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Abstract. Let k be an integer such that k>2, and let G be a connected graph of order n such that n>
9k —1—4./2(k—1)>+2, kn is even, and the minimum degree is at least k. We prove that if | Ng(u)u N4(v) | =
3(n+k—2) for each pair of nonadjacent vertices , v of G, then G has a k-factor.

1. Introduction.

In this paper, we consider only finite undirected graphs without loops or multiple
edges. Let G be a graph with vertex set V(G) and edge set E(G). For a vertex v of G,
- we write Ng(v) for the set of vertices of V(G) adjacent to v, and N;[v] for Ng(v)u {v}.
Further the degree of v, degs(v), is defined to be | N4(v)|. In addition, we denote
| Ng(u) U Ng(v)| by N(u, v). We define NC to be min N(u, v), where the minimum is taken
over all pairs of nonadjacent vertices u, v. We use 6(G) for the minimum degree. Let
A4 and B be disjoint subsets of V(G). Then eg(4, B) denotes the number of edges that
join a vertex in A4 and a vertex in B. We let G— A4 denotes the subgraph of G obtained
from G by deleting the vertices in 4 together with the edges incident with them. A
spanning subgraph F of G is called a k-factor if deggp(v)=k for all ve V(G). If G and H
are disjoint graphs, the union and the join are denoted by GuU H and G + H, respectively.
A vertex v is often identified with the set {v}. The definition of terms not defined here
can be found in [1].

THEOREM 1.1. Let k be an integer such that k>2, and let G be a connected graph
of order n such that n>9k —1—4./2(k—1)>+2, kn is even, and the minimum degree is
at least k. If G satisfies NC>%(n+k—2), then G has a k-factor.

The condition NC>4(n+ k—2) is best possible, as can be seen from the following
examples.

First assume that k is even. Let T=K,_, with V(T)={a,, ", a,_,}, and C,=
Kis2p (p>0,i=1,2) with V(C)=1{b; 1, "~ ", biy—y, " * *, by 142} Now we define a graph
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G as follows:

V(G)=V(T)uV(C,)uV(C,) and E(G)=E(T)UE(C,)VE(C,)u {ajb,-j| i=1,2 and
1<j<k—1}. Then G is connected and 5(G)=k. Also G has no k-factor, because
0, T)=k-0+0+|T|—he(B, T)=—2, where 0 and h; are as will be defined in
the statement of Lemma 1.3 (note that k| C;|+eg(C;, T)=k(k+2p)+k—1=k(k+2p+
1)—1=1 (mod2)). However, for ue V(T) and veC, or C, with uvé¢ E(G), N(u, v)=
(k—2)+(k+2p—1)+1=(n+k—3)/2, and for ue C, and ve C,, N(u,v)=2(k+2p—1)>
(n+k—3)/2, and hence G satisfies NC>(n+ k—3)/2.

Next assume that k is odd. Let p>0 be an integer. Let S=K,, T=K,, and C;=
K, +,, (i=1,2), and define a graph G by

G=S+(TUC1UC2).

Then we have 0(S, T)=k+(k—1—k)|T|—hg(S, T)=—2 because k|C;|+es(C;, T)=
k(k+2p)+0=1 (mod 2). Also for u,veTuC,u C, with uv¢ E(G), we get N(u,v)=>
S|+ T|—-D)+(C,|—1)=2p+2k—1=%4(n+k—3) (since n=3k+4p+1).

For the special case where k=2, we have the following theorem, in which all
conditions are best (for example, K, +(3K,) does not have a 2-factor).

THEOREM 1.2. Let G be a connected graph of order n>9 such that the minimum
degree is at least 2. If NC>n/2, then G has a 2-factor.

We conclude this introductory section by stating a criterion for the existence of a
k-factor.

LemMmA 1.3 (Tutte). A graph G has a k-factor if and only if

0(S, T):=k|S|+ ) degg_s(v)—k|T|—hg(S, T)=0
veT
for any disjoint subsets S, T of V(G), where hg(S, T) denotes the number of connected
components C of G—(S v T) such that k| C|+eg(C, T)=1 (mod 2). Furthermore, whether
G has a k-factor or not, we have &S, T)=k|V(G)| (mod 2) for any disjoint subsets S and
T of V(G).

2. Proof of Theorem 1.1.

First we state some numerical results which are often applied in the proof of
Theorem 1.1.

LemMA 2.1. Letn, s, t, m,, m,, and wy be nonnegative integers. Also, suppose that
m;>3 (i=1, 2) and (m, + my)wy <2(n—s—t). Then the following hold.

(i) If wo=4, then my+my+s+t—2<3n+s+t—3wy+8).

() Ifwo=5, then m;+m,+s+1t—2<-+(2n+3s+ 3t— 6w, +20).
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LEMMA 2.2.

>3k+5, for k>4

9k~1—4,/2(k-1)2+2{>3k+4, for k=3

=3k+3, for k=2.

Let k£, n, G be as in Theorem 1.1, and suppose that G has no k-factor. We aim at
deducing a contradiction. By Lemma 1.3, we have 6(S, T) < — 2 for some disjoint subsets
S and T of V(G). We have Su T# & because 8(, &) =0. We choose such subsets S
and T so that |SU T| is as large as possible. Then we have the following lemma.

LeMMA 2.3 ([7]). We have degg_g(w)>k+1 and egu, T)<k—1 for all vertices
ue G—(SuT). Further we have | C| =3 for all components C of G—(S u T).

For convenience, we set U:=G—(Su T) and let C,, - - -, C,, be the components
C of U, labelled so that | C, |< - - - <| C,,|, where w denotes the number of components
of U. We also let s=|S|, t=|T| and m;=| C;|. Since w>hg(S, T), it follows from the
inequality 6(S, T)< —2 that

w>ks+ Y, degg_s(v)—kt+2. 6))

veT

Further, by Lemma 2.3, we also have

n—s—t>3w. @
Case 1. T=¢. Since t=0, (1) becomes
w>ks+2. 3

From (2) and (3), we obtain n—s> 3w > 3(ks+ 2). Therefore we have s <(n—6)/(3k+ 1).
By (3), w=2. Also we have

2An—s) _ 2An—s)

my+m,< by (3)) .
1+m; ” ks 12 (by (3))
For y;e V(C) (i=1,2), N(yy, y;)<m;+m,—2+s. When s=1,
2(n—1) 1
N(y,, <—>-241<—n.
(V1 y2) ) )
When s>2, ‘
2(n—1) n—6 n n n
Ny, y2)< —2+4 <——24—<—.
Woy)<—5 3k+1 3 72

Thus in either case, N(y,, y,)<n/2, which contradicts the assumption that G satisfies
NCz=(n+k—2)/2.

We define 4, to be equal to the minimum of the degree in G—S of a vertex in 7T,
and let x; € {ve T |degs_s(v)=h,}.
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Case 2. T# and hy=k+1. We set wy:=ks+(h;—k)t+2. Then we clearly
have w>w,.
Subcase 2.1. wy=>4. Inthissubcase?>2ors=>1, or h; >k+2. Therefore for y;e V(C))
(i=1, 2), we have

Ny, y)<mi+my+s+t—2
<}(m+s+t—3we+8)  (by Lemma 2.1 (i))
=4[n+s+t—3{ks+(h,—k)t+2}+8]
=3{n+(1—-3k)s+(1—3h,+3k)t+2}<in.

This is a contradiction.

Subcase 2.2. wo=3. Note that in this subcase t=1 and s=0 and h, =k+1. Since
SuT={x,} and deg;_s(x,)=k+1 by the assumptions of this subcase, it follows from
Lemma 2.3 and the connectedness of G that | V(C))|=k+2 (i=1, 2, 3). Hence there
is a vertex y; in C; (i=1, 2, 3) which is not adjacent to x; € 7. For these vertices, we
have N(x,, y)<m;—1+ey(T,C;,,VC;,,) (i=1,2,3) (we take C,=C, and C;=0C,).
Therefore

. 3 1 3 2
mlnN(xl;YE)<? Z N(x,, .Vi)S'3— Z mi—1+_eG(Ta U)

i(n 1)— 1+—(k+1)<——(n+k -2) (since n>k+2).

Case 3. 0<h,<k and T—N,[x,]=C. Since s>k—h,, we have w>ks+(h; —
kyt+2>(k—h,)k—t)+2>2 (note that t<h, +1). We claim that C;— Ng4(x,)# & for
each 1<i<w. Let 1<i<w, and take ue C;. Then k+1<deg;_s(w)<|C;|—1+4+|T| by
Lemma 2.3. Hence by the assumptions of Case 3, | Ng_s(x,)|=h, <k+1<|C;|—1+
| T|=|C;|+| Nr(x,) |, which implies C;— N _4(x,)# &, as desired.

Subcase 3.1. w>3. We have n—s—1t>3w>3{ks+(h, —k)t+2}. Hence

n+(3k—3h, —1)t—6=(3k+ 1)s.. @)

Let y, be a vertex of C; —Ng(x,). From the hypotheses of the theorem and the as-
sumption of this subcase, we obtain

k—2 ey
PHET2 NGy, y)<s+hy+]Cy |—15s+h1+n—;——1 .

Therefore we have
n+2t+3k—6h;<4s. )]
From (4) and (5), we have (3k+ 1)(n+2t+ 3k—6h,)<4n+4(3k—3h, — 1)t — 24. Hence
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(k—1)n<(6k+2—4t)h, +(2k—2)t —k(3k+1)—8
<(6k+2—4t)k+(2k—2)t —k(3k+1)—8
=(—2k—2)t+3k? +k—8<3k*—k—10.

Therefore, we obtain the following inequality which, in view of Lemma 2.2, contradicts
the assumption n>9k —1—4./2(k —1)>+2:

2
—k—1
MLl anl LI VSN S P VDS
k—1 k—1
Subcase 3.2. w=2. We divide the proof of this subcase further into two subcases.
(1) hy=k—1,t=k and s=1. Take y, € C; —Ng(x,). Then

—(k+1
N(xp, p)<s+t—1+|C; |—lsk+_"_%"_)

1
—1=—(Mn+k-3).
3 ( )
This is a contradiction.
(i) hy=k and s=0. For i=1,2, take y;e C;—Ng(x,). Let p;=|Ng(x;)nC|
(i=1,2). Then degg_s(x;)=p,+p,+t—1=k. Therefore, we have p,+p,=k+1—1t.
Moreover, we have | C, |+| C,|=n—t. Hence we get the following inequalities:

1
min(N(xy, y;) 1 i=1, 2)$?(N(x1’ Y1)+ N(x4, y2))

1
S?[I Cil=1+@=1D+py+|C|—-1+(—1)+p,]

n—t 1 1
= t—2+—(k+1—t)=—m+k-3).
5 + +2( ) 2(n )

This is a contradiction. This concludes the discussion for the case T— N, [x;]=O.
We henceforce assume T— N [x,]# &. We define 4, to be equal to the minimum

of the degree in G— S of a vertex in T— N;[x,], and let x, € {ve T— Ny[x;]|degs _s(v)=

h,}. Since x, and x, are nonadjacent, (n+k—2)/2< N(x,, x,)<s+h, +h,, and hence

2s>n+k—2h;+hy+1). (6)

For convenience, we set p=| N[x,]I.
Case 4. 0<h,<h,<k—1. In this case, we have

(k—h))n—s—t)=n—s—t=>=w=>ks+(hy—k)p+(h,—k)t—p)+2.
Since p<h,+ 1, this implies
Qk—hy)s<(k—hy)n+(hy—h)hy+1)—2 . 0

Consequently,
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0< —hyn+2(hy—hyXhy +1)—4—k(2k— hy)+ 2k —h,)hy +hy+1)  (by (6) and (7))
< —4h2+(9k—n—2)h, —(2k? —4k+4) (since h, <h,<k—1)

< —4h2+4./2k—1)2+2h,—2(k—1)2—2 (since n>9%k—2—4./2(k—1)>+2)

(o [ETEY

Further we have strict inequality in the third inequality or in the last inequality according
to whether 4, #0 or A, =0. This is a contradiction.

Case 5. 0<h,<k and k<h,<k+1.
Subcase 5.1. k>3. We have

n—s—22n—s—t>3w>3{ks+(h; —k)p+(h,—kXt—p)+2} .
Therefore, we get

Gk+1)s<n—3(h, —k)p—3(h,—k)—8 (since t>p+1)
<n+3(k—h,Xh, +1)—3(h,—k)—8 8)

(the second inequality follows from the assumption that k>A, and the fact that
p<h;+1). From (6) and (8), we obtain

Bk+1)}{n+k—2(hy+h,+ 1)} <2n+6(k—h)h; +1)—6(h, —k)—16 .
Hence we have

(Bk—1)n<2(3k+1)(hy +hy +1)—k(3k+ 1)+ 6(k—h )h, +1)—6(h, —k)—16
<2(3k+1)h +k+2)—k(3k+1)+6(k—h}h; +1)—22
<2(3k+1)2k+2)—3k*—k—22=9k*+15k—18.

Therefore, we obtain n<3k+5—12/(3k—1). This implies that

{3k+3 B<k<4)
n<
3k+4  (k=5).

In view of Lemma 2.2, this contradicts the assumption n>9% —1—4./2(k—1)>+2.
Subcase 5.2. k=2. By (6), we have

n<2(s+h;+h,). )]
Further, since t> p+ 1, we obtain the following inequalities:

n—s—(p+1)=3w>3{ks+(h, —K)p+(h, — kXt —p) + 2}
> 3{ks+(h, —K)p+(h, —k)+2} .

Since k=2, this implies
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n=>7s+@Bh,—S5)p+3h,+1. (10)

From (9) and (10), we have 2(s+h, + h,)>7s+(3h; —5)p+3h, + 1. Therefore we have
5s<h;—Q@Bh,—5)p—1. When 0<h, <k—1=1, from p<h,+1, we have 5s<h, +(5—
3h,)(h, +1)—1=4. Since s is a nonnegative integer, s=0. When A, =k=2, we have
5s<2—p—1<0 (because p > 1). Therefore, we again have s=0. This implies that #, =
k=2 and h, =23 because otherwise, by (9), we have » <8, which is against our assump-
tion n>9. But then from (9), we get n<10, and from (10), we get n>p+3h,+1>
3h,+2>11. This is a contradiction.
Case 6. 0<h;<k and h,>k+2. In this case, we have

w>ks+(h; —k)p+(h,—k)(t—p)+2
>(k—h)k—p)+2(t—p)+2=4.
Now we set s=k—h;+¢,, h,=k+2+¢,, and t=p+ 1+¢5. Then the ¢; (i=1, 2, 3) are
nonnegative integers. First assume at least one of the ¢; is a positive integer. Then we
have w>S5. For y;e C; (i=1, 2), we have
n+k—2

> SNy, y))<mi+m,—2+s+t

1 ..
S—5~(2n+ 35+ 3t—6w, +20) (by Lemma 2.1 (i1)),

where w, stands for ks+(h, —k)p+(h,—k)(t—p)+2. From the above inequalities, we
obtain
n<6s+6t+50—Sk—12{ks+(h,—k)t+(h,—h,)p+2}
= —6(2k—1)s+{6—12(h, —k)}t+26 —5k+ 12(h, —hy)p
=—6(2k—1)k—hy+¢&)+6(—3—2¢,)(p+1+6&3)—5k+26+12(k+24+¢e,—h,y)p
< —6(Rk—1)k—h; +&;)—6(3 +2¢,Xe3 +1)— 5k +26+ {12(k—hy)+ 6}(hy + 1)
< —6(Rk—1)e; —6(3+2¢,)(e3+1)—5k+26+6(k+1)
=k+14—6(2k—1)e, — 126,65 — 126, —18e3<k+2.
This is a contradiction. Finally, assume ¢, =¢, =¢3 =0. Then we have w>(k—h, )k —p)+
4>4. For y,eC; (i=1, 2), we have
n+k—2

2
> sN(yl,yz)sml+m2—2+s+ts?(n—s—t)—2+s+t.

Hence, we have k—2<s+t—4=k—h,; +p+1—4, that is to say, p=>h;+1. Since p<
h, +1, this implies p=h, + 1. So any vertex in C, is independent of x;. Hence if we let
y, € Cy, then we have
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k—2
PHETL NGy, y)<s+t+]Cyl—1

s%(n+3s+3t—4) (since | Cy |<+(n—s—1).

Consequently, we obtain 2n+2k—4 <n+ 3s+ 3t —4. Therefore,

n<3s+3t—2k=3s+3(p+1)—2k=3(k—h,)+3(h; —2)—2k
=k+6<3k+3 (since k>2).

This is a contradiction, and this completes the proof of Theorem 1.1.
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