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Introduction.

Let g be a real Lie algebra and g* be two subalgebras of g and p be an alternating
2-form on g. Then the triple {g*, g7, p} is called a weak dipolarization in g if the
following conditions are satisfied:

(WD1) g=g"+g",

(WD2) p(g™,3")=p(g”,87)=0,

(WD3) p(X,g)=0if and only if Xeg* ng~,

(WD4) o([X, Y], Z)+p([Y, Z], X)+p([Z, X], Y)=0, VX, Y, Zeg.

4 dipolarization in g is a triple {g*, g~, f}, formed by two subalgebras g* and a
linear form f, which satisfies the following conditions:

(D1) g=¢"+g",

D2 f(s*, ¢"D=rf(s".8"]=0,

(D3) f([X,g])=0if and only if Xeg* ng~.

A dipolarization {g*,g~, f} is itself a weak dipolarization, since df satisfies
(WD2)-(WD4). A weak dipolarization is called symmetric if g* is Lie-isomorphic to
g~ . Otherwise it is called nonsymmetric. A dipolarization (resp. weak dipolarization) is
called trivial, if g* =g~ =g, and if f=0 (resp. p=0).

The notions of dipolarizations and weak dipolarizations in a Lie algebra were first
introduced by Kaneyuki ([6]) to describe a class of homogeneous symplectic manifolds,
called homogeneous parakdihler manifolds. Let us recall the definition of homogeneous
parakédhler manifolds ([6]). A parakédhler manifold M is, by definition, a symplectic
manifold which admits a pair of transversal Lagrangian foliations. If a Lie group G
acts on M as symplectomorphisms which preserves each of the two foliations, then we
say that the parakidhler structure is G-invariant. Furthermore, if G acts transitively on
M, then M is said to be a homogeneous parakdihler manifold. It was proved in [6] that
a necessary and sufficient condition for the existence of an invariant parakihler structure
on M=G/H (H is an isotropy subgroup) is that there exists a weak dipolarization in
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g=LieG such that the intersection of the two polarized subalgebras coincides with
h=LieH. In [7, 8], a large class of homogeneous parakidhler manifolds are obtained.
In [1], the authors constructed an example of nonsymmetric dipolarization in a Lie
algebra, which indicates that homogeneous parakéhler structures are substantially
different from homogeneous Kéhler structures. In this paper we study dipolarizations
and weak dipolarizations of compact Lie algebras to obtain the following results:

THEOREM 1. Let u be a compact semisimple Lie algebra. Then there exist no
nontrivial dipolarizations in u.

THEOREM 2. Let G be a connected compact Lie group, H be a closed subgroup of
G. Suppose that the coset space G/H is effective. Then there exists a G-invariant parakdhler
structure on G/H, if and only if G/H is an even-dimensional torus.

NoTATION. g€ denotes the complexification of a Lie algebra g. ¢ (X) denotes the
centralizer of an element Xeg in a Lie algebra g.

1. Dipolarizations in compact Lie algebras.

1.1. Let u be a compact semisimple Lie algebra and u® be its complexification.
We denote by B the Killing forms of u and of u€. Let {u*, u~, f} be a dipolarization
in u, and let Zeu be the unique element satisfying

(1.1 B(Z, X)=f(X), Xeu.
Then we have ([6])
(1.2) ut Nnu” =¢,(2).

Choose a maximal abelian subalgebra t of u such that Zet. The complexification t°€
of t is a Cartan subalgebra of u€. Let 4 be the root system for (u€, t€), and let 4" be
the positive root system with respect to an order. Let {X,; xe 4} be a Weyl basis of u®
mod t€ with respect to u (see Helgason [4]). Then u is written as

(1.3) u=t+ Y RX,—X_)+ Y Ri(X,+X_,).

acdt aecd*t

1.2. Let o be a subalgebra of u containing t. Then o€ is a regular subalgebra of
u€in the sense of Dynkin [3]. Therefore there exists a closed subsystem 4’ of 4 such that

(1.4) p=t°+ ) CX,.

acd’
o€ is reductive and we have
(1.5) _A'=4".

LemMMmA 1.1. v is written as
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(1.6) p=t+ ) RX,—X_)+ Y RiX,+X_,),

aed’ + aed’
where A't =A"~At.

PrOOF. Let Xev. Then, by (1.3), X is written as

(1.7 X=H+ Y aX,—X_)+ Y ib(X,+X_),

aed*t aeat

where Het and qa,, b, eR. If we put w,=a,+ib,, then X can be written as

(18) X=H+ Z (waXm—a-)aX~a)'

aed*t
Since X lies in 0, it follows from (1.4) that if w,#0, then aeA4’. This implies the
inclusion < in (1.6). The converse inclusion follows from p=0 ~u and (1.4). O

LEeMMA 1.2. Let aeAd*. Then X,—X_, lies either in u* or in u~. Then same
assertion holds for i(X,+ X _),).

ProoF. By (1.2), t is contained in u™ nu~. Consequently the complexifications
(u™)¢ and (u 7)€ are regular subalgebras of u€. Hence there exist two closed subsystems
A" and 4" of 4 such that

(1.9) @*)=t+ ) CX,,
acAd’

(1.10) u)=t+ ) Cx,,
aed’’

(1.1D —A'=4", —A"=A4".

By (D1), we have u®=u*)°+u")°, and hence A=4"ud”. If we put 4’*=4'n4"
and 4"t =A4"NnA4%, then we have

(1.12) At =AY U4t

This implies that the root ae 4™ lies either in A’* or in 4”*. Suppose ae4’*. Then
(1.9) shows that X,,e(u™)°. In view of Lemma 1.1, we have X,—X_,eu* and
i(X,+X_,)eu’. Similarly, if xed4”*, then we conclude that X,—X_,eu” and
X, +X_peu" . O

LEMMA 1.3. Let ae 4 be a positive root satisfying o(Z)#0. Then X,— X _, lies in
u” (resp. u”) if and only if i(X,+ X _,) lies in u™ (resp. u™).

PROOF. Suppose that X,— X _,eu*. Suppose further that i(X,+X_,)¢u". Then
by Lemma 1.2 we see that i(X,+ X_,)eu*. Also we have:
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(113) f([Xa—'X—as i(Xa+X—a)])
=B(Z’ [Xa_X—w i(Xa+X—a)])= IB([Z7 Xa_X—a]’ Xa+X—a)
=il Z)B(X,+ X_, X, + X_)=2ix(Z)B(X,, X_,)#0,

which contradicts (D2). Thus we have proved that i(X,+ X_,)eu”. The other case
can be proved analogously. [

1.3. Proof of Theorem 1. Let {u*,u”, f} be a dipolarization in u. First we wish
to prove u* =u. For this it is sufficient to prove (u*)*=u. We choose Z, t, 4 and X,’s
as in 1.1. The last condition is equivalent to the condition 4’ =4 (cf. (1.9)). Since ¢,(Z)
contains t, ¢,(Z)€ is given by

(1.14) | W2 =, (Z2)=t+ Y CX_,

aecdo
where the closed subsystem 4, is given by
(1.15) Ag={aed: (Z)=0}.

Now let aeA™. If a€ 4,, then by (1.2) « lies in A’. Suppose next that xe 4A* —4,. Then
we have a(Z)#0. By Lemma 1.2, X,— X _, lies either in u* or in u~. Suppose that
X,—X_,eu”. Then by Lemma 1.3, i(X,+X_,)eu*. We have

(116) [Z, i(Xa+X—a)]=ia(Z)(Xa_X—a)'

The left side of (1.16) belongs to u*, and hence X,—X_,eu*. We have thus proved
that X,—X_,eu* for xe 4" — A,. Similarly, again by using Lemma 1.2 and Lemma
1.3, we conclude that i(X,+X_,)eu* for «e 4™ —4,. Therefore, in view of Lemma
1.1, we have X,e(u*) for e 4*, and hence xe 4'*. Thus we have proved 4'=4, or
equivalently, u* =u. Similarly we have u~ =u. Now it follows from (1.2) that Z is a
central element in u. By the semisimplicity of u, we have Z=0. Therefore f=0

f. (1.L1). O

COROLLARY 1.4. Let u be a compact Lie algebra, and let {u",u~, f} be a
dipolarization in u. Then u* =u~ =u.

PrROOF. Since u is compact, we have u=c¢@®u’, where ¢ is the center of u and u’
is the commutator subalgebra of u. By (D3) we have ccu* nu~. If we denote u* nu’
by u’*, then it is obvious that {u'*,u’", f|,} is a dipolarization in u’. Since u’ is
semisimple, by Theorem 1 we have u’* =u’, and thus u’cu?*. Hence it follows that
wi=u. O
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2. Compact homogeneous parakiihler manifolds.

2.1. We need the following Matsushima’s result (cf. Murakami [107).

ProPOSITION 2.1 (Matsushima [9]). Let G be a connected compact Lie group and
H be a closed subgroup of G. Suppose that the coset space G/H is effective and that there
exists a G-invariant symplectic form w on G/H. Then the following assertions are valid:
(1) H is contained in the commutator subgroup G’ of G. (2) H is connected and is the
centralizer of an element Z'eg’'=LieG’ in G'. (3) Let C be the center of G. Then we
have G=C x G’ (direct product).

Now let G and H be the same as in Proposition 2.1. Suppose further that the coset
space M =G/H is an effective and homogeneous parakihler manifold. Let 7 and o be,
respectively, the invariant paracomplex structure and the invariant symplectic form of
M associated with the parakéhler structure of M. Let o be the origin of G/H. We
identify the tangent space 7,G of G at the unit element ee G with g=LieG. Let n be
the projection of G onto G/H. As we did in [6], we choose a linear endomorphism 7
on g in such a way that

2.1 nI=Ln,..
Leth=Lie Hand p =7n*w. Then we have a parakéhler algebra {g, b, 7, p} ([6]). If we put
(2.2 g(X, V)=w(X, IY)

for smooth vector fields X and Y on M, then g is a G-invariant parakdhler metric on M.
LemMmA 2.2. Let c=LieC. Then we have
(2.3) Iccc+).

ProoF. Let Xebh and Yec. Then, by the axioms of parakdhler algebras ([6]), we
have

2.4 [X,IY]=I[X, Y]=0 modp .

This means that [h, Ic]=bh. Consequently Ic is contained in the normalizer ny(b) of b in

g. As was shown in [9], we have that ny(h)=b+ ¢, which implies Iccc+h. O
LemMA 2.3. The subalgebra g’ of g is I-stable.

Proor. First we note that the equality
(2.5) 9o(T, (), TW(g") =0

is valid. In fact, this can be proved quite analogously as for the equality (4) in Matsushima
[9], by using (2.3) and by replacing the complex structures there by the paracomplex
structures. (2.5) means that n,(qg’) is the orthogonal complement of n(c) in 7,M with
respect to g,. Now let Xec and Yeg'. Since T,M can be identified with g/b, it follows
from (2.3) that
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(2.6) n,(IX)em,(c).
Since g is a parakdhler metric, we have from (2.5) and (2.6),
2.7 g X n IY)=g,n,X, fon* Y)= —g,,(f,,n*X, n,Y)=—g,n,JX,n,Y)=0,

which implies that n_IYen,(g"). Therefore, in view of Proposition 2.1 (1), we have
IYeq'. O

We define the subalgebras g* of g by (cf. [6])

2.8) g*={Xeg: IX=+ X modb}.

Then, as is known in [6], {g*, g7, p} is a weak dipolarization of g satisfying
2.9) gt ng™=h.

Now let

(2.10) gt=g*ng’, cE=g*fnec.

LeMMA 2.4. g can be written as the direct sums:
(2.11) gt=g*®dc", g =g @Dc .

Proor. Let Xeg®*. By the Levi decomposition g=g’' @ ¢, one can write X as
X=X,+X,, X,eg’, X,ec. We have

(2.12) IX=IX,+1X, .

By Lemma 2.3, IX, lies in g’. By (2.8) one has

(2.13) IX=X+h=X,+X,+h,
where heb. By (2.3), one has

(2.14) IX, =(IX,).+ (X)),

where ( ). and ( ), denote the c-component and the h-component, respectively.
Substituting (2.13) and (2.14) into (2.12), and comparing the g’-component and the
c-component in the both sides of (2.12), we have

(2.15) IX, +(IX,)y =X, +h,
(2.16) IX,). =X, .

By (2.15), we have IX, = X, mod}b, which implies X, eg’*. From (2.14) and (2.16), it
follows that IX,=X,+(IX,);=X, modbh. Hence X,ec*. Thus we have proved
g+ — gl+ +et. O

Lemma 2.5. {g'*,g'", p'} is a weak dipolarization of g satisfying g'* ng’'~ =h,
where p'=plg « g
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PrOOF. The equalities g'=g'"+g’~ and c¢=c¢* +¢~ follow from the equality
g=g " +g~, Lemma 2.4 and the Levi decomposition g=g'@® ¢. The property
g't ng’~ =} follows from the equality (2.9) and Proposition 2.1 (1). Since g* and p
satisfy (WD2), g’* and p’ also satisfy (WD2). Since p satisfies (WD4), we have

(2.17) p(c, g)=p(c, [g, D) =p([¢, ], §)=0.

Now let Xeg’, and suppose that p(X, g')=0. Then, by (2.17), we have p(X, g)=
p(X, g")+ p(X, ¢)=0. Hence, by (WD3) for g, we get Xeg® ng~. This implies that
Xeg't ng’~. Conversely, let Xeg’'* ng’~. Then, by (WD3) for g and (2.17), we
have 0=p(X, g)=p'(X, g)+ p(X, ¢)=p'(X, g'). Thus we have proved that {g’'*, q'", p'}
satisfies (WD3). [

LemMMA 2.6. {c¢*, ¢™, p”} is a weak dipolarization in ¢ satisfying ¢* n ¢~ =(0), where
p'=p |c xc

PROOF. We have seen the equality c¢=c* +¢~ in the proof of Lemma 2.5. We
have ¢* n¢” =gt ng~ =h. Hence, by Proposition 2.1, (1), we get c* nc " chnecc
g’ N e=(0). (WD?2) is trivially satisfied by ¢*. Now let Xec¢ and suppose p"(X, ¢)=0.
Then, by (2.17) we have p(X, g)=0. Therefore (WD3) for g* implies that Xeg* n
g~ Nnec=hnc=(0), that is, X=0ec¢* n¢~. Thus we have proved the lemma. []

REMARK 2.7. Lemmas 2.4, 2.5 and 2.6 imply that the weak dipolarization
{g*, 87, p} in g can be expressed as a direct sum of two weak subdipolarizations induced
on g’ and c.

2.2. Proof of Theorem 2. Suppose that G/H is an effective homogeneous
parakdhler manifold with G compact connected. Then, by Proposition 2.1, we have

(2.18) G/H=Cx(G'/H).

’

Consider the weak dipolarization {g’*, @', p’} in g’. Since g’ is semisimple, there exists
a linear form f on g’ such that p’=df. The triple {g'*, g'~, f} is a dipolarization in
g’, which is trivial by Theorem 1. Therefore g'=g'* =g'* ng’~ =}. Since H is connected
(Proposition 2.1), we get G'=H. Therefore, by (2.18) we have G/H=C. Note that
dimc* =dimc™, since {¢*, ¢, p”} is a weak dipolarization. Hence G/H= C'is an even-
dimensional torus. The converse assertion can be easily shown (cf. p. 84 in [5]). O

Appendix.

The following lemma justifies calling a triple {g*, g™, f} satisfying (D1)~«(D3) a
dipolarization. For the definition of a polarization in a Lie algebra, one should refer
to Dixmier [2], for instance.

LemMA. Let {g*, g, f} be a dipolarization in g. Then {g*, f} and {g~, f} are
polarizations in g.
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PrOOF. Let g’ be a subspace of g which contains g* and satisfies f([g’, g'])=0.
Choose an element X=X"+X eg’,X*eg*. Then X eg’, and consequently
g’'=¢"+g¢ ng~. We then have

0=f[X,aD=fIX"+X", 8" +g'ng"D=/f([X",g"]).

On the other hand f([X~, g7 ])=0 is obvious. Therefore f([X~, g])=0, which implies
that X~ eg* ng~. Thus Xeg™, or g¢’=g™*. This shows that {g*, f} is a polarization in
g. O
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