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1. Introduction.

Let GL(n, Z) denote the modular group of degree n over the ring of integers Z.
For a regular element { in GL(n, Z), let R denote the ring generated by { over Z and
let f(X) be its characteristic polynomial. The purpose of this paper is to show that a
special value of certain Dirichlet series {z(s) of R at s=1 gives rise to an ideal
regulator-class number formula for R, which is a generalization of the classical
regulator-class number formula for the Dedekind zeta functions of a number field.
Before stating our results, we need some preparation. An ideal a—R is said to be
nonsingular if the index (R : a) (as group) is finite, in which case the norm of a, Na, is
defined to be this index. Let Q[{] be the ring generated by { over the field of rationals
Q. An R-submodule a of Q[{] is a fractional ideal of R if there exists an invertible
element a in Q[{] such that aa is a nonsingular ideal of R. The pseudo inverse ideal &
of a is defined by

4={neQ[{]: pacR}.
Note that a is a fractional ideal of R. Let

S(X)=fi(X)f2(X) -- fg(X)

be the decomposition of f(X) into the irreducible factors over Q. The ring O of the
algebraic integers in Q[{] is isomorphic to O, @ 0,® - - - ® O, where O; is the ring of
integers of the algebraic number field k;=Q({;) and {; a root of f;(X). Let E, be the
unit group of O. For each nonsingular ideal a we define a subgroup E, of E, by

E,={¢cE,:ca=a}.

We shall prove (Lemma 3.6 below) that the index (E,, : E,) is finite.

Let us define the ideal class semigroup G of the ring R. Two fractional ideals a and
b are said to be equivalent if there exists an invertible element A in Q[{] such that Aa=Db.
We denote by G the set of all equivalence classes and a class in G by C= C(a) with a

representative a. Note that G is a semigroup under the canonical multiplication.
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We can now state the main results of this paper. Let C denote the field of complex
numbers.

THeOREM 1. Let C=C((a) be the ideal class of the ring R=12Z[(] represented by an
integral ideal a. Define a Dirichlet series {(s) for C by

()= —

—_, seC.
e (VD)

Then {(s) is holomorphic in the half plane R(s)> 1. Furthermore, we have
(Eo : Eq)| R(Ep) |

N&Na|H,y|/|D|

Here R(E,) is the regulator of E,, H, is the group of all elements in E,, with finite order,
r (resp. 2c) is the number of all real (resp. complex) roots of the characteristic polynomial
f(X) of {, g is the number of irreducible factors of f{X) over Z and D= Nf'({) is the
discriminant of R.

lim (0—1)c(0)=2""n*
e—>1+0

THEOREM II. We define a Dirichlet series {g(s) by

a(b)
=) ———
Cr(s) Zb: (Nby
where the summation runs over all nonsingular ideals b of R and a(b)=NbNb/(E, : Ey).
Then we have

| R(Eg) |

|Hol/ID|

We recall that the order of the ideal class semigroup coincides with the number of
conjugacy classes Gz(f)/GL(n, Z) in the sense of Latimer and MacDuffee ([6], [12]):
G,(f) is the set of elements of GL(n, Z) with the characteristic polynomial f(X), which
is decomposed into GL(n, Z)-orbits, under the adjoint action of GL(n, Z). G(f)/GL(n, Z)
means the orbit space. The finiteness of the space G,(f)/GL(n, Z) has been proved by
[10], [14]. We remind that the zeta functions of various kinds have been introduced

| into the study of algebras. Particularly, Solomon’s idea in dealing with the group algebras
in [9] and its generalization by Bushnell-Reiner [2], [3], concerning the semisimple
Q-algebras, have given the suggestions for this paper.

The contents of this paper are as follows. Preparatory facts collected in §2. We
reprove in §3 the theorem of Latimer-MacDuffee and the finiteness of the order of
G. In §4 we prove a reduction theorem which enables us to calculate the limit:
lim,_, , (6 —1)?¢(0). In §5, we restate briefly the calculation of the density of ideals (due
to Dedekind) for an algebraic number field over Q. We calculate in §6 the special value
of certain Dirichlet series {;(s: x) at s=1. Finally in §7 we shall prove our two main

lim (6—1)g(0)=|G|2""“rn°®
0

g1+
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theorems.
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2. Preliminaries.

Let GL(n, C) be the group of all n x n invertible matrices with entries in C. An element
A in GL(n, C) is called regular if the centralizer T of 4 in GL(n, C) forms a maximal
split torus of the reductive group GL(n, C). Let { be a regular element in the modular
group GL(n, Z) of degree n and R=Z[{] the ring generated by { over Z. Since ( is
regular, the characteristic polynomial f(X) of { has irreducible factors f;(X),
SAX), - -, f(X) with multiplicity one. Let Q[X] be the polynomial ring in X with
coefficients in Q. The ring Q[{], which is generated by { over Q, is decomposed as

follows: For A;(X)=f(X)/f,(X) there exist u;(X), u,(X), - - -, u,(X) in Q[X] such that
1=>"7_ u;,(X)h(X). Put e;=u;({)h;({). Then we have

g
(2.1) 1= Z ei, and eiej=5i,]-e,-

where 9, ; is the Kronecker delta. Let {; be the restriction of Q-linear endomorphism ¢
of Q[{] to Q[{]e;. Observe that {; is a root of the irreducible polynomial f;(X), so that
k;=Q[{;] is an algebraic number field over Q. The ring Q[{] is decomposed into a
direct sum of k;e;’s (1<i<g):

2.2) Q[{l=kie, Dkre, @ " Dkye, .

Let O be the ring of algebraic integers in Q[{]. Since e; is a root of the monic polynomial
X?—X in Z[X], e; belongs to O. Let O, be the ring of integers of k;. Then we have

(2.3) 0=0,6,® 0,6, DOy, .
We shall define the norm and trace on Q[{]. Since all eigenvalues of { are mutually
distinct, { is diagonalizable. Furthermore, there exist {={©, {'={D, --- ¢~ Vin T
such that
(2.4 I «€9-(9)YeGL(n,C), [f(M=0 (O<j<n—1).
0<i<j<n-—1

Put Q={(, (', - -+, ("~ V}. Let Q[Q] be the commutative ring generated by Q over
Q. Then
(2.5) fO)=X-DX=L) - (X={"Y) in (Q[RDLX].

The norm N and trace Tr in Q[{] are defined, respectively, by
(2.6) Np(Q)=pOp() --- pC"™ V),
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2.7) Tr(p()=p)+pE)+ - +pC"" ")

where p(X) is a polynomial in Q[X7]. Since Np({) and Tr(p({)) are the symmetric
polynomials in {, {’, - - -, {™ ™V, (2.5) implies that both Np({) and Tr(p({)) are rational
numbers. If a is an element in R, then Na (resp. Tr()) is a rational integer. Let N,, be
the norm of the algebraic number field k;.

LEMMA 2.1. Let a=a,e,+0,e,+ - - +oze, where a;ek; for i=1,2, ---,g. Then
we have

Noa=N,a;N,a, - N o, x1,.
Here 1, is the identity matrix of degree n.

Since { is diagonalizable, it is easy to see the assertion of this lemma.
Define the unit group E, of Q[{] by

(2.8) Eo={c€O : Ne=+1}.
LeEMMA 2.2. Let E, be the unit group of the algebraic number field k;. Then we have
(2.9) E0=E181®E2e2®"'®Ege9.

ProoOF. Let ¢ be an element in E,. We shall prove that ¢ belongs to the set in the
right hand side of (2.9). For each i, let ¢; be an element in k; satisfying ge;=¢;e;. Since
e=)7?_, &e;, (2.3) implies that g;€ O; for every i=1, 2, - - -, g. Hence by Lemma 2.1 we
have N, ¢g;= t1. This gives what we want. The converse inclusion can be proved in a
similar manner.

We now turn to the fractional ideals of R. An element « in R is nonsingular if the
principal ideal (x) of R is nonsingular. Since N(x)=|Na|, « is nonsingular if and only
if « is invertible in Q[{].

DEerFINITION 2.1. An R-submodule a of Q[{] is called fractional if there exists an
invertible element « in R such that aa is a nonsingular ideal of R. For a fractional ideal
a of R, we define the norm Na of a by Na=(N(«)) ™ 'N(aa).

DEFINITION 2.2. Let a be a nonsingular ideal of R. The pseudo inverse ideal a of
a is defined by

d={neQl{]: pacR}.
LEMMA 2.3. The pseudo inverse ideal & of a given nonsingular ideal a is fractional.

PrOOF. Since a is nonsingular, a is a Z-free module of rank n. Let Oa be the ideal
of O generated by a. Since a and Oa have the same rank over Z, the index (Oa: a)
is finite. Hence, from the invertibility of the ideal Oa of O it follows that a has a non-
singular element «. Then the definition of & implies that ad = R. Furthermore, since
1 € 4, we have ad is a nonsingular ideal of R.
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We remark that if a nonsingular ideal a is invertible (i.e. there exists a fractional
ideal b of R such that ab=R), then a is actually an inverse ideal of a. In general,
however, there is a nonsingular ideal which has no inverse ideal (see Example below).

ExampLE. Take

0 1 0 0
-1 -1 0 0

= L(4,Z).

{ o o o 1 |c€9L4D
0 0 —11

Then the characteristic polynomial f of { is decomposed into f(X)=F(X)F(—X),
FX)=X?+X+1. F(X) is irreducible modulo 2 and f(X)—F(X)?= —2F(X)X. Let
(2, F(0)) be the ideal of R=Z[{] generated by 2 and F({). Then (2, F({))*=2(2, F({)).
This implies that the ideal (2, F({)) is not invertible.

3. Theorem of Latimer and MacDuffee.

Let { be a regular element in GL(n, Z) with characteristic polynomial f and R=Z[{]
the ring generated by (. Note that { "' e R. In fact, since det{ =a,= +1, it is easy to see
that

C-1= _an(Cn—1+an—1Cn—2+ U +an—1)€R
where f(X)=X"+a, ;X" '+ +a, Put

(3.1 G(f)={yeGL(n,Z) : f(y)=0}.
The group GL(n, Z) acts on G,(f) by the rule:
(3.2 GL(n, Z) x G4(f)3(g, x) = gxg~ ' € G4(f) -

The GL(n, Z)-orbits in G,(f) will be called the conjugacy classes of G,(f) and denoted
by Gz(f)/GL(n, Z). In this section we shall rediscover the theorem of Latimar and
MacDuffee which establishes a bijection between the ideal class semigroup of R and
the conjugacy classes of G,(f).

Let Q={¢,{’, -+, (" Y} be the conjugate system of { (see (2.5)). Let o'’ be the
Jj-th conjugate of « in Q[¢] which is defined by a=p({’) where a=p({) and p(X)e
Q[X]. Let GL(n, Q) be the group of rational matrices in GL(n, C).

LemMA 3.1. Any two matrices in Gz(f) are GL(n, Q)-conjugate.

PrOOF. Let y be an element in G,(f). Since all roots of f(X) are simple, there
exists 4 in GL(n, Q) such that
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lyl O ...0

O « e
hyh~* = ) 72 00

0... O ’Yg

where p; is an integral matrix of degree n; with characteristic polynomial f;(X) (cf.
Theorem III. 12 and p. 55, Exercise 7, [8]). Consequently it is sufficient to prove this
lemma when f(X) is irreducible over Q. Define an integral matrix y, by yoXo={X,
where x,='(1,¢, - - -, {""!) if ¢ denotes the transpose. Since f(y,)x§’=0 (0<j<n—1)
and the matrix (X0, X, - * -, X&'~ V) is invertible, we have f(y,)=0. Moreover, y, € Gz(f)
since {"'eR and y; 'xo={"'x,. Hence the proof is reduced to the following: Each
element y in G,(f) is conjugate to y, under the adjoint action of GL(n, Q). Put
B(X)=X1,—7v, and let C(X) be the adjoint of the matrix B(X). For the first column
vector ‘(¢y(X), c2(X), -, ci(X)) of C(X), we put x="(c,({), c2(0), - -, ci({)). Since
B(X)C(X)=f(X)1, and degc;<n—1 (1 <i<n), it is easy to see that yx={_x and x#0.
From the irreducibility of the characteristic polynomial f(X) of y it follows that the
matrix (x,x’, - -+, x"7Y) is invertible. Hence {c;({), c2({), - -, ¢,({)} is a Q-basis of
QI{]. Define an element 4 in GL(n, Q) by letting Ax =x,. Then we have hyh~ ' =1y, as
claimed.

LEMMA 3.2. Let y be an element in G,(f). Then there exists a vector X in R" such
that yx={x and (x,x’, - - -, X"~ V) is invertible. Furthermore, x is uniquely determined
up to scalar multiplication by an invertible element in Q[(].

Proor. For xo='(1,¢, ---, (" 1), we define a matrix y, in Gz(f) by yoXo=_Xo.
Let y be any element in G(f). By Lemma 3.1 there exists 2 in GL(n, Q) such that
y=hyoh~!. Put x=~hx,. Then yx={x and (x, X/, - - -, x*~ 1) is invertible. It remains to
show the uniqueness of x up to a scalar multiplication by element in Q[{]. Suppose
there exists y € Q[{]" such that yy={y. Put C=(x, x’, - - -, x"™ V), C~'=(d};). Observe
that

(det(x,x’, - - -, x"" V), (1<j<n)
is a symmetric polynomial in {’,{®, ---,{""V. Then by (2.5), d;,€Q[{] for all
j=1,2,---,n. Since CC~'=1,, we have

n
= dyxU™  for i=1,2,--",n
i=1

where {e;,e,, ---,e,} is the canonical basis of Q[{]". Therefore y is written as
y=)'_.b;xU"V with b;eQ[2]. In particular b, eQ[{]. Since yx?P={Vx? (0<
j<n—1), it follows from the invertibility of {—{Y¥ that y=b,x, b;=0 for all j#1.
This implies that
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det(y,y’, - -,y V)=Nb,det(x, x’, - -, x"" V).

Hence we have Nb, #0. Consequently b, is invertible in Q[{]. This gives the uniqueness
of x.

Let us define the ideal class semigroup of R. We denote by A (resp. Ap) the set of
all fractional ideals of R (resp. O). A (resp. Ay) is a semigroup with the canonical
multiplication.

DEerFINITION 3.1. Two ideals a and b in A (resp. Ap) are equivalent if there exists
an invertible element A in Q[{] such that Aa=Db.

DerFINITION 3.2. The set of all equivalence classes of A (resp. Apy) will be denoted
by G (resp. Gy). For ain A (resp. Ap), C(a) denotes the ideal class represented by a.

G is called the ideal class semigroup. In view of (2.3), G, is a direct product of a
finite number of ideal class groups of the algebraic number fields over Q. Therefore G,
is a finite group and called the ideal class group of O.

Let us now define a map from G to G,(f)/GL(n, Z) as follows (cf. [6] and [12],
or p. 53 in [8]): For each element a in A with a Z-basis {w,, w,, - - -, w,}, define an
integral matrix y by

(3.3) {x=yx where x="(w,, w,, ** -, w,).
Then ye G,(f). Define a map ¢ : G—G,(f)/GL(n, Z):
(3.4) ¢(C(a))=C(y)

where C(y) is the class in G,(f)/GL(n, Z) represented by 7.
THEOREM 3.3 (Latimer-MacDuffee). The map ¢ is bijective.

Proor. Well definedness: Let a and b be two ideals belonging to the same class C
in G. For a Z-basis {wy, w,, -+, w,} (resp. {vy, 05, ", 0,}) of a (resp. b), we define
two matrices y, 6 € Gz(f) by yx={x and dy={_y where x="(wy, w,, " - -, w,) and y=
‘(vy, v5, ***,V,). Since a is equivalent to b, there exists an invertible element A in
Q[{] such that Aa=Db. Consequently g(Ax) =y for a suitable g in GL(n, Z). This implies
that d=gyg !, so C(y)= C(J).

Injectivity: Suppose ¢(C(a))=@(C(b))=C(y) for two ideals a and b in A and
y € G,(f). Then there are two vectors x and y such that yx={x, yy={_y and a (resp. b)
is generated by x (resp. y). By Lemma 3.2, a and b are equivalent. Hence ¢ is injec-
tive. '

Surjectivity: Let C(y) be a class in Gz(f)/GL(n, Z). Again by Lemma 3.2, we can
choose a vector x in R” such that yx={x and (x, x/, - - -, x® 7 V) is invertible. Let a be
the Z-module generated by the entries of x. Then a is nonsingular and ¢(C(a)) = C(y).

Let us prove the finiteness of the order of G. For this, we need to prove the
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following two lemmas. Define a map 5 from G to G, by

(3.5) n(C(a))=C(Oa), acA.

For a fixed a in A, we put

(3.6) M(a)={beA : Oa=0b}.
LeEMMA 3.4. The map n defined by (3.5) is surjective, and

3.7 7~ 1(C(Oa))={C(b) : be M(a)} .

ProOOF. A fractional ideal of O is also a fractional ideal of R. Hence the surjectivity
of n is obvious. Let us prove (3.7). Let C(b) be a class in n~}(C(a)). Then there exists
a in Q[{] such that xOb= Oa. Put q=ab. Then C(q) = C(b) and Oa = Oq. Consequently
C(b) belongs to the set in the right hand side of (3.7). Conversely suppose be M(a).
Then we have n(C(b)) = C(Oa). Hence C(b) belongs to the set #~1(C(a)). This gives the
converse inclusion.

LEMMA 3.5. Let a be a fixed fractional ideal of R. Then we have
|M(a)|<(O : R)".
Proor. Put m=(O : R). Since 1€ O and mO <R, we have
(3.9) Oa=0b>bo>mOb=mOa for all be M(a) .

Let ¢ be the number of all subgroups of the additive group Oa/mOa. Then by (3.8),
| M(a) | <c. On the other hand, by the fundamental theory of finitely generated abelian
groups, we have

Oa/mOa=Z/(p7")DZ/(p7*) D D Z/(pi™) .
Here m; is a positive integer and p; is a prime number. Therefore
| M(a) | <c<(my+1)(my+1) - - (my+1)

<(@PI)™M(P)™ - (PI™
=(0a : mOa)=m" .

Let a be a fractional ideal of R. Then the unit group E, of O acts on M(a) by the
rule:

3.9 Ep x M(a)3 (e, b) > ebe M(a) .

LeEMMA 3.6. Let a be a nonsingular ideal of R. We define the stabilizer group E,
of a by
E,={ccE, : ca=aq}.

Then the index (E,, : E,) as group is finite.
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Proor. By Lemma 3.5, the set M(a) is finite. So the subset Eya of M(a) is also
finite. Therefore (E, : E,) is finite.

THEOREM 3.7. The order of G is finite.
Proor. Let n be the map from G to G,. By Lemma 3.4 we have

IGl=| U n'C@)|l= Y [IM@®)].

C@)eGo C(@)eGo

From Lemma 3.5 it follows that the order of G is finite.

4. Reduction theorem.

Let { be a regular element in GL(n, Z) and R=Z[{] be the ring generated by {
over Z. For an ideal class C= C(a) of R, we define a Dirichlet series {(s) by

i seC.

4.1) L) = be;m oy

boR ,
¢c(s) may be called the zeta function of the class C. We shall prove in §7 that {(s) is
convergent in the complex half plane R(s)> 1. In this section we shall give a reduction
theorem which is useful for investigating the analytic properties of {(s).

Let A. be the set of all integral ideals of C= C(a) and & the pseudo inverse ideal
of a. The group E,, which is given in Lemma 3.6, stabilizes the set ™ of all invertible
elements in d&. We classify @ * by E -orbits, and denote by d ™ /E, the set of all E,-orbits
in ™. From this, it follows immediately the following lemma.

LEMMA 4.1. The set A, is parameterized by

Ac={la:[A]ed™/E,} .

Let a be the representative of the class C. In the following we assume that a is
integral. Put &= Oa. Since @ is an ideal of O, & has the inverse ideal @~ '. It is easy to
see that acd~ ! and @~ '/a is a finite additive group.

DErINITION 4.1. Let & be the pseudo inverse ideal of the representative a of C.
Denote by B* the character group of B=a™!/a.

Let E, be the unit group of O. E,, is a direct product of a finite group H, and a
finitely generated free group E,. Put E,=E,(\E,, H,=E,( H,. Let (§~')* be the set
of all invertible elements in & . Then
(4.2) Ey@ H*c@hHy*.

DerrINITION 4.2. Fix a representative A for each class [A] in (@7 1)*/E,, and let
be a character of B. An L-function L(s: x) is defined by
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x(4)
[Ale@- 1) /E. (N(AQ))*

where s is a complex number and N( *) is the ideal norm of ( *).

L(s: )=

We remark that y(4) and hence L(s : x) depends on the choice of the representatives
A. We choose a representative A and fix it once and for all.

THEOREM 4.2. Let C=C(a) be an ideal class of G. Then the zeta function {(s) is
expressed as

_ (Vay .
O TmIG T : ey {ZB e ")} |
PrOOF. We see that
Y g X(A)
L(s: )= =reE
XEZB' :0 (Ale@-1*/E.  N(Ad)°

From the orthogonality relations (see Theorem 7.3, [5]) on the group B:
{ |B| Aea

0 otherwise ,

Y (D)=

xeB*
it follows that
1 |B||H,|(No)*

L(s:y)=|B = LAs) .
xezm : 0=l l[z]e;‘ /E. N(AQ)* (Na)* c(s)
Let x be a character of B. For each eeE,, define g, by
4.3) x(@)=x(ea), acd™'.

x. is well defined and is a character of the finite additive group @~ /¢~ 'a. The orbit
classes (@~ 1)*/E, is decomposed as follows:

@Y /E.= | U «acE,.

leleEo/Ea [ale(@~ 1) * /Eo
Therefore

x:(®)

4.4) L(s:y)= Y.
lele Eo/Ea [ale (@~ 1) */Eo (Nad)®

Define an ideal &; of O, (1<i<g) by
(45) ﬁ,-e,-=&ei .

NOtC that &=&1e1 @52629 °t @&geg.
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DeriniTION 4.3. For x in B* and ¢ in E,, define the zeta function {;(s: x,) by

Xs(aei)
ACEEALTEDY PIVEY]
[ale By < /E; (VE;)
where b, =(g,) .
By Lemma 2.1 and (4.4) we have immediately the following lemma.

LemMMA 4.3. The notations being the same as above, we have
g
Lis:p= 2 Tl&G:x).
[eleEo/Eqs i=1

We now state the Abel’s summation formula which is used frequently in the analytic
number theory (cf. Theorem 1.6, [5]).

LEMMA 4.4. Let s be a function on the interval (0, ) of C'-class. Then for a finite
number of complex sequence ay, a,, - - -, ay,;, we have

O<m<t O<m<x

Y. aup(m) =A(t)l//(t)—f AW '(ydx,  AX)= Y ay.
1
LeMMA 4.5. For each positive real number t and € E,, let

Ai(t : Xs) = Z xe(aei) .
{a]e () * /E;
N(xd;) <t

Then we have
t
Y R gt f Ai(x s x)x ™t
laje By < /E; (N(2@;)) !
N(ad) <t
Proor. For each positive integer m, put

‘ll(m) =m* ’ A= Z Xa(aei) .

[a}e (Bo) < /E:
Nad;=m

Then we have

£ aei)
At )= L an, y KO ¥ .
m=<t [al]ve((ﬁi))*/E,- (Nad;)*  m=e
<t

aag

Hence by Lemma 4.4 we have our conclusion.
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5. Density of ideals.

We keep the same notations as in the previous section. Let C= C(a) be the fixed
class of the ideal class semigroup of R. For each i, consider the i-th component &; (resp.
b;) of @ (resp. @~ 1). Let ¢ be a positive real number. Define a subset T(¢) of (b;)*/E; by

(5.1) T,-(t)={[a] e ()" /E; : INals—]%} .
Observe that

(5.2) |4 : x| < Ti(D)|

where x is a character of B=a"'/& and e€ E,,. Especially if y, is trivial on b;e;, then
(5.3) At =T, .

We will evaluate the limit:

i | TO1

t— o t

Let kU, k), - - -, k™ be all the conjugates of k; over Q. We assume that
kP (1<j<r,;) are real,
k¥ (r;+1<j<r;+c;) are complex and
k{ritetd (1 <j<c;) is the complex conjugate of k{+*9

where n;=r;+2c¢;. Let (k;)* be the set of all invertible elements in k;. We define a map
¢/ from (k;)* to the field of real numbers R by

. 1 o 1<j<r,
(5.4) /’a={ oglo I' Jj r‘
2logla?| ri+1<j<ri+c¢
where aV is the j-th conjugate of a€k;. Then we have
ritcg
(5.5) tia=log| N, a] .
j=1

The unit group E,; of the field k; is decomposed into a product: E;= E; x H; where E; is
a free group with rank r;+c¢;—1 and H; is a finite group (see [1] or [4]). Define the
regulator R(E;) of E,; as follows:

T R
/182 /282 M {ri+ci_182

R(Ei) =

1 2 e .. pritei—1
{ 8r.~+ci—l / 8ri+q—l / T 8r,~+c;—1
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where {&;, &5, """, &,4,-1} is a generator of E,.
We shall identify b; with the lattice Z™ in R™. Let {w,, w,, - -, w, } be a Z-basis
of b;. For each x=(x,, x,, - - -, x,,) in R™, we put

(5.6) AX) =X Wy +XWa+ X, Wy,

Then the map x—a(x) from Q™ to k; is bijective. Also through this map, b; can be
identified with the lattice Z™. Let w{, 1 <j<r;+2c;, be the algebraic conjugates of w;.
For xeR™, we put '

rit2c

(5.7) Nux)= ] a9(x)

j=1

where aV(x) =x,w{ +x,w¥ + - - - +x, w. Note that N is an extension of N, to R™.
Let S be the subset of R™ defined by

S={xeR"™ : Na(x)=0} .
We can define a map @ : R"\S—R""¢:
(5.8) P(x)=(£'ux), -+, £ (X)) -

Let {n1, M2, """, M, +—1) be a free basis of E;. To parameterize (6,)*/E; we chdose the
following basis for R" "¢

r-times c;-times
u=1 (01, 1,22 .2,
n;
vi=P(My), V2=P(M2), s Vere-1=PMr+e-1) -

LEMMA 5.1. The vectors u, vy, V,, = -, V, 1., form a basis of R"+¢,

Proor. We put d=det(u, v, - -, v
d#0. Recalling that

_1)- Then it is sufficient to prove that

ritci

ritce;

2 /j"lk=1°g|Nk.-(’1k)|=0 s

J

we have immediately d= + R((E,);). This gives d#0.
Let V(=V;) be the subset of R"** defined by

ritci—1

V={ull+ Uka . uER, OSvk<1 (lSkSri"'ci—l)}.

k=1
We now put
(5.9 P(=P)=0"'(V).

Let R™ be the set of non-zero real numbers. It is easy to see that
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(5.10) tPcP for all teR™ .
The following lemma asserts that the set (b;)*/E; is parametrized by P N Z".
LEMMA 5.2. The map x—a(X)E; from P~ Z" to (b,)*/E; is a bijection.

Proor. First we shall prove the surjectivity. Let oE; be an element in (b,)*/E;.
Choose an element x in Z" satisfying a(x) =a. Put

ritsi—1
P(x)=uu+ '21 UV s ve=[v ]+ {0},
]=

where m; =[v,] is the Gaussian integral part of v, and {v;} =v,—[v,]. Put

—ayMigam2 ., .. my. +c;i—1
n=ny N2 Mridei—1

Then ne€E;. Denote
B=on~1, B=a(y) and n=wu(z) (yePNZ™ zeZ™).

Then &(y)=P(x)—P(z)e V. So ye P Z"™. From this follows that the map x—a(x)E;
is surjective. Let us prove the injectivity. Suppose a(y) =a(x)x(z) and «(z) € E; for x, ye
PN Z" and zeZ"™. Since &(y)=P(x)+ P(z) and a(z) e E;, we have a(z)=1. Thus y=x
as claimed.

For each positive real number ¢, we put

(5.11) P(t)={xeP: |Na(x)|sN—t~—}, P*={xeP:|Nux)|<1}.
a

LEMMA 5.3. Let P* be the same as in (5.11). Then we have

t

t— o0

~

vol(P¥*)

where vol(P*) is the volume of P*.

PROOF. Define a map &,: R"->R"™: &,(x)=(Na,/t)!"x, xeR". We have

@ (P(1))=P*. Therefore the area P* is meshed by the n;-dimensional fundamental

parallelepipeds with edges in the lattice #(Z"). On the other hand by Lemma 5.2,

a” 1(T;(9) is the set of all lattices in P(f). From the definition of the integration we may
conclude that

lim

t— o

: 1
ILOT_ 1 oxpw .
t Na;

13

The volume of P* is given by
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vol(P*)=j dx with dx=dx, Andx, A - - ~dx,, .

P*

We can calculate vol(P *) explicitly (cf. §1.3, Chapt. 5, [1]). Then we have the following
lemma.

LemMMA 5.4. With notations as above in force, we have
i | TO1 _ 274 R(EQ))|
2o NB:‘N&i\/ | Dy |
where D, is the discriminant of the field k;.

For a, b (a#0) in R™, consider a line Z(a: b)={xa+b: xeR}. Let P(¢) be the
closure of P(¢) in R™,

LEMMA 5.5. Leta,b (a¢S) be two elements in Z™. Denote by n(a : b) the number
of connected components of P(f) n£(a: b). Then we have n(a : b) <2n;2(n,+1).

Proor. For xin R™\ S, put ®(x)=wu+ Y %" ' v,v,. Then u and v, are expressed
as in the forms:

{ u=log| Na(x)|,
uk=z;':f-'c,.klog|a<ﬁ(x)| (1<k<ri+c;—1), cueR.

Define the functions F(x) (1<k<r;+c¢;—1) by
ri+eci—1 1 .
F(x)= ) —loglax)|*.
=1 2
For each nonnegative real number a, we put
S,={xeR" : |Nux)|=a},
S.x={xeR\S : F,(x)=a} (I<k<ri+c;—1).

Let 0P(¢) be the boundary of P(¢). Then

(5.12) OP() =S U Synay Y (UrZ S (Sox U S1) -
As a ¢S, it follows that
(5.13) |SnZ(a:b)|<n,;, | Styvany N 1(a 2 b) | <2n;.

Let us prove that for each k, there are the following two cases:
(5.19) Case (1): (£(a: b)\S)=(Sor Y S1.0)»
Case (2): |£(a:b)N(So Sy |<4n;(n;+1).

Put J={xeR: xa+b¢S}. The first derivative of the function F,(xa+b) on J is ex-
pressed as
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gu(x)
(Na(xa +b))?

4 E(xath)=
dx

where g, is a polynomial in x and degg,<2n;—1. Suppose g,=0 on J. Then
F.(xa+b) is a constant function on J. Therefore (£(a: b)\S) N (S, v Sy )= or
(Z(a: b)\S)=(So .U Sy 1) Suppose that g, is not identically 0 on J. Then the equation
F,(xa+b)=0 has at most 2n, solutions on each connected component of J. Furthermore,
by the first inequality of (5.13), J has at most n;+ 1 connected components. Hence, if
g, #0, then Z(a : b) intersects to Sy, U S, ; at most 4n;(n;+ 1) times. Let us now prove
this lemma. If /(a : b) satisfies (1) in (5.14) for a number &, then n(a : b)y<n;+ 1. Suppose
£(a : b) satisfies (2) for all k=1,2 -+, r;+c;—1. Then by (5.12) and (5.13),

na : b)s%(n,-+2n,-+4(r,-+c,-—l)ni(n,-+ 1)) <2n,2(m;+1) .

6. Asymptotic formula for {;(s: x,).

Let C=C(a) be an ideal class of R with a representative a— R. Put a=0Oa, and
denote by @~ ! the inverse ideal of the ideal & of O. Let & '=b,e,+b,e,+ - +be,
be the decomposition of &~ ! by the fractional ideals b, of O,. By Lemma 4.3 and Lemma
5.2, we can consider the L-functions L(s : x) (x € B*) which have the following properties:

W: Ls:p= Y 14G6:1),
[eleEo/Ea i=1

5 x:(x(a)e;)

aePinZn (Na(a)ai)s

6.1)

2): Li(s: x)= (1<i<yg).

In this section we shall prove that the zeta function {;(s : x,) is holomorphic in the half
plane where R(s) > 1, and calculate the value:

lim (o—1)i(o: 2 -

c—>1+0

The following lemma, which is well known (cf. (2.1.2), [13]), plays a crucial role to
calculate this value.

LEMMA 6.1. Suppose y is a function on R of C-class. Then for each closed interval
[a, b] =R, we have

b b
T (e
—(a—[a]—1/2)¥(a) — (b—[b]1—1/2)¥(b)

where [x] is the Gaussian integral part of x.
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LEMMA 6.2. Let p and q be two positive integers satisfying q/p <1. For the function
Y(x)=e*™~1@Px o haye
1 p

<15 s+l + .
a<;sb¢(m) Tp vz1 vi—(q/p)? g

ProoF. We shall apply Lemma 6.1 to the function . By the Fourier expansion
theorem, we have

x— [x]————— y —— Sin 2myx for x¢Z.

T v=1 y

Therefore

b oo

Jb(x—[x]—%>t/1’(x)dx=—2./—1%J ;lfir%m—x—lﬁ(x)dx.

Since the series ) | sin2mvx/v is uniformly convergent on each closed interval /<
[a, b]\Z, the summation and the integration are interchanged. Consequently

fb<x—[x]—%)¢'(x)dx= —2./—1—"- i fbww(x)dx

o8]

=i Z % (62"‘/ 1@a/p— V)x___eln\/ 1(q/p+v)x)dx
D v=1

fb (x [x]— —)111 (x)dx

Hence by Lemma 6.1 we have our assertion.

Therefore
q 1
O B N S—
mp V=1 v:—(gq/p)*

DErFINITION 6.1. We say that a=(ay, a,, - * -, a,,) in Z™ is primitive if the greatest
common divisor of a,, a,, - - -, a,, is equal to 1.

LeMMA 6.3. Let V=V, and P=P; be the same as in (5.9). Suppose y, is nontrivial
on b,e;. Then there exists a primitive element a in P N Z" such that y(a(a)e;)# 1.

ProOF. Denote by V° the set of all interior points in V. Put P°=&~1(¥°). Then
P°<P and PP is open in R™. Therefore P° n Z" # J¥. Let b be a primitive element in
P°NZ". Choose a Z-basis {b;=b,b,, - - -, b, } of Z". We shall prove that P° ~ Z™
contains a Z-basis of Z™. Since P° is open in R™, there exists a (sufficiently small)
positive irrational number 6 such that b, +6b, € P°. Let U (= P°) be an n-dimensional
open ball in R™ centered at b, +Jb,. Put
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C(U)={xx: xeR™,xeU}.

By (5.10), C(U) is an open cone in R™. Furthermore, it is easy to see that C(U)< P°.
On the other hand, by a theorem of continued fractions (cf. Theorem 7.9, [11]), there
exists an infinite sequence (p,,, ¢,)€Z? (m=1, 2, - - -) such that

(D) 0<pm 0<Gn<qm+1>

(2 Pm+19m—Gm+1Pm=*1,

3) lim,. . Pu/9m=0.
Put v,,=gq,b, +p.b,. By (3), the series of angles 8,, between the two vectors v, and
b, +6b, converges to 0. Consequently, v,, V,.;€ C(U)cP° for a sufficiently large
number m. Put by =v,,, b5=v,,,. Then bje P°~Z" for j=1, 2. On the other hand,
from (2) it follows that {bj, b5, bs, - - -, b, } is a Z-basis of Z™. By the same arguments
as above, we may conclude that P® n Z" contains a Z-basis of Z". Hence we can choose
a primitive element a in Z" satisfying x(x(a)e;) #1.

LEMMA 6.4. Let A(t: yx.) be the function given in Lemma4.5. Suppose y, is nontrivial
on b,e;. Then there exists a positive constant K such that
| A;(t : x) | <Kt®=Vim forall t>0.

PrOOF. Since x,# 1 on b,e;, Lemma 6.3 implies that there exists a primitive element
ae P(H) nZ™ such that y(a(a)e;)#1. Therefore y,(x(a))=e2"'~ 197 for two suitable
positive integers p, q (§<p). Let {a=by, b,, - - -, b, } be a Z-basis of Z™ and W be the
n;—1 dimensional subspace of R™ generated by {b,, b, - - -, b, }. Define a projection
mapow: R"->W:

w(x;by +x,b,+ - +x, b, )=xb,+ - +Xx,.b,, .

Put S(t) =w(P(f)). S(¢) is bounded. Let b be an element in S(¢) n Z™. Then @~ '({b})
is a line which is parallel to the vector a. Let n(b) be the number of the connected
components of @~ !({b}) N P(r). By Lemma 5.5 we have

(6.2) n(b) <2n;2(n;+1) .

Hence there exist a finite number of the intervals (a;, b;] (1 <j<n(b)) such that

n(b)

PO)nZ"no '({b})= ) {va+b:ue(a;, b;1nZ}.
j=1

Since

PONZ"= |J POno '({bHnZ™,

bew(P(t)nZ"i)

we have




DIRICHLET SERIES 283

n(b)

A= ) 2 X x{a(ma)e)y(x(be;) .

bem(PMNZ™) j=1 aj<m<b;
meZ

Hence, by Lemma 6.2 and (6.2), there exists a positive constant K such that
| 4;(t: x) | <K|w(P(t) nZ")| for all 1>0.
Since

. |o(P()NZ™)|
tlirg (= Dim) vol(w(P(1))) ,

we have the assertion of this lemma.

LEMMA 6.5. The zeta function {(s: yx.) is holomorphic in the half plane where
R(s)>1. Furthermore, we have

i - =1 on b,e,
lim (a—l)ci(a:xe)={'ﬂ<c) %=1 onbe,
o

o1+ 0 otherwise

where
27 *em| R(E) |
N&NB,/|D;|

PrOOF. We first prove that the series {;(s: x,) is holomorphic in the complex half
plane R(s)>1. By Lemma 4.5 we have

K (C)=

X(e;) _ ‘ o
Y =t )t s+Sj A;(x @ x)x"57 Ydx .
(wle @) /E: (N(ad,))* L

Since | 4;(t: x.)|<|T:(¢)|, Lemma 5.4 implies that | 4;(¢ : x,)|/t is bounded on the half
line: t>1. Therefore lim,_, , 4,(t: x.)t *=0. Hence we have

[e2]

(6.3) (s : xe)=Sf Ai(x: x)x ™ ldx

1

Let b be the upper bound of | 7;(¢) |/t (1 <t). Then we have

f Ai(x: x)x " tdx

1

<b f x"%dx < oo
1
where o =R(s). Consequently by (6.3), {;(s: x,) is a convergent series in the half plane
R(s)>1.

Finally we prove the asymptotic formula of {;(s: ). Assume that y, is nontrivial
on b,e;. By Lemma 6.5 and (6.3) we have
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|Si(s - X;)|SK|S|J x" o midyx .
1

Therefore lim_,, (s—1){;(s: x.)=0.
Let us consider the case: , is trivial on b;e;. From Lemma 5.4 it follows that

lim Eﬁ;’)—'= K.(C) .
Put
(6.4) A"(tt‘ D_IT7, ‘t(’)' —k,(C)+R() .

Then for each positive real number J, there exists a number N, such that
|R(®)|<d for all t1>N,.
On the other hand
(6—1)i(o : 1)—K;(C)

=(o— 1){0 jw Ai(x: Dx7°" 1dx—J~oo xi(C)x“’dx}

1 1

=(0— 1){;c,.(C) +o Jw R(x)x““dx} .

1

Let R, be the upper bound of the set: {| R(x)|: xe[1, No]}. Then we have
(6 —1)i(o : D)—xi(C)| '
No ©
S(a—l)x,.(C)+a(a—1){Rof %dx+5J x"’dx}

1 No

=(6—1){x;(C)+ Ry log Ny} +05(No) °+1.

Therefore

Tfm_ol(d—l)ii(d ) —K(C)|<0

o—1+

for all positive real numbers 6. This implies that

lim (6—1);(c : )=x;(C).

c—+1+0

This completes our proof of the lemma.
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7. Main theorems.

Let { be a regular element of GL(n, Z) with the characteristic polynomial f(X)=
Si(X) fo(X) - - - f(X) and R=Z[(] the ring generated by { over Z. Our main results are
formulated in Theorem 7.2 and Theorem 7.3. Let C= C(a) be a class of the ideal class
semigroup G of R. We can assume that the representative a is integral. Put @=Oa.
Then d<d ™! where d is the pseudo-inverse ideal of a. Define the i-th component §;
(resp. b;) of & (resp. @~ 1) by &;e;=de; (resp. b,e;=a " l¢;). Let {; be a root of f;(X). Then
k;=Q[{;] is an algebraic number field over Q. Denote by D; the discriminant of the
field k;. Let E,, be the unit group of the ring of algebraic integers O of Q[{]. By Lemma
3.6, the index (E, : E,) is finite. (Here E, is the group of stabilizers of a.) Let E,; be the
unit group of the number field k;. E, is a product of a finite group H; and a free group
E;. Let B* be the character group of the finite additive group B=a ™ '/d. We consider
the L-series L(s: ) (x € B*) given in (6.1). The following lemma is a direct consequence
of Lemma 6.5.

LeEMMA 7.1. The function L(s: x) is holomorphic in the complex half plane where
R(s)>1. Furthermore, we have
2" n(Eg : Eg)| R(Eg) |

. R xX=
lim (6—1)YL(c: x)=< Na 'Na[[i_,/ID:l
c—>1+0 0 X#l'

Let f;(X) be an irreducible factor of f(X). Let r; (resp. 2c;) be the number of real

(resp. complex) roots of fi(X). Put r=)¢_ r,and c=) ?_, c,.

THEOREM 7.2. Let {.(s) be the zeta function of an ideal class C= C(a), which is
defined by

(=Y

bec (ND)*
bc=R

Then we have
(1) ¢c(s) is holomorphic in the complex half plane R(s)>1, and

2) lim,.,.+9 (6—1)¥¢[(0)=2" +C(T£)C (Eo : E))| R(Eo)|

N(@Na| Ho|\/INFOT

Proof. By Theorem 4.2 and Lemma 7.1 the assertion of (1) is obvious.
Furthermore,

' (Eo : E,)|R(Ey)|
| Ho|(a~ ' : )NaNa ], +/ID;]
It is easy to see that Nf'({)=(0: R)*[[?_,D; and (@ ': & Na '=(0: R)Na.

lim (o—1)"c(0)=
g—>1+0
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Hence the theorem follows.

THEOREM 7.3. We define a Dirichlet series {g(s) by

¢ ab)
Cr(s)= ; (ND)*

where Y, runs over all nonsingular ideals of R and a(b) the constant defined by a(b)=
NBNbB/(E, : Ey). Then we have

| R(Eo) |

| Ho l\/INF(D)]

where | G| is the order of the ideal class semigroup G of R.

lim (o—1)?(x(0)=|G|2"*(n)
g—+1+0

PrOOF. Let b be an integral ideal in C(a). Then there exists an invertible element
A in Q[{] such that la=b. Since (la) =17 'a, we have NbNb=N&Na. Also since A is
invertible, we have E;=E,. Therefore a(b)=a(a). From this it follows that {z(s)=
> c@ec U@ c(s). Hence by Theorem 7.2 we have our assertion.
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