Morse-Smale Diffeomorphisms and the Standard Family

Masatoshi OKA and Naoya SUMI
Science University of Tokyo and Tokyo Metropolitan University
(Communicated by K. Mochizuki)

Abstract

Every Morse-Smale diffeomorphism of the circle is conjugate to a diffeomorphism belonging to the set defined by $$
f_{\omega, \varepsilon, k}(x)=x+\omega+\frac{\varepsilon}{2 \pi} \sin (2 k \pi x) \quad(0<\omega<1,0<\varepsilon<1, k \text { with } 0<\varepsilon k<1)
$$ and Morse-Smale diffeomorphisms in the set is C^{1} open and dense, with respect to the relative topology, in Arnol'd tongue.

Morse-Smale diffeomorphisms and the standard family are investigated. Theorem A examines that the standard family contains an analytic model for each MorseSmale diffeomorphism, and in Theorem B the density of the set of all Morse-Smale diffeomorphisms in the Arnol'd tongue is investigated.

Let f be a diffeomorphism of the circle $S^{1}=\mathbf{R} / \mathbf{Z}$ and $F: \mathbf{R} \rightarrow \mathbf{R}$ be a lift of f such that $\mathscr{P} \circ F=f \circ \mathscr{P}$, where \mathscr{P} denotes the canonical projection from \mathbf{R} to S^{1}. A periodic point of f with the period m, x, is called a $\operatorname{sink}($ source $)$ if $0<\left|\frac{d}{d x} F^{m}(\bar{x})\right|<1\left(\left|\frac{d}{d x} F^{m}(\bar{x})\right|>1\right)$, where $\mathscr{P}(\bar{x})=x$. If the set of all periodic points of $f, \operatorname{Per}(f)$, is non-empty and consists of only sinks and sources, then f is called a Morse-Smale diffeomorphism. If diffeomorphisms $f: S^{1} \rightarrow S^{1}$ and $g: S^{1} \rightarrow S^{1}$ satisfy the relation $f \circ h=h \circ g$ for some homeomorphism $h: S^{1} \rightarrow S^{1}$, then we say that f is topologically conjugate to g and that h is a conjugacy map between f and g. A diffeomorphism $f: S^{1} \rightarrow S^{1}$ is said to be C^{1}-structurally stable if there is a C^{1} neighborhood U of f such that f is topologically conjugate to every $g \in U$. We know that every Morse-Smale diffeomorphism f is C^{1}-structurally stable and the set of all C^{1} Morse-Smale diffeomorphisms $M S$ is open and dense in the set of all C^{1} diffeomorphisms of the circle with respect to the C^{1}-topology (cf. [2]).

The set of circle diffeomorphisms defined by

[^0]Revised March 27, 1998

$$
f_{\omega, \varepsilon, k}(x)=x+\omega+\frac{\varepsilon}{2 \pi} \sin (2 k \pi x) \quad(\bmod 1) \quad(0<\omega<1,0<\varepsilon<1,0<\varepsilon k<1)
$$

is called the standard family (cf. [2]).
Theorem A. Every orientation-preserving Morse-Smale diffeomorphism is topologically conjugate to a Morse-Smale diffeomorphism belonging to the standard family.

Let $f: S^{1} \rightarrow S^{1}$ be an orientation-preserving diffeomorphism with a lift F. Then the number $\rho_{0}(F)=\lim _{n \rightarrow \infty}\left(F^{n}(x)-x\right) / n$ is independent of x (cf. [2]). If F_{1} and F_{2} are two lifts of f, then $\rho_{0}\left(F_{1}\right)-\rho_{0}\left(F_{2}\right)$ is an integer, and so $\rho(f)=\rho_{0}(F) \bmod 1$ is defined. The number $\rho(f)$ is called the rotation number of $f . \rho(f)$ is rational if and only if f has a periodic point (cf. [2]). Since a Morse-Smale diffeomorphism has periodic points, the rotation number of each Morse-Smale diffeomorphism is rational. On the other hand, if $f: S^{1} \rightarrow S^{1}$ is a C^{2} orientation-preserving diffeomorphism with irrational rotation number, then f is topologically conjugate to the rigid rotation (cf. [6]).

The dynamics of standard family was firstly studied by Arnol'd (cf. [1]). Herman proved in [4] that if $0<\varepsilon<1$ is fixed and $k=1$, then the set of parameter ω for which the rotation number is irrational has positive Lebesgue measure. Recently Świątek [6] proved that the analogous result is false for homeomorphisms with critical points: under rather general assumptions which admit the family $f_{\omega, \varepsilon, k}$ with $(\varepsilon, k)=(1,1)$, he showed that the parameter ω corresponding to rational numbers constitute a set of full measure. For (ε, k) a fixed parameter Graczyk [3] proved that the set of parameter ω which corresponds to non-linearizable maps with an irrational rotation number is of Hausdorff dimension 0 . If r is a rational number, then the family of C^{1} diffeomorphisms of S^{1} with the rotation number $r, D(r)$, is connected ($D(r)$ is called the level set). In each level set the set of Morse-Smale diffeomorphisms, $D(r) \cap M S$, is dense ([1]).

For fixed $k>0$ the set

$$
A T_{k}(r)=\left\{(\omega, \varepsilon): \rho\left(f_{\omega, \varepsilon, k}\right)=r\right\}
$$

is called an Arnol'd tongue if r is a rational number. Obviously, $A T_{k}(r)$ constitutes a subset of $D(r)$. Moreover define a subset $M S_{k}(r)=\left\{(\omega, \varepsilon) \in A T_{k}(r): f_{\omega, \varepsilon, k} \in M S\right\}$ of $A T_{k}(r)$.

Theorem B. $\quad M S_{k}(r)$ is open and dense in an Arnol'd tongue $A T_{k}(r)$ with respect to the relative topology.

Proof of Theorem A. We begin with checking a sufficient condition under which two circle diffeomorphisms are topologically conjugate. Topologically conjugate diffeomorphisms have the same cardinality of periodic points. Thus we suppose f and g are orientation-preserving Morse-Smale diffeomorphisms such that the cardinalities of $\operatorname{Per}(f)$ and $\operatorname{Per}(g)$ are equal. Since a Morse-Smale diffeomorphism of the circle has the same numbers of sinks and sources, the cardinality of sinks of f is equal to that of g. Denote by $\mathbf{S}_{f}=\left\{s_{1}, s_{2}, \cdots, s_{q}\right\}$ and $\mathbf{S}_{g}=\left\{s_{1}^{\prime}, s_{2}^{\prime}, \cdots, s_{q}^{\prime}\right\}$ the sets of sinks of f and
g respectively. By the definition of sinks, $f\left(\mathbf{S}_{f}\right)=\mathbf{S}_{f}$ and $g\left(\mathbf{S}_{g}\right)=\mathbf{S}_{g}$. For $x \in S^{1}$ we denote as \bar{x} the point in \mathbf{R} satisfying $0 \leq \bar{x}<1$ and $\mathscr{P}(\bar{x})=x$. Without loss of generality we may assume that $\bar{s}_{1}<\bar{s}_{2}<\cdots<\bar{s}_{q}$ and $\bar{s}_{1}^{\prime}<\bar{s}_{2}^{\prime}<\cdots<\bar{s}_{q}^{\prime}$.

Claim. f is topologically conjugate to g if $f\left(s_{1}\right)=s_{p+1}$ and $g\left(s_{1}^{\prime}\right)=s_{p+1}^{\prime}$ for a fixed $0 \leq p \leq q-1$.

It is needless to say that we can find a conjugacy map between f and g by going on the similar way to prove the structural stability for Morse-Smale circle diffeomorphisms. However, to make sure we give a proof for the claim. Indeed, f is MorseSmale and so if $\mathbf{U}_{f}=\left\{u_{1}, u_{2}, \cdots, u_{q}\right\}$ denotes the set of sources of f, then we may suppose that $\bar{s}_{i}<\bar{u}_{i}<\bar{s}_{i+1}$ for $i=1, \cdots, q$. Here $\bar{s}_{q+1}=\bar{s}_{1}+1$. Let $O_{f}(x)$ denote the orbit of $x \in S^{1}$ under f (i.e. $O_{f}(x)=\left\{f^{j}(x)\right\}_{j \in \mathbf{Z}}$). Since f is orientation-preserving, all periodic points have the same period, say $m>0$. Then $O_{f}\left(u_{i}\right)=\left\{f^{j}\left(u_{i}\right)\right\}_{j=0}^{m-1}(1 \leq i \leq q)$. The unstable manifold of $u_{i}(1 \leq i \leq q)$ is defined by $W_{f}^{u}\left(u_{i}\right)=\left\{x: \lim _{n \rightarrow-\infty} f^{m n}(x)=u_{i}\right\}$ and characterized as $W_{f}^{u}\left(u_{i}\right)=\mathscr{P}\left(\left(\bar{s}_{i}, \bar{s}_{i+1}\right)\right)$ since f is Morse-Smale. Then $S^{1}=\bigcup_{i=1}^{q} W_{f}^{u}\left(u_{i}\right) \cup \mathbf{S}_{f}$. On the other hand, denote as $\mathbf{U}_{g}=\left\{u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{q}^{\prime}\right\}$ the set of sources of g, and define $O_{g}(x)\left(x \in S^{1}\right)$ and $W_{g}^{u}\left(u_{i}^{\prime}\right)(i=1, \cdots, q)$ in the same way as given for f. From the assumption of the claim, s_{1}^{\prime} has the same period m of s_{1}, and so does $u_{i}^{\prime}(i=1, \cdots, q)$. By the same argument we have $O_{g}\left(u_{i}^{\prime}\right)=\left\{g^{j}\left(u_{i}^{\prime}\right)\right\}_{j=0}^{m-1}$ and $W_{g}^{u}\left(u_{i}^{\prime}\right)=\mathscr{P}\left(\left(\bar{s}_{i}^{\prime}, \bar{s}_{i+1}^{\prime}\right)\right)$ for $i=$ $1, \cdots, q$.

Take and fix an arbitrary $1 \leq i \leq q$, and put $W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right)=\bigcup_{j=0}^{m-1} W_{f}^{u}\left(f^{j}\left(u_{i}\right)\right)$ and $W_{g}^{u}\left(O_{g}\left(u_{i}^{\prime}\right)\right)=\bigcup_{j=0}^{m-1} W_{g}^{u}\left(g^{j}\left(u_{i}^{\prime}\right)\right)$. Notice that $W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right)$ is an f-invariant set (i.e. $\left.f\left(W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right)\right)=W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right)\right)$ and that $W_{g}^{u}\left(O_{g}\left(u_{i}^{\prime}\right)\right)$ is g-invariant. It is checked that $f \mid W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right)$ is topologically conjugate to $g \mid W_{g}^{u}\left(O_{g}\left(u_{i}^{\prime}\right)\right)$. To show this, fix four points $a \in \mathscr{P}\left(\left(\bar{s}_{i}, \bar{u}_{i}\right)\right), b \in \mathscr{P}\left(\left(\bar{u}_{i}, \bar{s}_{i+1}\right)\right), a^{\prime} \in \mathscr{P}\left(\left(\bar{s}_{i}^{\prime}, \bar{u}_{i}^{\prime}\right)\right)$ and $b^{\prime} \in \mathscr{P}\left(\left(\bar{u}_{i}^{\prime}, \bar{s}_{i+1}^{\prime}\right)\right)$. Since u_{i} and u_{i}^{\prime} are sources of f and g respectively and they have the same period $m>0$, we have

$$
\left[\overline{f^{m}(a)}, \bar{a}\right] \cup\left[\bar{b}, \overline{f^{m}(b)}\right] \subset\left(\bar{s}_{i}, \bar{s}_{i+1}\right), \quad\left[\overline{g^{m}\left(a^{\prime}\right)}, \bar{a}^{\prime}\right] \cup\left[\bar{b}^{\prime}, \overline{g^{m}\left(b^{\prime}\right)}\right] \subset\left(\bar{s}_{i}^{\prime}, \bar{s}_{i+1}^{\prime}\right)
$$

Let $\phi: \mathscr{P}\left(\left[\overline{f^{m}(a)}, \bar{a}\right] \cup\left[\bar{b}, \overline{f^{m}(b)}\right]\right) \rightarrow \mathscr{P}\left(\left[\overline{g^{m}\left(a^{\prime}\right)}, \bar{a}^{\prime}\right] \cup\left[\bar{b}, \overline{g^{m}\left(b^{\prime}\right)}\right]\right)$ be a hemeomorphsim such that

$$
\phi(a)=a^{\prime}, \quad \phi\left(f^{m}(a)\right)=g^{m}\left(a^{\prime}\right), \quad \phi(b)=b^{\prime}, \quad \phi\left(f^{m}(b)\right)=g^{m}\left(b^{\prime}\right),
$$

and let $D=\mathscr{P}\left(\left(\overline{f^{m}(a)}, \bar{a}\right] \cup\left[\bar{b}, \overline{\left.f^{m}(b)\right)}\right)\right.$. Then $W_{f}^{u}\left(u_{i}\right) \backslash\left\{u_{i}\right\}$ can be written as the disjoint union $W_{f}^{u}\left(u_{i}\right) \backslash\left\{u_{i}\right\}=\bigcup_{k \in \mathbf{Z}} f^{m k}(D)$ of $f^{m k}(D)$. Thus we can construct a map $\tilde{h}_{i}: W_{f}^{u}\left(u_{i}\right) \rightarrow W_{g}^{u}\left(u_{i}^{\prime}\right)$ satisfying $\tilde{h}_{i}(x)=g^{m k} \circ \phi \circ f^{-m k}(x)$ for $x \in f^{m k}(D) \quad(k \in \mathbf{Z})$ and $\tilde{h}_{i}\left(u_{i}\right)=u_{i}^{\prime}$. It is easily checked that \tilde{h}_{i} is a homeomorphism with $\tilde{h}_{i} \circ f^{m}(x)=g^{m} \circ \tilde{h}_{i}(x)$ $\left(x \in W_{f}^{u}\left(u_{i}\right)\right)$. Thus, if we define $h_{i}: W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right) \rightarrow W_{g}^{u}\left(O_{g}\left(u_{i}^{\prime}\right)\right)$ by $h_{i}(x)=g^{j} \circ \widetilde{h}_{i} \circ f^{-j}(x)$ for $x \in f^{j}\left(W_{f}^{u}\left(u_{i}\right)\right)(j=0, \cdots, m-1)$, then h_{i} is a conjugacy map between $f \mid W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right)$ and $g \mid W_{g}^{u}\left(O_{g}\left(u_{i}^{\prime}\right)\right)$.

From the assumption of the claim it follows that $f\left(u_{i}\right)=u_{j}(j=p+i \bmod q)$ and
$g\left(u_{i}^{\prime}\right)=u_{j}^{\prime}(j=p+i \bmod q)$. Thus we can choose $I \subset\{1, \cdots, q\}$ such that \mathbf{U}_{f} and \mathbf{U}_{g} are decomposed as disjoint unions $\mathbf{U}_{f}=\bigcup_{i \in I} O_{f}\left(u_{i}\right)$ and $\mathbf{U}_{g}=\bigcup_{i \in I} O_{g}\left(u_{i}^{\prime}\right)$ of distinct orbits respectively. Since $S^{1}=\bigcup_{i \in I} W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right) \cup \mathbf{S}_{f}$ and $S^{1}=\bigcup_{i \in I} W_{g}^{u}\left(O_{g}\left(u_{i}^{\prime}\right)\right) \cup \mathbf{S}_{g}$ are disjoint unions, we can define a homeomorphism $h: S^{1} \rightarrow S^{1}$ by

$$
h(x)= \begin{cases}h_{i}(x), & \text { if } \quad x \in W_{f}^{u}\left(O_{f}\left(u_{i}\right)\right), \quad i \in I \\ s_{i}^{\prime}, & \text { if } \quad x=s_{i}, \quad i=1, \cdots, q\end{cases}
$$

where $h_{i}(i \in I)$ is defined as above. It is easy to check that h is a conjugacy map between f and g. Therefore the above claim holds.

We are now ready to confirm the conclusion of Theorem A. Let f be a Morse-Smale diffeomorphism and let $s_{i}(i=1, \cdots, q)$ be as above. Suppose that $f\left(s_{1}\right)=s_{p+1}$ for some $0 \leq p \leq q-1$. If we define

$$
F(x)=x+\frac{p}{q}+\frac{\varepsilon}{2 \pi} \sin (2 q \pi x),
$$

for ε with $0<\varepsilon q<1$, then $\mathscr{P} \circ F \circ \mathscr{P}^{-1}=f_{p / q, \varepsilon, q}$ is a circle diffeomorphism. Moreover, $f_{p / q, \varepsilon, q}$ is Morse-Smale. Indeed, write $F_{0}(x)=x+(\varepsilon / 2 \pi) \sin (2 q \pi x)$. Then $\mathscr{P} \circ F_{0} \circ \mathscr{P}^{-1}=f_{0}$ is clearly a Morse-Smale diffeomorphism. Since

$$
\begin{aligned}
F^{q}(x) & =x+p+\frac{\varepsilon}{2 \pi} \sum_{i=0}^{q-1} \sin \left[2 q \pi F^{i}(x)\right] \\
& =x+p+\frac{\varepsilon}{2 \pi} \sum_{i=0}^{q-1} \sin \left[2 q \pi F_{0}^{i}(x)\right]=F_{0}^{q}(x)+p,
\end{aligned}
$$

we have $f_{p / q, \varepsilon, q}^{q}=f_{0}^{q}$. This implies that $f_{p / q, \varepsilon, q}$ is also a Morse-Smale diffeomorphism. Since $f_{p / q, \varepsilon, q}^{q}=f_{0}^{q}$, we have

$$
\mathbf{S}_{f_{p / q, \varepsilon, q}}=\mathbf{S}_{f_{p / q, e, q}^{q}}=\mathbf{S}_{f_{G}^{q}}=\mathbf{S}_{f_{0}}=\left\{\mathscr{P}\left(\frac{2 i-1}{2 q}\right): i=1, \cdots, q\right\} .
$$

Write $s_{i}^{\prime}=\mathscr{P}((2 i-1) /(2 q))(i=1, \cdots, q)$. Then

$$
\begin{aligned}
f_{p / q, \varepsilon, q}\left(s_{1}^{\prime}\right) & =f_{p / q, \varepsilon, q}(\mathscr{P}(1 /(2 q))=\mathscr{P} \circ F(1 /(2 q)) \\
& =\mathscr{P}(1 /(2 q)+p / q)=\mathscr{P}((2 p+1) /(2 q))=s_{p+1}^{\prime},
\end{aligned}
$$

which ensures, by the above claim, that f is topologically conjugate to $f_{p / q, \varepsilon, q}$.
Proof of Theorem B. Let k be a positive integer and r be a rational number with $0 \leq r \leq 1$. To prove the density of $M S_{k}(r)$ in an Arnol'd tongue, take $\left(\omega_{0}, \varepsilon\right) \in A T_{k}(r)$ and a diffeomorphism $f_{\omega_{0}, \varepsilon, k}$ belonging to the standard family with $\rho\left(f_{\omega_{0}, \varepsilon, k}\right)=r$. Write $r=p / q$, where p and q are non-negative relatively prime integers. A diffeomorphism $F_{\omega_{0, \varepsilon, k}}$ of \mathbf{R} defined by $F_{\omega_{0}, \varepsilon, k}(x)=x+\omega_{0}+(\varepsilon / 2 \pi) \sin (2 k \pi x)$ is a lift of $f_{\omega_{0, \varepsilon, k}}$. For the simple notations we write $f_{\omega_{0}}, F_{\omega_{0}}$ instead of $f_{\omega_{0}, \varepsilon, k}, F_{\omega_{0}, \varepsilon, k}$ respectively. Since $\rho\left(f_{\omega_{0}}\right)=p / q$, each periodic point of $f_{\omega_{0}}$ is a fixed point of $f_{\omega_{0}}^{q}$ and so we can find $l \in \mathbf{Z}$ such that
$F_{\omega_{0}}^{q}(x)=x+l$ for $x \in \mathscr{P}^{-1}\left(\operatorname{Per}\left(f_{\omega_{0}}\right)\right)$. Fix l and take a diffeomorphism $f_{\omega}=f_{\omega, \varepsilon, k}$ from the standard family. Then $F_{\omega}: \mathbf{R} \rightarrow \mathbf{R}(\omega \in \mathbf{R})$ defined by $F_{\omega}(x)=x+\omega+(\varepsilon / 2 \pi) \sin (2 k \pi x)$ is a lift of f_{ω}. Write

$$
G(\omega, x)=F_{\omega}^{q}(x)-(x+l)
$$

for $\omega, x \in \mathbf{R}$.
It is checked that $\frac{\partial}{\partial \omega} G(\omega, x)>0$. Indeed, if we write $F(\omega, x)=F_{\omega}(x)$ and $F_{\omega}^{j}(x)$ $=F\left(\omega, F_{\omega}^{j-1}(x)\right)$ for $j \geq 1$, then

$$
\begin{aligned}
\frac{\partial}{\partial \omega} F_{\omega}^{j}(x) & =\frac{\partial}{\partial \omega}\left(F\left(\omega, F_{\omega}^{j-1}(x)\right)\right) \\
& =\left(\frac{\partial}{\partial \omega} F\right)\left(\omega, F_{\omega}^{j-1}(x)\right)+\left(\frac{\partial}{\partial x} F\right)\left(\omega, F_{\omega}^{j-1}(x)\right) \frac{\partial}{\partial \omega} F_{\omega}^{j-1}(x) \\
& =1+\left(1+k \varepsilon \cos \left(2 k \pi F_{\omega}^{j-1}(x)\right)\right) \frac{\partial}{\partial \omega} F_{\omega}^{j-1}(x) .
\end{aligned}
$$

Thus if $\frac{\partial}{\partial \omega} F_{\omega}^{j-1}(x)>0$ for $j \geq 2$, then we have $\frac{\partial}{\partial \omega} F_{\omega}^{j}(x)>0$ by $0<\varepsilon k<1$. $\frac{\partial}{\partial \omega} F_{\omega}(x)$ $=\frac{\partial}{\partial \omega} F(\omega, x)=1$ and so $\frac{\partial}{\partial \omega} G(\omega, x)>0$.

Take and fix $x_{0} \in \mathscr{P}^{-1}\left(\operatorname{Per}\left(f_{\omega_{0}}\right)\right)$. Then, $G\left(\omega_{0}, x_{0}\right)=0$ and $\frac{\partial}{\partial \omega} G\left(\omega_{0}, x_{0}\right)>0$. By the implicit function theorem there is an open interval $J_{x_{0}}$ containing x_{0} and an analytic function $\omega: J_{x_{0}} \rightarrow \mathbf{R}$ such that $\omega\left(x_{0}\right)=\omega_{0}$ and $G(\omega(x), x)=0$ for $x \in J_{x_{0}}$. Thus,

$$
\left(\frac{\partial}{\partial \omega} G\right)(\omega(x), x) \frac{d}{d x} \omega(x)+\left(\frac{\partial}{\partial x} G\right)(\omega(x), x)=0
$$

for $x \in J_{x_{0}}$, which implies that $\frac{d}{d x} \omega(x)=0$ if and only if $\left(\frac{\partial}{\partial x} G\right)(\omega(x), x)=0$.
There is an open subinterval $\hat{J}_{x_{0}} \subset J_{x_{0}}$ containing x_{0} such that $G(\omega(x), x)=0$ and $\frac{d}{d x} \omega(x) \neq 0$ for $x \in \hat{J}_{x_{0}} \backslash\left\{x_{0}\right\}$. Indeed, a complex function $\tilde{F}_{\omega_{0}}(z)=z+\omega_{0}+\frac{\varepsilon}{2 \pi} \sin (2 k \pi z)$ $(z \in \mathbf{C})$ is a transcendental entire function and so $\tilde{F}_{\omega_{0}}$ is not univalent. If there is an interval $J \subset \mathbf{R}$ and $F_{\omega_{0}}^{q}(x)=x+l$ for $x \in J$, then it holds that $\tilde{F}_{\omega_{0}}^{q}(z)=z+l(z \in \mathbf{C})$ and so $\widetilde{F}_{\omega_{0}}^{q}$ is univalent, which is a contradiction. Thus $F_{\omega_{0}}^{q}(x) \neq x+l$ for some $x \in J$. Since $G(\omega, x)$ and $\frac{d}{d x} \omega$ is analytic on $J_{x_{0}}$, there is an open subinterval $\hat{J}_{x_{0}} \subset J_{x_{0}}$ containing x_{0} such that $G(\omega(x), x)=0$ and $\frac{d}{d x} \omega(x) \neq 0$ for $x \in \hat{J}_{x_{0}} \backslash\left\{x_{0}\right\}$.

Since $G(\omega, x)$ is analytic with respect to x, the set $R_{\omega}=\{x \in[0,1): G(\omega, x)=0\}$ is a finite set for each fixed ω, and so write $R_{\omega_{0}}=\left\{x_{0}, x_{1}, \cdots, x_{m}\right\}$. Then we can find an open interval $\hat{J}_{x_{i}}$ and an analytic function ω_{i} defined on $\hat{J}_{x_{i}}$ such that $G\left(\omega_{i}(x), x\right)=0$ and $\frac{d}{d x} \omega_{i}(x) \neq 0$ for $x \in \hat{J}_{x_{i}} \backslash\left\{x_{i}\right\}(i=0,1, \cdots, m)$. Taking each $\hat{J}_{x_{i}}$ small enough we may suppose $\hat{J}_{x_{i}} \cap \hat{J}_{x_{j}}=\varnothing$ if $i \neq j$. Denote as $\Omega_{x_{i}}=\left\{\omega_{i}(x): x \in \hat{J}_{x_{i}}\right\}$ an interval containing ω_{0} for $i=0, \cdots, m$. Notice that $\Omega_{x_{i}}$ is not always an open interval. Since $R_{\omega_{0}}$ is a finite set, there is a maximal subset R of $R_{\omega_{0}}$ such that $\bigcap_{x_{i} \in R} \Omega_{x_{i}} \supsetneq\left\{\omega_{0}\right\}$. Thus $I_{\omega_{0}}=\bigcap_{x_{i} \in R} \Omega_{x_{i}}$ is an interval containing ω_{0} and satisfies that if $\omega \in I_{\omega_{0}}$ and $x_{i} \in R$, then $G(\omega, x)=0$ for some $x \in \hat{J}_{x_{i}}$. Thus f_{ω} has a periodic point of the period q if $\omega \in I_{\omega_{0}}$, from which $\rho\left(f_{\omega}\right)$
is a rational number. Since $\rho\left(f_{\omega}\right)$ is continuous with respect to ω (under the distance between $\rho\left(f_{\omega}\right)$ and $\rho\left(f_{\omega^{\prime}}\right)$ defined by $\left.\left|\rho\left(f_{\omega}\right)-\rho\left(f_{\omega^{\prime}}\right)\right|(\bmod 1)\right)$ and $\rho\left(f_{\omega_{0}}\right)=r$, we have $\rho\left(f_{\omega}\right)=r$ for every $\omega \in I_{\omega_{0}}$. Thus $f_{\omega}\left(\omega \in I_{\omega_{0}}\right)$ is a member of $A T_{k}(r)$.

It remains to check that $f_{\omega}\left(\omega \in I_{\omega_{0}}\right)$ is Morse-Smale. Since every periodic points of f_{ω} has the same period q, it suffices to show that $\frac{d}{d x} F_{\omega}^{q}(x) \neq 1$ for each $x \in \mathscr{P}^{-1}\left(\operatorname{Per}\left(f_{\omega}\right)\right)$. For a fixed $\omega \in I_{\omega_{0}}$ we have that $x \in \mathscr{P}^{-1}\left(\operatorname{Per}\left(f_{\omega}\right)\right)$ if and only if $G(\omega, x)=0$. Thus f_{ω} is Morse-Smale if $\frac{\partial}{\partial x} G(\omega, x) \neq 0$ for each $x \in\{z: G(\omega, z)=0\}$. Suppose that $\frac{\partial}{\partial x} G(\omega, x)=0$ for some $x \in\{z: G(\omega, z)=0\}$ and $\omega \in I_{\omega_{0}}$. If ω is sufficiently close to ω_{0}, then $G(\omega, x)=0$ implies that $x \in \hat{J}_{x_{i}}$ for some $0 \leq i \leq m$. Since $\frac{\partial}{\partial \omega} G(\omega, x)>0$, we have that $\omega=\omega_{i}(x)$ and that $x \in \hat{J}_{x_{i}} \backslash\left\{x_{i}\right\}$ when $\omega \neq \omega_{0}$. By the assumption $\frac{\partial}{\partial x} G\left(\omega_{i}(x), x\right)=0$ and so $\frac{d}{d x} \omega_{i}(x)=0$, which contradicts the fact that $G\left(\omega_{i}(x), x\right)=0$ and $\frac{d}{d x} \omega_{i}(x) \neq 0$ for $x \in \hat{J}_{x_{i}} \backslash\left\{x_{i}\right\}$. If ω is sufficiently close to ω_{0} and $G(\omega, x)=0$, then $\frac{\partial}{\partial x} G(\omega, x) \neq 0$. Thus f_{ω} is Morse-Smale.

Take $\omega_{n} \in I_{\omega_{0}} \backslash\left\{\omega_{0}\right\}$ and suppose that $\omega_{n} \rightarrow \omega_{0}(n \rightarrow \infty)$. Then $f_{\omega_{n}, \varepsilon, k} \in A T_{k}(r) \cap M S$ and $f_{\omega_{n, \varepsilon, k}} \rightarrow f_{\omega_{0, \varepsilon, k}}(n \rightarrow \infty)$ with respect to the C^{1}-topology. Thus $M S_{k}(r)$ is C^{1}-dense in $A T_{k}(r)$. The C^{1}-openness of $M S_{k}(r)$ in $A T_{k}(r)$ (with respect to the relative topology) is easily checked from the fact that $M S$ is open in the set of C^{1} diffeomorphisms of the circle.

References

[1] V. I. Arnol'd, Small denominators I. On the mapping of a circle into itself, Izv. Akad. Nauk. Math. Ser. 25 (1961), 21-86, [Transl. A.M.S. Ser. 246 (1965)].
[2] R. Devaney, Introduction to Chaotic Dynamical Systems, Addison-Wesley (1989).
[3] J. Graczyk, Linearizable circle diffeomorphisms in one-parameter families, Bul. Soc. Bras. Mat. 24 (1993), 201-210.
[4] M. R. Herman, Measure de Lebesgue et nombre de rotation, Geometry and Topology, Lecture Notes in Math. 597 (1977), Springer, 271-293.
[5] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer (1993).
[6] G. Światek, Rational rotation numbers for maps of the circle, Comm. Math. Phys. 119 (1988), 109-128.

Present Addresses:

Masatoshi Oka
Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba, 278-8510 Japan.
e-mail: oka@ma.noda.sut.ac.jp
Naoya Sumi
Department of Mathematics, Tokyo Metropolitan University,
Minami-Ohsawa, Hachioil-shi, Tokyo, 192-0397 Japan.
e-mail: sumi@math.metro-u.ac.jp

[^0]: Received May 2, 1997

