Токуо J. Матн. Vol. 21, No. 2, 1998

and a state

Morse-Smale Diffeomorphisms and the Standard Family

Masatoshi OKA and Naoya SUMI

Science University of Tokyo and Tokyo Metropolitan University (Communicated by K. Mochizuki)

Abstract. Every Morse-Smale diffeomorphism of the circle is conjugate to a diffeomorphism belonging to the set defined by

$$f_{\omega,\varepsilon,k}(x) = x + \omega + \frac{\varepsilon}{2\pi} \sin(2k\pi x) \qquad (0 < \omega < 1, 0 < \varepsilon < 1, k \text{ with } 0 < \varepsilon k < 1)$$

and Morse-Smale diffeomorphisms in the set is C^1 open and dense, with respect to the relative topology, in Arnol'd tongue.

Morse-Smale diffeomorphisms and the standard family are investigated. Theorem A examines that the standard family contains an analytic model for each Morse-Smale diffeomorphism, and in Theorem B the density of the set of all Morse-Smale diffeomorphisms in the Arnol'd tongue is investigated.

Let f be a diffeomorphism of the circle $S^1 = \mathbf{R}/\mathbf{Z}$ and $F: \mathbf{R} \to \mathbf{R}$ be a lift of f such that $\mathscr{P} \circ F = f \circ \mathscr{P}$, where \mathscr{P} denotes the canonical projection from \mathbf{R} to S^1 . A periodic point of f with the period m, x, is called a sink (source) if $0 < |\frac{d}{dx} F^m(\bar{x})| < 1$ ($|\frac{d}{dx} F^m(\bar{x})| > 1$), where $\mathscr{P}(\bar{x}) = x$. If the set of all periodic points of f, $\operatorname{Per}(f)$, is non-empty and consists of only sinks and sources, then f is called a Morse-Smale diffeomorphism. If diffeomorphisms $f: S^1 \to S^1$ and $g: S^1 \to S^1$ satisfy the relation $f \circ h = h \circ g$ for some homeomorphism $h: S^1 \to S^1$, then we say that f is topologically conjugate to g and that h is a conjugacy map between f and g. A diffeomorphism $f: S^1 \to S^1$ is said to be C^1 -structurally stable if there is a C^1 neighborhood U of f such that f is topologically conjugate to every $g \in U$. We know that every Morse-Smale diffeomorphism f is C^1 -structurally stable and the set of all C^1 Morse-Smale diffeomorphism MS is open and dense in the set of all C^1 diffeomorphisms of the circle with respect to the C^1 -topology (cf. [2]).

The set of circle diffeomorphisms defined by

Received May 2, 1997 Revised March 27, 1998

$$f_{\omega,\varepsilon,k}(x) = x + \omega + \frac{\varepsilon}{2\pi} \sin(2k\pi x) \pmod{1} \qquad (0 < \omega < 1, 0 < \varepsilon < 1, 0 < \varepsilon k < 1)$$

is called the standard family (cf. [2]).

THEOREM A. Every orientation-preserving Morse-Smale diffeomorphism is topologically conjugate to a Morse-Smale diffeomorphism belonging to the standard family.

Let $f: S^1 \to S^1$ be an orientation-preserving diffeomorphism with a lift F. Then the number $\rho_0(F) = \lim_{n \to \infty} (F^n(x) - x)/n$ is independent of x (cf. [2]). If F_1 and F_2 are two lifts of f, then $\rho_0(F_1) - \rho_0(F_2)$ is an integer, and so $\rho(f) = \rho_0(F) \mod 1$ is defined. The number $\rho(f)$ is called the *rotation number* of f. $\rho(f)$ is rational if and only if f has a periodic point (cf. [2]). Since a Morse-Smale diffeomorphism has periodic points, the rotation number of each Morse-Smale diffeomorphism is rational. On the other hand, if $f: S^1 \to S^1$ is a C^2 orientation-preserving diffeomorphism with irrational rotation number, then f is topologically conjugate to the rigid rotation (cf. [6]).

The dynamics of standard family was firstly studied by Arnol'd (cf. [1]). Herman proved in [4] that if $0 < \varepsilon < 1$ is fixed and k = 1, then the set of parameter ω for which the rotation number is irrational has positive Lebesgue measure. Recently Świątek [6] proved that the analogous result is false for homeomorphisms with critical points: under rather general assumptions which admit the family $f_{\omega,\varepsilon,k}$ with $(\varepsilon, k) = (1, 1)$, he showed that the parameter ω corresponding to rational numbers constitute a set of full measure. For (ε, k) a fixed parameter Graczyk [3] proved that the set of parameter ω which corresponds to non-linearizable maps with an irrational rotation number is of Hausdorff dimension 0. If r is a rational number, then the family of C^1 diffeomorphisms of S^1 with the rotation number r, D(r), is connected (D(r) is called the level set). In each level set the set of Morse-Smale diffeomorphisms, $D(r) \cap MS$, is dense ([1]).

For fixed k > 0 the set

$$AT_{k}(r) = \{(\omega, \varepsilon) : \rho(f_{\omega,\varepsilon,k}) = r\}$$

is called an Arnol'd tongue if r is a rational number. Obviously, $AT_k(r)$ constitutes a subset of D(r). Moreover define a subset $MS_k(r) = \{(\omega, \varepsilon) \in AT_k(r) : f_{\omega,\varepsilon,k} \in MS\}$ of $AT_k(r)$.

THEOREM B. $MS_k(r)$ is open and dense in an Arnol'd tongue $AT_k(r)$ with respect to the relative topology.

PROOF OF THEOREM A. We begin with checking a sufficient condition under which two circle diffeomorphisms are topologically conjugate. Topologically conjugate diffeomorphisms have the same cardinality of periodic points. Thus we suppose f and gare orientation-preserving Morse-Smale diffeomorphisms such that the cardinalities of Per(f) and Per(g) are equal. Since a Morse-Smale diffeomorphism of the circle has the same numbers of sinks and sources, the cardinality of sinks of f is equal to that of g. Denote by $S_f = \{s_1, s_2, \dots, s_q\}$ and $S_g = \{s'_1, s'_2, \dots, s'_q\}$ the sets of sinks of f and

472

g respectively. By the definition of sinks, $f(\mathbf{S}_f) = \mathbf{S}_f$ and $g(\mathbf{S}_g) = \mathbf{S}_g$. For $x \in S^1$ we denote as \bar{x} the point in **R** satisfying $0 \le \bar{x} < 1$ and $\mathcal{P}(\bar{x}) = x$. Without loss of generality we may assume that $\bar{s}_1 < \bar{s}_2 < \cdots < \bar{s}_q$ and $\bar{s}'_1 < \bar{s}'_2 < \cdots < \bar{s}'_q$.

CLAIM. f is topologically conjugate to g if $f(s_1)=s_{p+1}$ and $g(s'_1)=s'_{p+1}$ for a fixed $0 \le p \le q-1$.

It is needless to say that we can find a conjugacy map between f and g by going on the similar way to prove the structural stability for Morse-Smale circle diffeomorphisms. However, to make sure we give a proof for the claim. Indeed, f is Morse-Smale and so if $U_f = \{u_1, u_2, \dots, u_q\}$ denotes the set of sources of f, then we may suppose that $\bar{s}_i < \bar{u}_i < \bar{s}_{i+1}$ for $i=1, \dots, q$. Here $\bar{s}_{q+1} = \bar{s}_1 + 1$. Let $O_f(x)$ denote the orbit of $x \in S^1$ under f (i.e. $O_f(x) = \{f^j(x)\}_{j \in \mathbb{Z}}$). Since f is orientation-preserving, all periodic points have the same period, say m > 0. Then $O_f(u_i) = \{f^{j}(u_i)\}_{j=0}^{m-1}$ ($1 \le i \le q$). The unstable manifold of u_i ($1 \le i \le q$) is defined by $W_f^u(u_i) = \{x : \lim_{n \to -\infty} f^{mn}(x) = u_i\}$ and characterized as $W_f^u(u_i) = \mathcal{P}((\bar{s}_i, \bar{s}_{i+1}))$ since f is Morse-Smale. Then $S^1 = \bigcup_{i=1}^{q} W_f^u(u_i) \cup S_f$. On the other hand, denote as $U_g = \{u'_1, u'_2, \dots, u'_q\}$ the set of sources of g, and define $O_g(x)$ ($x \in S^1$) and $W_g^u(u'_i)$ ($i=1, \dots, q$) in the same way as given for f. From the assumption of the claim, s'_1 has the same period m of s_1 , and so does u'_i ($i=1, \dots, q$). By the same argument we have $O_g(u'_i) = \{g^j(u'_i)\}_{j=0}^{m-1}$ and $W_g^u(u'_i) = \mathcal{P}((\bar{s}'_i, \bar{s}'_{i+1}))$ for i= $1, \dots, q$.

Take and fix an arbitrary $1 \le i \le q$, and put $W_f^u(O_f(u_i)) = \bigcup_{j=0}^{m-1} W_f^u(f^j(u_i))$ and $W_g^u(O_g(u'_i)) = \bigcup_{j=0}^{m-1} W_g^u(g^j(u'_i))$. Notice that $W_f^u(O_f(u_i))$ is an *f*-invariant set (i.e. $f(W_f^u(O_f(u_i))) = W_f^u(O_f(u_i))$) and that $W_g^u(O_g(u'_i))$ is *g*-invariant. It is checked that $f \mid W_g^u(O_f(u_i))$ is topologically conjugate to $g \mid W_g^u(O_g(u'_i))$. To show this, fix four points $a \in \mathcal{P}((\bar{s}_i, \bar{u}_i)), b \in \mathcal{P}((\bar{u}_i, \bar{s}_{i+1})), a' \in \mathcal{P}((\bar{s}'_i, \bar{u}'_i))$ and $b' \in \mathcal{P}((\bar{u}'_i, \bar{s}'_{i+1}))$. Since u_i and u'_i are sources of *f* and *g* respectively and they have the same period m > 0, we have

$$[\overline{f^{m}(a)}, \overline{a}] \cup [\overline{b}, \overline{f^{m}(b)}] \subset (\overline{s}_{i}, \overline{s}_{i+1}) , \qquad [\overline{g^{m}(a')}, \overline{a'}] \cup [\overline{b'}, \overline{g^{m}(b')}] \subset (\overline{s}'_{i}, \overline{s}'_{i+1})$$

Let $\phi: \mathscr{P}([\overline{f^{m}(a)}, \overline{a}] \cup [\overline{b}, \overline{f^{m}(b)}]) \to \mathscr{P}([\overline{g^{m}(a')}, \overline{a'}] \cup [\overline{b}, \overline{g^{m}(b')}])$ be a hemeomorphism such that

$$\phi(a) = a'$$
, $\phi(f^{m}(a)) = g^{m}(a')$, $\phi(b) = b'$, $\phi(f^{m}(b)) = g^{m}(b')$,

and let $D = \mathscr{P}(\overline{[f^m(a)]}, \overline{a}] \cup [\overline{b}, \overline{[f^m(b)]})$. Then $W_f^u(u_i) \setminus \{u_i\}$ can be written as the disjoint union $W_f^u(u_i) \setminus \{u_i\} = \bigcup_{k \in \mathbb{Z}} f^{mk}(D)$ of $f^{mk}(D)$. Thus we can construct a map $\widetilde{h}_i : W_f^u(u_i) \to W_g^u(u_i')$ satisfying $\widetilde{h}_i(x) = g^{mk} \circ \phi \circ f^{-mk}(x)$ for $x \in f^{mk}(D)$ $(k \in \mathbb{Z})$ and $\widetilde{h}_i(u_i) = u_i'$. It is easily checked that \widetilde{h}_i is a homeomorphism with $\widetilde{h}_i \circ f^m(x) = g^m \circ \widetilde{h}_i(x)$ $(x \in W_f^u(u_i))$. Thus, if we define $h_i : W_f^u(O_f(u_i)) \to W_g^u(O_g(u_i'))$ by $h_i(x) = g^j \circ \widetilde{h}_i \circ f^{-j}(x)$ for $x \in f^j(W_f^u(u_i))$ $(j=0, \dots, m-1)$, then h_i is a conjugacy map between $f \mid W_f^u(O_f(u_i))$ and $g \mid W_g^u(O_g(u_i'))$.

From the assumption of the claim it follows that $f(u_i) = u_j$ $(j = p + i \mod q)$ and

MASATOSHI OKA AND NAOYA SUMI

 $g(u'_i) = u'_j$ $(j = p + i \mod q)$. Thus we can choose $I \subset \{1, \dots, q\}$ such that U_f and U_g are decomposed as disjoint unions $U_f = \bigcup_{i \in I} O_f(u_i)$ and $U_g = \bigcup_{i \in I} O_g(u'_i)$ of distinct orbits respectively. Since $S^1 = \bigcup_{i \in I} W^u_f(O_f(u_i)) \cup S_f$ and $S^1 = \bigcup_{i \in I} W^u_g(O_g(u'_i)) \cup S_g$ are disjoint unions, we can define a homeomorphism $h: S^1 \to S^1$ by

$$h(x) = \begin{cases} h_i(x), & \text{if } x \in W_f^u(O_f(u_i)), & i \in I, \\ s'_i, & \text{if } x = s_i, & i = 1, \cdots, q, \end{cases}$$

where h_i ($i \in I$) is defined as above. It is easy to check that h is a conjugacy map between f and g. Therefore the above claim holds.

We are now ready to confirm the conclusion of Theorem A. Let f be a Morse-Smale diffeomorphism and let s_i $(i=1, \dots, q)$ be as above. Suppose that $f(s_1)=s_{p+1}$ for some $0 \le p \le q-1$. If we define

$$F(x) = x + \frac{p}{q} + \frac{\varepsilon}{2\pi} \sin(2q\pi x) ,$$

for ε with $0 < \varepsilon q < 1$, then $\mathscr{P} \circ F \circ \mathscr{P}^{-1} = f_{p/q, \varepsilon, q}$ is a circle diffeomorphism. Moreover, $f_{p/q, \varepsilon, q}$ is Morse-Smale. Indeed, write $F_0(x) = x + (\varepsilon/2\pi) \sin(2q\pi x)$. Then $\mathscr{P} \circ F_0 \circ \mathscr{P}^{-1} = f_0$ is clearly a Morse-Smale diffeomorphism. Since

$$F^{q}(x) = x + p + \frac{\varepsilon}{2\pi} \sum_{i=0}^{q-1} \sin[2q\pi F^{i}(x)]$$
$$= x + p + \frac{\varepsilon}{2\pi} \sum_{i=0}^{q-1} \sin[2q\pi F^{i}_{0}(x)] = F^{q}_{0}(x) + p$$

we have $f_{p/q,\epsilon,q}^q = f_0^q$. This implies that $f_{p/q,\epsilon,q}$ is also a Morse-Smale diffeomorphism. Since $f_{p/q,\epsilon,q}^q = f_0^q$, we have

$$\mathbf{S}_{f_{p/q,\varepsilon,q}} = \mathbf{S}_{f_{p/q,\varepsilon,q}} = \mathbf{S}_{f_0^q} = \mathbf{S}_{f_0} = \left\{ \mathscr{P}\left(\frac{2i-1}{2q}\right) : i = 1, \cdots, q \right\}.$$

Write $s'_i = \mathcal{P}((2i-1)/(2q))$ $(i=1, \dots, q)$. Then

$$f_{p/q,\varepsilon,q}(s_1') = f_{p/q,\varepsilon,q}(\mathscr{P}(1/(2q))) = \mathscr{P} \circ F(1/(2q))$$
$$= \mathscr{P}(1/(2q) + p/q) = \mathscr{P}((2p+1)/(2q)) = s'_{p+1},$$

which ensures, by the above claim, that f is topologically conjugate to $f_{p/q,\varepsilon,q}$.

PROOF OF THEOREM B. Let k be a positive integer and r be a rational number with $0 \le r \le 1$. To prove the density of $MS_k(r)$ in an Arnol'd tongue, take $(\omega_0, \varepsilon) \in AT_k(r)$ and a diffeomorphism $f_{\omega_0,\varepsilon,k}$ belonging to the standard family with $\rho(f_{\omega_0,\varepsilon,k}) = r$. Write r = p/q, where p and q are non-negative relatively prime integers. A diffeomorphism $F_{\omega_0,\varepsilon,k}$ of **R** defined by $F_{\omega_0,\varepsilon,k}(x) = x + \omega_0 + (\varepsilon/2\pi) \sin(2k\pi x)$ is a lift of $f_{\omega_0,\varepsilon,k}$. For the simple notations we write f_{ω_0} , F_{ω_0} instead of $f_{\omega_0,\varepsilon,k}$, $F_{\omega_0,\varepsilon,k}$ respectively. Since $\rho(f_{\omega_0}) = p/q$, each periodic point of f_{ω_0} is a fixed point of $f_{\omega_0}^q$ and so we can find $l \in \mathbb{Z}$ such that $F_{\omega_0}^q(x) = x + l$ for $x \in \mathscr{P}^{-1}(\operatorname{Per}(f_{\omega_0}))$. Fix *l* and take a diffeomorphism $f_\omega = f_{\omega,\varepsilon,k}$ from the standard family. Then $F_\omega : \mathbf{R} \to \mathbf{R}$ ($\omega \in \mathbf{R}$) defined by $F_\omega(x) = x + \omega + (\varepsilon/2\pi) \sin(2k\pi x)$ is a lift of f_ω . Write

$$G(\omega, x) = F_{\omega}^{q}(x) - (x+l)$$

for $\omega, x \in \mathbf{R}$.

It is checked that $\frac{\partial}{\partial \omega} G(\omega, x) > 0$. Indeed, if we write $F(\omega, x) = F_{\omega}(x)$ and $F_{\omega}^{j}(x) = F(\omega, F_{\omega}^{j-1}(x))$ for $j \ge 1$, then

$$\frac{\partial}{\partial \omega} F_{\omega}^{j}(x) = \frac{\partial}{\partial \omega} (F(\omega, F_{\omega}^{j-1}(x)))$$

$$= \left(\frac{\partial}{\partial \omega} F\right) (\omega, F_{\omega}^{j-1}(x)) + \left(\frac{\partial}{\partial x} F\right) (\omega, F_{\omega}^{j-1}(x)) \frac{\partial}{\partial \omega} F_{\omega}^{j-1}(x)$$

$$= 1 + (1 + k\varepsilon \cos(2k\pi F_{\omega}^{j-1}(x))) \frac{\partial}{\partial \omega} F_{\omega}^{j-1}(x) .$$

Thus if $\frac{\partial}{\partial \omega} F_{\omega}^{j-1}(x) > 0$ for $j \ge 2$, then we have $\frac{\partial}{\partial \omega} F_{\omega}^{j}(x) > 0$ by $0 < \varepsilon k < 1$. $\frac{\partial}{\partial \omega} F_{\omega}(x) = \frac{\partial}{\partial \omega} F(\omega, x) = 1$ and so $\frac{\partial}{\partial \omega} G(\omega, x) > 0$.

Take and fix $x_0 \in \mathscr{P}^{-1}(\operatorname{Per}(f_{\omega_0}))$. Then, $G(\omega_0, x_0) = 0$ and $\frac{\partial}{\partial \omega} G(\omega_0, x_0) > 0$. By the implicit function theorem there is an open interval J_{x_0} containing x_0 and an analytic function $\omega: J_{x_0} \to \mathbf{R}$ such that $\omega(x_0) = \omega_0$ and $G(\omega(x), x) = 0$ for $x \in J_{x_0}$. Thus,

$$\left(\frac{\partial}{\partial\omega}G\right)(\omega(x), x)\frac{d}{dx}\omega(x) + \left(\frac{\partial}{\partial x}G\right)(\omega(x), x) = 0$$

for $x \in J_{x_0}$, which implies that $\frac{d}{dx}\omega(x) = 0$ if and only if $(\frac{\partial}{\partial x}G)(\omega(x), x) = 0$.

There is an open subinterval $\hat{J}_{x_0} \subset J_{x_0}$ containing x_0 such that $G(\omega(x), x) = 0$ and $\frac{d}{dx}\omega(x) \neq 0$ for $x \in \hat{J}_{x_0} \setminus \{x_0\}$. Indeed, a complex function $\tilde{F}_{\omega_0}(z) = z + \omega_0 + \frac{\varepsilon}{2\pi}\sin(2k\pi z)$ $(z \in \mathbb{C})$ is a transcendental entire function and so \tilde{F}_{ω_0} is not univalent. If there is an interval $J \subset \mathbb{R}$ and $F^q_{\omega_0}(x) = x + l$ for $x \in J$, then it holds that $\tilde{F}^q_{\omega_0}(z) = z + l$ $(z \in \mathbb{C})$ and so \tilde{F}_{ω_0} is univalent, which is a contradiction. Thus $F^q_{\omega_0}(x) \neq x + l$ for some $x \in J$. Since $G(\omega, x)$ and $\frac{d}{dx}\omega$ is analytic on J_{x_0} , there is an open subinterval $\hat{J}_{x_0} \subset J_{x_0}$ containing x_0 such that $G(\omega(x), x) = 0$ and $\frac{d}{dx}\omega(x) \neq 0$ for $x \in \hat{J}_{x_0} \setminus \{x_0\}$.

Since $G(\omega, x)$ is analytic with respect to x, the set $R_{\omega} = \{x \in [0, 1) : G(\omega, x) = 0\}$ is a finite set for each fixed ω , and so write $R_{\omega_0} = \{x_0, x_1, \dots, x_m\}$. Then we can find an open interval \hat{J}_{x_i} and an analytic function ω_i defined on \hat{J}_{x_i} such that $G(\omega_i(x), x) = 0$ and $\frac{d}{dx}\omega_i(x) \neq 0$ for $x \in \hat{J}_{x_i} \setminus \{x_i\}$ $(i=0, 1, \dots, m)$. Taking each \hat{J}_{x_i} small enough we may suppose $\hat{J}_{x_i} \cap \hat{J}_{x_j} = \emptyset$ if $i \neq j$. Denote as $\Omega_{x_i} = \{\omega_i(x) : x \in \hat{J}_{x_i}\}$ an interval containing ω_0 for $i=0, \dots, m$. Notice that Ω_{x_i} is not always an open interval. Since R_{ω_0} is a finite set, there is a maximal subset R of R_{ω_0} such that $\bigcap_{x_i \in R} \Omega_{x_i} \supseteq \{\omega_0\}$. Thus $I_{\omega_0} = \bigcap_{x_i \in R} \Omega_{x_i}$ is an interval containing ω_0 and satisfies that if $\omega \in I_{\omega_0}$ and $x_i \in R$, then $G(\omega, x) = 0$ for some $x \in \hat{J}_{x_i}$. Thus f_{ω} has a periodic point of the period q if $\omega \in I_{\omega_0}$, from which $\rho(f_{\omega})$ is a rational number. Since $\rho(f_{\omega})$ is continuous with respect to ω (under the distance between $\rho(f_{\omega})$ and $\rho(f_{\omega'})$ defined by $|\rho(f_{\omega}) - \rho(f_{\omega'})| \pmod{1}$ and $\rho(f_{\omega_0}) = r$, we have $\rho(f_{\omega}) = r$ for every $\omega \in I_{\omega_0}$. Thus $f_{\omega} (\omega \in I_{\omega_0})$ is a member of $AT_k(r)$.

It remains to check that $f_{\omega} (\omega \in I_{\omega_0})$ is Morse-Smale. Since every periodic points of f_{ω} has the same period q, it suffices to show that $\frac{d}{dx} F_{\omega}^q(x) \neq 1$ for each $x \in \mathscr{P}^{-1}(\operatorname{Per}(f_{\omega}))$. For a fixed $\omega \in I_{\omega_0}$ we have that $x \in \mathscr{P}^{-1}(\operatorname{Per}(f_{\omega}))$ if and only if $G(\omega, x) = 0$. Thus f_{ω} is Morse-Smale if $\frac{\partial}{\partial x} G(\omega, x) \neq 0$ for each $x \in \{z : G(\omega, z) = 0\}$. Suppose that $\frac{\partial}{\partial x} G(\omega, x) = 0$ for some $x \in \{z : G(\omega, z) = 0\}$ and $\omega \in I_{\omega_0}$. If ω is sufficiently close to ω_0 , then $G(\omega, x) = 0$ implies that $x \in \hat{J}_{x_i}$ for some $0 \le i \le m$. Since $\frac{\partial}{\partial \omega} G(\omega, x) > 0$, we have that $\omega = \omega_i(x)$ and that $x \in \hat{J}_{x_i} \setminus \{x_i\}$ when $\omega \ne \omega_0$. By the assumption $\frac{\partial}{\partial x} G(\omega_i(x), x) = 0$ and so $\frac{d}{dx} \omega_i(x) = 0$, which contradicts the fact that $G(\omega_i(x), x) = 0$ and $\frac{d}{dx} \omega_i(x) \ne 0$ for $x \in \hat{J}_{x_i} \setminus \{x_i\}$. If ω is sufficiently close to ω_0 and $G(\omega, x) = 0$, then $\frac{\partial}{\partial x} G(\omega, x) \ne 0$. Thus f_{ω} is Morse-Smale.

Take $\omega_n \in I_{\omega_0} \setminus \{\omega_0\}$ and suppose that $\omega_n \to \omega_0(n \to \infty)$. Then $f_{\omega_n,\varepsilon,k} \in AT_k(r) \cap MS$ and $f_{\omega_n,\varepsilon,k} \to f_{\omega_0,\varepsilon,k}$ $(n \to \infty)$ with respect to the C¹-topology. Thus $MS_k(r)$ is C¹-dense in $AT_k(r)$. The C¹-openness of $MS_k(r)$ in $AT_k(r)$ (with respect to the relative topology) is easily checked from the fact that MS is open in the set of C¹ diffeomorphisms of the circle.

References

- V. I. ARNOL'D, Small denominators I. On the mapping of a circle into itself, Izv. Akad. Nauk. Math. Ser. 25 (1961), 21-86, [Transl. A.M.S. Ser. 2 46 (1965)].
- [2] R. DEVANEY, Introduction to Chaotic Dynamical Systems, Addison-Wesley (1989).
- [3] J. GRACZYK, Linearizable circle diffeomorphisms in one-parameter families, Bul. Soc. Bras. Mat. 24 (1993), 201-210.
- [4] M. R. HERMAN, Measure de Lebesgue et nombre de rotation, Geometry and Topology, Lecture Notes in Math. 597 (1977), Springer, 271–293.
- [5] W. DE MELO and S. VAN STRIEN, One-Dimensional Dynamics, Springer (1993).
- [6] G. ŚWIATEK, Rational rotation numbers for maps of the circle, Comm. Math. Phys. 119 (1988), 109-128.

Present Addresses: Masatoshi Oka Department of Mathematics, Faculty of Science and Technology, Science University of Tokyo, Noda, Chiba, 278–8510 Japan. *e-mail*: oka@ma.noda.sut.ac.jp

Naoya Sumi

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, MINAMI-OHSAWA, HACHIOJI-SHI, TOKYO, 192–0397 JAPAN. *e-mail*: sumi@math.metro-u.ac.jp