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1. Introduction.

Let C be a nonempty closed convex subset of a real Banach space E. Then a
mapping 7: C— C is called nonexpansive, if ||Tx—Ty|| <|x—y| for all x, ye C. We
denote by F(T) the set of fixed points of 7. Let G be a commutative semigroup with
identity and let & ={T(s) : s€ G} be a family of nonexpansive mappings of C into itself
satisfying T(s+¢)=T(s)T(¢) for all s, te G, which is called a nonexpansive semigroup
on C. Then, u: G— Cis called an almost-orbit of & ={T(s): se G} if

lim sup |u(t +s)— T(2)u(s)|| =0,

where the binary relation < on G is defined by a<b if and only if there exists ce G
such that a+c=h. The notion of such an almost-orbit was introduced by Takahashi
and Park [24]; see Bruck [4] in the case of G={1, 2, 3, - - -} and Miyadera and Kobayasi
[15] in the case of G={r: 0<t<o0}.

The first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert space
was established by Baillon [1]: Let C be a nonempty closed convex subset of a Hilbert
space and let T be a nonexpansive mapping of C into itself. If the set F(T) is nonempty,
then for each x e C, the Cesaro means

1 n= 1

S(x)=— Y T*x

n kK=o
converge weakly to some y € F(T). In Baillon’s theorem, putting y = Px for each xe C,
P is a nonexpansive retraction of C onto F(T) such that PT"=T"P = P for all positive
integers n and Pxeco{T"x: n=1, 2, ---} for each xe C, where coA is the closure of
the convex hull of 4. Takahashi [20, 22] proved the existence of such retractions,
“ergodic retractions”, for noncommutative semigroups of nonexpansive mappings in a
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Hilbert space. Rodé [19] found a sequence of means on the semigroups, generalizing
the Cesaro means on the positive integers, such that the corresponding sequence of
mappings converges to an ergodic retraction onto the set of common fixed points: see
also [24]. On the other hand, Miyadera and Kobayasi [15] proved nonlinear ergodic
theorems for almost-orbits in the case when G={r: 0<t<oo} and a Banach space E
satisfies Opial’s condition or has a Fréchet differentiable norm. Hirano, Kido and
Takahashi [9, 10] proved nonlinear ergodic theorems for commutative semigroups of
nonexpansive mappings in a uniformly convex Banach space with a Fréchet differen-
tiable norm.

The purpose of this paper is, among other things, to prove a nonlinear ergodic
theorem for almost-orbits of commutative semigroups of nonexpansive mappings in a
uniformly convex Banach space which satisfies Opial’s condition. Further, we consider
some applications of this result.

2. Preliminaries.

Throughout this paper, we assume that a Banach space E is real and G is a
commutative semigroup with identity unless others specified. In this case, (G, <) is a
directed system when the binary relation < on G is defined by a <b if and only if there
is ce G with a+c=b.

We denote by E* the dual space of E and by R the set of real numbers. In addition,
R* denotes the set [0, + o0) of nonnegative real numbers. We also denote by {y, x*>
the value of x*e E* at ye E. For a subset 4 of E, coA (resp. co4) means the convex
hull of A4 (resp. the closure of convex hull of 4). We say that E satisfies Opial’s condition
[17] if for any sequence {x,} = E with x,— x € E, the inequality

liminf | x,—x|| <liminf || x,— y| ¢))
holds for every y € E with y # x, where — means weak convergence. In a reflexive Banach
space, this condition is equivalent to the analogous condition for a bounded net which
has been introduced in [13].

PROPOSITION 2.1. If a Banach space E is reflexive, the following conditions are
equivalent:
(i) For any sequence {x,} = E with x,—z, € E, the inequality

liminf ||x, —z,|| <liminf || x, —y|

holds for every y € E with y#z;
(i) For any bounded net {x,} = E with x,—~y, € E, the inequality

liminf || x,— y,|| <liminf || x, — y||

a a
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holds for every ye E with y #y,.

Proor. We know from Browder [3] that if C is a bounded subset of a reflexive
Banach space E and x is a point in the weak closure of C, then there exists an infinite
sequence {x,} = C converging weakly to x. Since (ii) = (i) is obvious, we show (i) = (ii).
Assume that there exists a bounded net {x,} = F satisfying x,—x, and

Iiminf ||x,— y,| <liminf || x, — x, ||
for some y, € E with y,#x,. There exists a subnet {x, } of {x,} = E such that
lim lnf “xa_yOH =11/I}n ”xaﬁ _J’o” .

Then, we have

hllin ”xalg —JYo ” =liminf ”xa —Jo H

<liminf | x, — x| <liminf || x,, —x,| . 2
a B

On the other hand, there exists a subnet {x,, } of {x,,} such that

Then, from (2), we have

lim ”xaﬁv —Yoll =1i;n X, — Yol glimﬂinf X4, — X0l =lim ”xaﬁy"'xo” .
y y

Put K,=lim, Hxa,,y—Jfo“ and L,=lim, Hxaﬂv—on. We have that K,<L,. Let
X=ExRxR, C= {(xaﬂv, ”xaz,gy —Yoll, ”xaﬁy'—xoﬂ)} and x=(xo, Ko, Lo). Since x,—x,,
Hxaﬂv —¥oll = K, and ||xaBy—x0H — Ly, we see that x is a point in the weak closure of
C. So, from Browder [3], there exists a sequence {x,} = C such that x,—x=(x,, Ky, L,).
Put {x,} ={(z. |za—Yoll, |z.—Xol])}. Then, we have

lim ||z, —yol|=K, and lim|z,—x,l=L,.
We also have that z,—Xx,. Then, it follows from (i) that
Lo=lim |z,—x,| <lim | z,— o =K, ,

which contradicts K, < L,,. O

It is known that all Hilbert spaces and /7 (1 <p < o0) satisfy Opials’s condition. It
is also known that every separable Banach space can be equivalently renormed so that
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it satisfies Opial’s condition (see [6]). We also know that if a Banach space E has a
duality mapping which is weakly sequentially continuous at 0, then E satisfies Opial’s
condition (see [7]). However, the spaces L? with 1 <p<oo and p#2 do not satisfy
Opial’s condition (see also [17]).

Let m(G) be the Banach space of all bounded real-valued functions on G with the
supremum norm. Then, for each se€G and fem(G), we can define r fem(G) by
(r f)Nt)= f(t+5) for all e G. We also denote by r* the conjugate operator of r,. Let D
be a subspace of m(G) and let u be an element of D*. Then, we denote by u(f) the
value of p at fe D. Sometimes, u(f) will be also denoted by u,(f(¢)) or [ f(¢£)du(t). When
D contains constants, a linear functional u on D is called a mean on D if |ju| =u(l)=1.
Further, let D be invariant under every r,, s€ G. Then, a mean u on D is invariant if
u(r.f)=pu(f) for all se G and feD. For se G, we can define a point evaluation J; by
8 f)=f(s) for every fem(G). A convex combination of point evaluations is called a
finite mean on G. A finite mean u on G is also a mean on any subspace D of m(G)
containing constants. The following definition which was introduced by Takahashi [20]
(see also [10]) is crucial in the nonlinear ergodic theory for abstract semigroups. Let
f be a function of G into E such that the weak closure of {f(¢t): te G} is weakly
compact. Let D be a subspace of m(G) containing constants and invariant under every
r,, s€ G. Assume that for each x*e E*, the function r— {f(#), x*) is in D. Then, for
any pue D* there exists a unique element f, € E such that

S X*H= f(f(t), x*>du(t)

for all x*e E*. If u is a mean on D, then f, is contained in co{ f(¢) : t€ G} (for example,
see [11, 12, 20]). Sometimes, f, will be denoted by | f(®)du(2).

Let C be a subset of a Banach space E. Then, a family & ={7(s) : s€ G} of mappings
of C into itself is called a nonexpansive semigroup on C if it satisfies the following
conditions:

(i) T(s+1t)=T(s)T(¢) for all s,teG;

() [T)x—TEs)yl<||x—y| for all x, yeC and s€G.

We denote by F(¥) the set of common fixed points of T(¢), teG, that is,
AL)=(),.c T)). If C is a bounded closed convex subset of a uniformly convex
Banach space E and G is commutative, then we know that F(&) is nonempty (for
example, see [2]). A functionu: G — Cis called an almost-orbitof & = {T(t) : te G}if

lim sup ||u(t + s)— T(t)u(s)|| =0

(see [15, 24]). We denote by AO() the set of almost-orbits of & ={T\(t): te G}.
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3. Lemmas.

In this section, we give some lemmas which are used to prove the main theorem
in Section 4. The following lemma was proved in [9, 16].

LemMA 3.1. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space E and let & ={T(t): te G} be a nonexpansive semigroup on C. Let

u be an almost-orbit of & ={T\(t): te G}. Then, for each ¢>0 and a finite mean A on G,
there exists w' =w'(e, A) such that

‘ T (h)( ju(w + t)di(t)) - JT(h)u(w +t)dA(t)

for every he G and w>w'.

<&

By using Lemma 3.1, we can now show the following lemma which plays an
important role in the proof of Lemma 3.5.

LEMMA 3.2. Let E,C, ¥ ={T(t): te G} and u be as in Lemma 3.1. Let {u,: ael}
and {Az: BeJ} be nets of finite means on G such that

lim g, —r*p,ll=0 and lim |Az—r*A;)=0 for every teG. (%)
a B
Then, there exist {p,}, {q;} =G such that for any ze F(¥),

lim
o

‘[u(pa + t)d,uaz(t) —Z

=lim ‘
B

J (g + )dAgt) —z

3

ProOF. Define ¢: G—R™* by ¢(s)=sup, ||u(t +s)— T(t)u(s)| for every se G and let
¢>0. Then, for ae! and feJ, from Lemma 3.1, there exist p,, gs€ G such that

pw+p)<e, dw+gqp<e,

r

sup T‘(h)u(w +Pat t)dﬂa(t) - TU’)(

heG

»

uw+p,+ t)d,ua(t)> <e

(Y,

and
{‘

sup | | Th)u(w + g5+ s)dAs) — T(h)(

heG || J

™

uw+qp+ s)d/l,;(s)) <eg

o

for every we G. Fix ze F(¥) and consider

b

L= “ Ju(pﬁ dp,(t)—z

Ilzi

f u( Pyt 1)dp,(t) — jju(pa + 1+ g+ 5)dAg(s)du.(t)

>
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L= ” Pu( Patt+qs+s)digs)du(t)—z|
I = P Pu(pa+t+qp+S)di,;(S)d#a(t)— J f T(p,+ tyulgy + s)dAg(s)du,(t)|| ,
S = ﬁ ”T(pa + )ulgy + s)dAg(s)du,(t) — JT(pa + t)< J u(gp+ s)dlp(s)>dua(t)
and -
JP = fT( Pt t)( f u(qp+s)diﬂ(s)>d/,ta(t)—z :

Then, we have L<I,+1, and I, <J{®+J»+J{. Suppose

H= ). ad, (a,-ZO, Y a,:l) and A=}’ b;4,, (bjzo, > b,.=1>. 4)
i=1 i=1

i=1 i=1

Then, we have

IPS Y Y ab;|upa+tit-gp+5) = T(pa+ ulgy +5,)

M= i
”M§ TIM;

A

(a )Sl’llp ||u(h+Qp+Sj)_ T(h)u(‘Iﬁ +5;)ll = _;l bj¢(qﬂ+sj)

-
il

-
~.

and

n
JP<Y
i=1

a; Jﬂpa +1,)u(qp+5)dAg(s) — T(p, + 1; )< fu(qﬂ + s)d,l,,(s))

<sup
heG

Since z € F{¥), we obtain

IP<Y q T(pa+t,-)( f u(q,;+s)au,;(s))—z
i=1

< ” fu(q,, +5)dAg(s)—z| .

Then, we have

L<JP+IJP+IJP <e+e+ “ fu(q,, +5)dAg(s)—z| .

On the other hand, from (4), we obtain

Il = >[u(paz_*- t)dpuaz(t)— '21 bj ju(pa"— t+qﬂ+sj)dﬂa(t)

= Z bj|| | u(pa+ t)du,t )—Ju(pa +0)d(r g, + 1))

3

Z Sup ”u(g)“ ”“a q5+s,1ua“
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Therefore, from lim, I, =0, we have

Ju(pa +1)dp,(t)—z

lim sup
a

=limsup L

slimsup(11+12)_<_2£+l

J‘u(qﬁ + S)dlﬂ(S) —Z
Then, we have

lim sup

Ju( P.+t)du(t)—z J u(gg+s)dAgls)—z|

<2e+liminf
B

Since £>0 is arbitrary, we obtain

(‘
limsup || |u(p,+t)du(t)—z ‘ <liminf l Ju(qﬂ +5)dAg(s)—z
« B
Similarly, we have

limsup || | u(gs +s)dAg(s)—z
ﬂ o

< liminf

a

Ju(pa + t)dua(t) —Z
Therefore, we have

O

lim
[« 4

J\u(pt,t +0)du(t)—z|| = li‘{n ” Ju(q,, +t)dAy(t)—z

REMARK 3.3. In Lemma 3.2, take {p,}, {g;} =G such that p,>p, and gz=>¢;.
Then, we can see that

lim
4

Ju(P; +t)dp,(t)—z

=lim l
B

fu(q}, +t)dAg(t)—z

for every ze F(¥).
For each ¢>0 and heG, set
F(Th)={xeC: | Tthx—x| <&} .
Then, as in the proofs of [10, 16], we have the following lemma.

LeMMA 3.4. Let E,C,¥={T(t): te G} and u be as in Lemma 3.1. Let {u,: a€l}
be a net of finite means on G such that

lim ||y, —r*u,l|=0  for every teG. (*)
Then, for any >0 and he G, there exists ay(e, hye I such that

ju(p +1)dp,(t) € F(T(h))
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Jor all a>ay(e, h) and peG.

By using Lemma 3.2 and Lemma 3.4, we can show the following lemma which is
crucial to prove the main theorem (Theorem 4.1).

LEMMA 3.5. Let E,C, ¥ ={T(t): te G} and u be as in Lemma 3.1. Additionally,
assume that E satisfies Opial’s condition. Let {u,: acl} be a net of finite means on G
such that

lim |y, —r¥u,| =0 for every teG. (%)

Then, {u(h+ t)du,(t) converges weakly to some y e F(¥) uniformly in he G. Furthermore,
such an element y of R¥) is independent of {u,} and for any invariant mean u on D,

y=u,=[u(t)dut).
PROOF. Let {u,: ael} and {A;: BeJ} be nets of finite means on G such that

lim ||, —r¥p,ll=0 and lim|A,—r*,) =0 (%)
a B
for every e G. From Lemma 3.4, for each he G, we have

lim sup
a p

Ju(‘v +)dp,(t)— T(h)( Ju(p +1)dp (1 )> l =0. &)
Further, we can take {p,} =G such that for any ze F(¥), lim, I f u(po+ t)dp(t) —z||
exists. Let {®,}={fu(p,+1)du,(t): ael}. Then, we first prove that {®,} converges
weakly to some y € F{%). Since E is uniformly convex and C is a bounded closed convex
subset of E, {®,} must contain a subnet which converges weakly to a point in C. So,
let {@, } and {®,,} be two subnets of {®,} such that

w-llm@, =v and w-limd, =o',
v 5 [
b4

where w-lim, x, =x means x,—Xx. Then, from (5) and demiclosedness principle (see [3]),
we have that v and v’ are common fixed points of 7(¢), te G. Suppose v#v’. From
Lemma 3.2 and Opial’s conditions, we obtain

lim |@,—v|| =lim |®,, —vll <lim ||®, —v’
a b b

=lim ||®,,—v'| <lim |®,, —v| =lim ||, — ] .
o o a

This is a contradiction. So, we have that v=v’, which implies that {®,} converges weakly
to some y € F(&). Next we prove that { {u(h+ t)du,(t)} converges weakly to y uniformly
in 4. In the above argument, take {p,} = G such that p,>p, for each a € I. Then, repeating
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the above argument, we see that {®,}={{u(p,+1)du,t): «el} converges weakly to
some y' € (). We show y=y’. From Lemma 3.2 and Remark 3.3, we know
f u( P+ 1)dp(t)—z l ju(pa + 1)dp(t)—z (6)

lim
a

=lim
X

for every ze F(%). Suppose y #y’. Since y and y’ are common fixed points of 7(¢), te G,
from (6) and Opial’s condition, we have

lim || @, —y’|| =lim || @; -y’ <lim ||, — y|
=lim |@,—y| <lim [[®,—y’| .

This is a contradiction. So, we have y=y’e F(¥). Since {p,} is any subset in G such
that p,>p, for each ae I, we have

w-lim fu(h +p,tt)du(t)=y

uniformly in 2e G. Let x*e E* and ¢>0. Then, there exists «, such that

f<u(h +Pat8), X *dils) =y, x*y | < )
for every a>a, and he G. Suppose
H.ao= z bkask <bk—>—07 Z bk=1> . (8)
k=1 k=1

Put puo=p,, and po=p,,. From (7), we have

I fj(u(h +1+po+5), x*Ddpo(s)dAgt)— <y, x*)

=| J< J‘u(h + t+po+8)du(s), x*>dﬂ,,(t)— J(y, x*>dAyt)

SJ" < ju(h+t+p0+s)duo(s)—y, x*>

for every he G and feJ. Since {4,} satisfies (), there exists f; such that

£
dAg(t) <35

e

Ag—rX Al <
1% ol 2max{1, M|x*|}

po+ sk

for all k=1,2, ---, m and B>, where M =sup,_¢ llu(g)||. Then, it follows that
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! f Culh +1), x* > dAy(t)— f J(u(h+ t+po+5), X*>dug(s)dAt)

=|f<u(h+t), x*)dlﬂ(t)—'K i buth+t+py+sy), x*>diﬁ(t)
k=1

uMa

f(u(h+t) x*>dA(t)— f(u(h+t x*yd(r}k ;o Ap)t)

3

< Y bM|x*|| A~ gl <=

Po+sk
k=1 2

for every = f, and heG. Therefore,

| f(u(h +1), x*>dAg(t)— <y, x*)

< l J(u(h +1), x*>dAy(t)— fj(u(h +t4po+5), x*>duy(s)dA,t)

<8 _,

2 2

Jf(u(h +1+po+8), x*Dduo(s)dAg(t) — <y, x*)
for every >, and heG. Hence,

w-li’I;n j u(h+t)dig(t)=y
uniformly in € G. Since {4;} is an arbitrary net of finite means on G such that
li;n I Ag—rX*isl =0 (*)

for every t€ G, we have that such an element y of F{(#) is independent of {4,} and {u,}.

Finally, we prove that for any invariant mean u on D, y=u,. Since the set of all
finite means is weak*-dense in the set of all means and as in the proof of [5, Theorem
1 in Section 5], we see that for any invariant mean u on D, there exists a net {uz} of
finite means on G such that limg ||u; —r*u,ll =0 for every se G and uz; converges to u
in the weak* topology. Then, we have

w-lim fu(t)dup(t) = ju(t)dy(t) =u,.
B
On the other hand, we obtain
f u(t)dpy(t)—y .

Hence, we obtain y=u,. O
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4. Nonlinear ergodic theorem.

In this section, we prove a nonlinear ergodic theorem for a commutative semigroup
of nonexpansive mappings in a uniformly convex Banach space which satisfies Opial’s
condition. Let D be a subspace of m(G) containing constants and invariant under every
r., sS€G. Then, according to Hirano, Kido and Takahashi [10], a net {u,: ael} of
continuous linear functionals on D is called strongly regular if it satisfies the following
conditions:

(@) sup, |[p,ll <+ o0;

(b) lim,p,()=1;

(¢) lim, ||u,—rXu,l|=0 for every seG.

Using Lemma 3.5, we can now prove the following main theorem.

THEOREM 4.1. Let E be a uniformly convex Banach space which satisfies Opial’s
condition, let C be a nonempty bounded closed convex subset of E and let & ={T\(t) : te G}
be a nonexpansive semigroup on C. Let u: G — C be an almost-orbit of ¥ ={T(t): te G}
and let D be a subspace of m(G) containing constants and invariant under every rg, s€ G.
Suppose that for each x* € E*, the function t— {u(t), x*) is in D. If {4,} is a strongly
regular net of continuous linear functionals on D, then [u(h+t)dA(t) converges weakly
to some y € F(&) uniformly in he G. Further, such an element y of F() is independent
of {A,} and for any invariant mean p on D, y=u,= [u(t)du(t). In this case, if

Qu=w-lim j u(t)di(t)  for each ueAO(Y),

then Q is a mapping of AO(Y) onto F(&) satisfying the following conditions:
(i) Q is nonexpansive in the sense that

| Qu— Qv <sup lu(e) —v(O)ll = lu—vl

for every u, ve AO(X);
(ii) OT(t)u=T(t)Qu= Qu for every te G and ue AO(Y),
(i) Que(\,.qco{ul(t): t=s} for every ue AO(S).

PrOOF. Let {4,: ael} be a strongly regular net of continuous linear functionals
on D and let {uz: BeJ} be a net of finite means on G such that

lim ||y —r*pgll =0 for every teG. (%)
B
From Lemma 3.5, we have

fu(hw)du,,(r)éyew)
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uniformly in /e G. Let x*€ E* and ¢>0. Let u be an invariant mean on D. Then from
Lemma 3.5, we know y=u,. Further, there exists 8, such that

&

‘ f{u(h +1), x*>dug(t) —<u,, x*>| <

Sup, (|14,
for every f> B, and heG. Suppose
uﬂl == Z bié,i N (bl 20, Z bi= 1) (9)
i=1 i=1
and put pu, =pugz,. Then, we have
J<u(h +1), x*pdpy (1) —uy, x*)
=l < Z bu(h+1t,), x*> —<u,, x*) <——8—— (10)
i=1 sup, “la”
for every he G. We also know that
< J ulh+s+t)du,(t)dA(s)—u,, x*>
(I
= J< uth+s+t)du,(t), x*>dﬂ.a(s)—<uu, x*>
=J< ulh+s+t)dp,(t)—u,, x*>d2a(s)+J<u,,, X*>dA(s)—<uy, x*) .
o
Since {4,} is strongly regular, there exists a, such that
11—A41)|< ¢ 1)
T max{l, llu,) - x*))}
and
€
A =7 Aqll < (12)

max{1l, M- [x*||}

for alli=1, ---, n and a>a,, where M=sup, ¢ [lu(g)|. Then, we have

<|<uy, x*5 111 =2,1) ] <&

uy, x*)— j(uu, X*>dA(s)

for every a>0a, and from (10),
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’ J< fu(h+s+ t)dp,(t)—u,, x*>dﬂ.a(s)
< fu(h+s+ )dun(t) = x*>

for every h, se G and o€ l. Thus, we obtain

< f[u(h +s+t)dp, (t)dA ) —u,, x*>

for every he G and a>a,. On the other hand, we have from (9) and (12) that

l < Ju(h + 5)dA (), x*> — < qu(h + 5+ t)du,(t)dA(s), x*>

U<u(h+s 2 b, u(k+s+t,-),x*>dﬂa(s)

<é

<g+e=2¢

< ¥ b ' f<u(h+s)—u(h 541, x*>dA(s)

n M:

J(u(h-{-s) x*>d(A,—1FA,)(s)

< Y bill A, —r¥A I Mix*| <e
i=1

for every he G and a>a,. Therefore, we obtain

‘ < Ju(h +8)d A,(5)—u,, x*>
< \ < J‘u(h + 8)d A,(5), x*> — < Jju(h + s+ t)du,(t)dA(s), x*>

+ < J'Ju(h +s54+1)du,(t)dA(s)—u,, x*>

<e+2e=3¢

73

for every he G and a>o,. Then, fu(h+t)d2,(t) converges weakly to y € () uniformly
in A. Further, such an element y is independent of {4,} and y=u, for any invariant

mean y on D.

Next, put Qu=w-lim, [u(t)d,(t) for every uec AO(%). Then, we show that (i), (ii)

and (iii) hold.

Let us show (i). Let u, ve AO(¥) and ¢>0. Since {4,} is a strongly regular net of

continuous linear functionals on D, there exists a’ such that
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A —1]<

llu—vllq

for every a>a’. Then, we have, for x*e E* and a>a’,

” Ju(t)d A1) — fv(t)dla(t)

= Slﬁp J(u(t), x*>dA(1)— f Ko(t), x*HdA,(t)
x*|| <1

= Slip f(u(t)—v(t), x*ydA(t)|< ’ Jllu—vllwdla(t)
x*|| <1

=Ullu—vllwdi¢(t)—IIu—v||w+ lu—vl e

Slu—vl |1 =4, D)+ lu—vll,<e+u—vl -
Since x > || x| is weakly lower semicontinuous, we have

|Qu— Quv|| <liminf fu(t)dla(t) - Jv(t)d A2)

<et+|lu—v|y-

Since £>0 is arbitrary, we have |Qu—Qv| < |lu—v| ., which implies (i).

Let us show (ii). Let ue AO(¥). Since Que F(¥), we obtain T(q)Qu = Qu for every
g€ G. As in the proof of [23, Lemma 6], we can see that s — T{(q)u(s) is an almost-orbit
of ¥ ={T(t): te G} for every ge G. So, QT(q)u is well-defined for every ge G. Let £>0
and x* € E*. Since uis an almost-orbit of ¥ = {T(¢) : t€ G}, there exists ¢, € G such that

£
Sup Iz +p) — T p)u(?)| <4max{supa - e 13 (13)

for every t>t,. Since {4,} is strongly regular, there exists a; such that

€
F— 14
14a=richall < 4max{sup{|{x, x*}| : xe C}, 1} o

for every a>a,; and since

fu(h +1)dA(t)—u,= Que {¥)
uniformly in A e G, there exists a, with o, >a, such that

sup
heG

J(u(h+t), x*>dA (1) —{Qu, x*> <% (15)
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for every a>a,. On the other hand, consider

.
I =| | <T(qu(), X*>dla(t)—J<T(Q)u(fo +1), x*>d A1)

-
L= | <T(@ulto + 1) —ulq + 1o +1), x*>d A,(t)

b

r

Iy=| | <ulg+to+1), x*>dA(t)— f(u(q +1), x*5dA[t)

and

1= f<u(‘I+t),X*>dla(t)—<Qu,X*>

Then we have

<L +L+I1;+1,.

l J(T(q)u(t), x*>dA(t)—Qu, x*)
Then, from (14), we have

Il=

J KTg)u(t), x*>d A1) — J( T(qu(t), x*>d(rigA,)1)

<sup{|<{x,x*>|: xeC}- ||,1a—r:c;,1an<%
for every ge G and a>a,. From (13), we obtain

I, < “ x|

jn T(q)u(to+1)—ulg + 1o+ 1) | dA()
<sup | Tlg)u(to +1)—ulg+to+ 1)l Il * I <

for every ge G and ae€l. From (14), we have

I3=

f(u(q+ 1), x*d(r5A)t) — J(u(q +1), x*5d A1)

<sup | <u(g), x* | 1A, — 1A <5
geG 4
for every qe G and a>a,. From (15), we obtain

I4=

f(u(q+t), x*5dA(t) — < Qu, x*

4
<%

for every ge G and a>a,. Therefore,

b
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I=

[ e Qures |« £ 55

for all ge G and a>a,. This implies that
w-lim fT(CJ)u(t)d A{t)=QT(qu=Qu

for every g € G. Therefore, we have QT(q)u = T(q)Qu = Qu for every uc AO(¥) and g€ G,
which implies (ii).

Let us show (iil). Since Qu=u, for every invariant mean on D, as in the proof
of [21], we have

u,=Que () co{u(t) : t=p},

peG
which implies (iii). ' O
The following result is a generalization of Hirano [8, Theorems 3.1 and 3.2].

COROLLARY 4.2. Let E,C,¥={T(t): teG} and u be as in Theorem 4.1. Then,
{u(?) : te G} is weakly convergent if and only if

u@s+t)—u(@)—0 for every seG. (16)
In this case, the limit point of {u(t)} is a common fixed point of T(t), teG.

PROOF. We need only show the “if” part. Let {u,: €/} be a net of finite means
on G such that

lim ||u, —rX*u,l =0 for every teG. (*)
Then, by Lemma 3.5
w-lim Ju(h +t)du(t)=u,e (&)

uniformly in 4 € G, where u is an invariant mean on m(G). Let ¢>0 and x* € E*. Then,

there exists a, such that
' < Ju(k + t)dp(t) —u,, x*>

for every a>a, and he G. Put

By = i a;0;, (a,-_>_0, Y a,-=1).

i=1

€
<7

From (16), there exists ¢, € G such that
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| <ult+55) —u(t), x*) |<%

for every t>t, and i= 1,2, - -, n. Then, we obtain

| ult) —uy, x*> | = ’ < fu(t)duao(S) — Uy, X*>

Sl < Ju(t+s)d,uao(s)—uu, x*>

S+ Yl Culs)—ul), ¥l <e
i=1

+ ‘ < J.[u(t +5) —u(t)]dp,(s), X*>

<

for every t>t,. This implies that w-lim, u(t) = u, € F(¥). O

5. Applications.

In this section, using Theorem 4.1, we prove some nonlinear ergodic theorems in
a uniformly convex Banach space which satisfies Opial’s condition. Let C be a nonempty
bounded closed convex subset of a uniformly convex Banach space E and let 7 be a
nonexpansive mapping of Cinto itself. Then, according to Bruck [4], a sequence {x,} = C
is called an almost-orbit of 7 if

lim ( Sup (| X, .+ m— T"’x,,||>=0 .

n—>o0c \ m>0

THEOREM 5.1. Let C be a nonempty bounded closed convex subset of a uniformly
convex Banach space E which satisfies Opial’s condition. Let T be a nonexpansive mapping
of C into itself and let {x,} be an almost-orbit of T. Then, 23 7. x,,, converges weakly
to some ye F(T), as n — oo, uniformly in k=0,1,2, ---.

ProOF. Let G={0,1,2, ---}, ¥={T":ieG}, D=m(G) and A,(f)=L>"2, f@)
foralln=1,2, --- and feD. Then, since

I An—riall = Sup | (A —r )]

_1 — 2.,
= sup 1/O~/()|<~~0,

Sli=1
as n— o0, {4,: n=1,2, -+ -} is strongly regular. Further, since {x,} is an almost-orbit
of ¥={T": ie G}, we obtain Theorem 5.1 using Theorem 4.1. O

Let N={0,1,2, ---} and let Q={q, n}nmen be @ matrix satisfying the following
conditions:
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0

(@  sup Y |guml<o0;

nz20 m=0

(b) lim Z qn,m=1 s

n—=oo m=0

(C) lim Z an,m+1_qn,m|=0'
n—=>o© m=0
Then, according to Lorentz [14], Q is called a strongly regular matrix. If Q is a strongly
regular matrix, then for each meN, we have that | g, ,,| =0, as n— oo (see [10]).

THEOREM 5.2. Let E and C be as in Theorem 5.1. Let T be a nonexpansive mapping
of C into itself and let {x,} be an almost-orbit of T. If Q is a strongly regular matrix,

then Y. >_ qumXm+x converges weakly to some yeF(T), as n— oo, uniformly in
k=0,1,2, ---.

PROOF. Let G={0,1,2, -}, ¥ ={T":neG}, D=m(G) and A(f)=
Ly ®  Gumf(m) for each n=1,2, --- and feD. Then, since Q is a strongly regular
matrix, we have '

sup [[4,/l=sup sup |A,(f)|<sup sup (Z lq,.,,,.llf(m)|>
n>0 n>0 || flls1 nz0 | fll<1 \ m=0

0
<SUP Y [Guml<o0

n>0 m=0

and
lim A, (1)=1im ) g,.=1.
n— o n=o0 m=0
We also have ||A,—rX*4,l| =0 for every k=0, 1, 2, - - -. Indeed, we have that

1As—r¥Aall = sup [(A,—ri)/)I
Hri=st

S Gunlf(m)— f(m+1)}

m=0

= sup
Hril<1

= Ssup
tril<1

Guof OF 3 dumer S+ D= 5 gof m+1)

< Z |qn,m+1_qn,m|+|qn,0| s
m=0

as n — oo. Further for k>2, we have
A= r¥Aull < NrEAy—rd 1 Aull + - - - + ¥ A — Al
Sk"/ln_rik'ln“ -0 s
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as n— oo. Therefore, {4,: n=1, 2, - - -} is strongly regular. So, using Theorem 4.1, we
obtain Theorem 5.2. ]

Let C be a bounded closed convex subset of a uniformly convex Banach space E
and let &'={T(s): 0<s} be a family of nonexpansive mappings of C into itself. Then,
&' is called a nonexpansive semigroup on C if it satisfies the following conditions:
T(0)=1, T(t+s)=T(t)T(s) for all t,seR* and 7(¢)x is continuous in reR™* for each
x e C. According to Miyadera and Kobayasi [15], u: R* — C is called an almost-orbit
of '={T(s): 0<s< + o0} if

lim ( sup ||u(t+s)— T(t)u(s)|| ) =
s \ t20

THEOREM 5.3. Let E and C be as in Theorem 5.1. Let &' = {T(t): 0<t< + o0} be
a nonexpansive semigroup on C. Let u be an almost-orbit of &' ={T(t): 0<t< + o0}.
Additionally, assume that u : R* — C is continuous. Then, + [ u(t + k)dt converges weakly
to some ye F(¥'), as s » oo, uniformly in k>0.

Proor. Let G=R", ¥={T(t): 0<t<oo} and let D be the Banach space C(G) of
all bounded continuous functions on G with the supremum norm. Define
A(f)y=-=+[5 f(t)dt for every s>0 and fe D. Then, we obtain

| As—riFAsl= sup ’—IJ f(t)dt—if f(t+k)dt
IFaESE R S

= sup
S fils

J F(odi— J " ey | = J F(r)di— f £yt

k
5;1 sup (f | £(0)\dt + f |f(t)ldt) 2% 9,

as s — 00. Therefore, using Theorem 4.1, we obtain Theorem 5.3. O

Il
h'n—-ﬂ

i

Using Theorem 5.3, we obtain the following theorem. However, using Theorem
4.1, we prove it.

THEOREM 5.4. Let E and C be as in Theorem 5.1. Let &'={T(t) : 0<t< + o0} be
a nonexpansive semigroup on C. Let u be an almost-orbit of &' ={T(t): 0<t< + o0}.
Additionally, assume that u: R* — C is continuous. Then,

r J e "u(t+k)dt converges weakly to some ye F(¥'), as r—0,
0

uniformly in k>0.

ProoF. Let G=R"*, &={T():0<t<oo} and D=C(G). Define Ai(f)=
rj'ffe"‘f(t)dt for each r>0 and feD. Then, for each seR™, we have
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14, —r¥All= sup rj e_"f(t)dt—rj e "f(s+1)drt
I

fliist 0 )
= sup rJ‘ e "f(t)dt+r(1 —e’s)f e "f(t)dt
i<t ) s

<rs+|1—e™|-0,

as r — 0. Therefore, using Theorem 4.1, we obtain Theorem 5.4. O
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