\Gamma^{*}$ transfers the left coset $\delta_{j}\Gamma_{1}$ to $\delta_{k}\Gamma_{1}$ , i.e.
$\gamma\delta_{j}\Gamma_{1}=\delta_{k}\Gamma_{1}$ .

This implies $\theta_{1}(\gamma)(j)=k(j, k\in\{1,2, \cdots, n\})$ . We can choose representatives $\{\delta_{j}^{\prime}\}$ of lel
coset decomposition by $\Gamma_{2}$ such that $\delta_{j}^{\prime}=\gamma_{0}\delta_{j}\gamma_{0}^{1}$ . For this left coset decomposition
assume that

$\gamma\delta_{j}\Gamma_{2}=\delta_{m}^{\prime}\Gamma_{2}$ .

Then we have $\gamma\gamma_{0}\delta_{j}\Gamma_{1}=\gamma_{0}\delta_{m}\Gamma_{1}$ . These imply $\theta_{2}(\gamma Kj)=m,$ $\theta_{1}(\gamma_{0}^{1}\gamma\gamma_{0})(j)=m$ . Hence $w$

obtain

$\theta_{2}(\gamma)(j)=\theta_{1}(\gamma_{0}^{-1}\gamma\gamma_{0})(j)$ .
Since this equality holds for $1\leq j\leq n$ ,

$\theta_{2}(\gamma)=\theta_{1}(\gamma_{0}^{-1}\gamma\gamma_{0})$ .
Therefore, putting $\sigma=\theta(\gamma_{0})^{-1}$ , we have

$\theta_{2}(\gamma)=\sigma\theta_{1}(\gamma)\sigma^{-1}$ for all $\gamma\in\Gamma^{*}$ .
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Conversely, suppose that $\theta_{2}(\gamma)=\sigma\theta(\gamma)\sigma^{-1},$ $\sigma\in S_{n},$ $\gamma\in\Gamma^{*}$ . Let $H_{2}$ fix $k$ and $H_{1}$ fix $j$. Since
$G_{j}$ acts transitively, there exists an element $p\in G_{1}$ such that $p\sigma^{-1}(k)=j$. By assumption,
$\sigma^{-1}H_{2}\sigma\subset G_{1}$ , so we obtain $\sigma^{-1}H_{2}\sigma=p^{-1}H_{1}p$ . Therefore,

$\Gamma_{2}=\theta_{2}^{-1}(H_{2})=\{\gamma\in\Gamma^{*}|\theta_{2}(\gamma)\in H_{2}\}=\{\gamma\in\Gamma^{*}|\sigma\theta_{1}(\gamma)\sigma^{-1}\in H_{2}\}$

$=\{\gamma\in\Gamma^{*}|\theta_{1}(\gamma)\in\sigma^{-1}H_{2}\sigma\}=\{\gamma\in\Gamma^{*}|\theta_{1}(\gamma)\in\rho^{-1}H_{1}p, p\in G_{1}\}$

$=\{\gamma\in\Gamma^{*}|\theta_{1}(\gamma_{0})\theta_{1}(\gamma)\theta_{1}(\gamma_{0})^{-1}\in H_{1}\}=\{\gamma\in\Gamma^{*}|\gamma_{0}\gamma\gamma_{0}^{-1}\in\theta_{1}^{-1}(H_{1})\}$

$=\gamma_{0}^{-1}\theta_{1}^{-1}(H_{1})\gamma_{0}=\gamma_{0}^{-1}\Gamma_{1}\gamma_{0}$ Q.E. $D$

By this proposition, we can classify the subgroups $\Gamma$ of $\Gamma^{*}(A, 0)$ up to
$\Gamma^{*}(A, 0)$-conjugation by giving the homomorphic images in $S_{n}$ of the generators of
$\Gamma^{*}(A, 0)$ . So we shall give the homomorphisms $\theta$ of $\Gamma^{*}(A, 0)$ into $S_{n}$ by determining the
images of the generators of $\Gamma^{*}(A, O)$ .

THEOREM 6. Let notations be the same as before. The complete list of the subgroups
$\Gamma$ of $\Gamma^{*}(A, 0)$ with signature $(0;e_{1}, e_{2}, e_{3}, e_{4})$ up to $\Gamma^{*}(A, 0)$-conjugation, and the
homomorphisms $\theta:\Gamma^{*}(A, O)\rightarrow S_{n}$ is as follows:
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$ D(A)=2\cdot 5|\Gamma^{*}(A, O)=\langle\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}|\gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=\gamma_{4}^{3}=\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}=1\rangle$
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$ D(A)=2\cdot 7|\Gamma^{*}(A, O)=\langle\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}|\gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{2}=\gamma_{4}^{4}=\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}=1\rangle$

$ D(A)=2\cdot 11|\Gamma^{*}(A, O)=\langle\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}|\gamma_{1}^{2}=\gamma_{2}^{2}=\gamma_{3}^{3}=\gamma_{4}^{4}=\gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}=1\rangle$
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PROOF. It is sufficient to verify these results for each pair $(D(A), n)$ listed in
Proposition 1. We shall give a brief proof of the theorem by taking the case
$D(A)=2\cdot 3,$ $n=6$ and the signature $(0;2,2,4,4)$ . By Theorem 5, we must Pnd the integers
$n_{ij}\in\{1,2,4,6\}$ such that

$6=\sum^{1}^{\rho}\underline{2}=\sum^{2}^{\rho}\underline{4}=\sum^{3}^{\rho}\underline{6}$
$n_{1_{j}}|2$ , $n_{2_{j}}|4$ , $n_{3_{j}}|6$ .

$j=1n_{1_{j}}$ $j=1n_{2_{j}}$ $j=1n_{3_{j}}$

In this case, we get the following 3 solutions:

(i) $6=\frac{2}{1}+\frac{2}{1}+\frac{2}{1}=\frac{4}{1}+\frac{4}{4}+\frac{4}{4}=\frac{6}{2}+\frac{6}{2}$ ,

$6=\frac{2}{1}+\frac{2}{1}+\frac{2}{1}=\frac{4}{4}+\frac{4}{4}+\frac{4}{2}+\frac{4}{2}=\frac{6}{1}$ ,

$6=\frac{2}{1}+\frac{2}{1}+\frac{2}{2}+\frac{2}{2}=\frac{4}{4}+\frac{4}{4}+\frac{4}{1}=\frac{6}{1}$ .

From this, we have the following result:
(i) $\theta(\gamma_{1})$ is of type [2, 2, 2], $\theta(\gamma_{2})$ is of type [1, 1, 4] and $\theta(\gamma_{3})$ is of type $[3, 3]$ ,
(ii) $\theta(\gamma_{1})$ is of type [2, 2, 2], $\theta(\gamma_{2})$ is of type [1, 1, 2, 2], $\theta(\gamma_{3})$ is of type [6],
(iii) $\theta(\gamma_{1})$ is of type [1, 1, 2, 2], $\theta(\gamma_{2})$ is of type [1, 1, 4] and $\theta(\gamma_{3})$ is of type [6],

where the permutation $\sigma$ is of type $[n_{1}, n_{2}, \cdots, n_{r}]$ if $\sigma$ is the product of disjoint $r$ cycles
of length $n_{j}(1\leq j\leq r)$ . In the case (i), we may assume that $\theta(\gamma_{1})=(12)(34)(56)$ and that
$\theta(\gamma_{2})$ fixes the letters 1 and 3. Then we have $\theta(\gamma_{2})=(1X3)(2546)$ . Otherwise we find that
$\theta(\gamma_{3})$ cannot be oftype $[3, 3]$ , which is a contradiction. Hence we have $\theta(\gamma_{3})=(162X354)$ .
In the case (ii), we may also assume that $\theta(\gamma_{1})=(12)(34X56)$ and that $\theta(\gamma_{2})$ fixes the
letters 1 and 3. Then we have $\theta(\gamma_{2})=(1)(3)(25)(46)$ . Otherwise we have $\theta(\gamma_{3})$ contain (56)
and this contradicts the assumption that $\theta(\Gamma^{*}(A, O))$ is a transitive subgroup of $S_{n}$ . So
we have $\theta(\gamma_{3})=(154362)$ . In the case (iii), we may assume that $\theta(\gamma_{1})=(12)(34K5K6)$

and $\theta(\gamma_{2})$ fixes the letter 1 and 3. Then we have $\theta(\gamma_{2})=(1)(3)(2456),$ (1)$(3X2564)$ . This
implies that $\theta(\gamma_{3})=(165432),$ $(164352)$ , respectively. Hence we have

Next we take the signature $(0;2,3,3,3)$ . In this case, there are no solutions $n_{ij}$ . Therefore
this case never occurs. We can verify the result for other cases just in a similar way.

Q.E.D.
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