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1. Introduction and maih results.

Let VeL!(R", n>3, be a non-negative potential and consider the Schrédinger
operator L=—A+ V. If V belongs to the reverse Holder class B,, the L? boundedness
of the operators VL™!, V121 ~1/2 y12y[~1 and VL~ !/? were proved by Shen ([Sh]).
For operators of the type VL™ ! and V1/2VL ™!, these results were generalized as follows
([KS]). We replace A by the second order uniformly elliptic operator L, and let
L=L,+V. Suppose V satisfy the same condition as above. Then, the operators VL™ !
and V'2VL~! are bounded on weighted L? spaces and Morrey spaces.

The purpose of this paper is to extend Shen’s results to another direction. More
precisely, we shall investigate the L?-L? boundedness of the operators

T1=Va(—A+V)—ﬂ, OSaSﬁﬁla
T,=VV(-A+V) ?, O<a<l2<B<l, B—a=1)2

on R", n>3. We obtain weighted estimates for 7, and T, and their boundedness on
Morrey spaces.

Shen established the estimate of the fundamental solution of the Schrédinger op-
erator by using the auxiliary function m(x, V) which was introduced by himself. One
of his idea is to combine the estimates of the fundamental solution with the technique
of decomposing R" into spherical shells {x|2/ " 'r<|x|<2’r}, r={m(x, V)} !, for
estimating various integral operator (see [Sh, Theorem 4.13, Theorem 5.10]). We shall
prove our theorems by similar methods.

As we mentioned above, for the special values of «, B, the estimate for 7, and T,
were proved in [Sh] and [KS]. For the operator T,, our theorem does not cover the
case (a, f)=(0, 1/2). To prove this case Shen’s advanced method is needed (see [Sh,
Theorem 0.5] and its proof).

In their paper ([Sh], [KS]), the authors obtained pointwise estimates for the
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operators using the Hardy-Littlewood maximal operator M. In this paper we use the
fractional maximal operator M, to obtain the estimates for 7', and T,. Note that M, = M.
We shall repeat the definitions of the potential class B, (e.g. [Sh]) and the
fractional maximal operator M,, weight class 4, , (e.g. [MW]), and the Morrey space
(e.g. [CF)).
Throughout this paper we denote the ball centered at x with radius r by B(x, r).

DEerFINITION 1. Let V>0.
(1) For 1<g< + oo we say Ve B,, if there exists a constant C such that

1 Ya  C
(—f V(x)“dx) S——j V(x)dx
|B|Jg |B| Jg
for every ball BcR".

(2) We say VeB,, if there exists a constant C such that

C
Vlijom<—— | V(x)d
1Vl (B) |B] J; (x)dx

for every ball BcR”".

ReEMARkK 1. (1) If Vis a polynomial, then V belongs to B, ([Fe]).

(2) For 1<g< + o0, it is easy to see B, = B,.

(3) If VeB,, then Vis a Muckenhoupt 4, weight, and hence V(x)dx is a doubling
measure ([CoF]), that is, there is a constant C such that

J Viydy<C j Viy)dy .
B(x,2r) B(x,r)

For other properties of the class B,, see [KS, Remark 1].

DerINITION 2. Let fe L. (R"). For 0<y<n the fractional maximal operator is
defined by

yf(x)—sup j | f(»)ldy,  xeR",

b |B |1 e
where the supremum on the right side is taken over all balls B<R".

DerFINITION 3. Let 1<p<+ o and 1<g< +o. For a non-negative function
w(x), we say we 4, , if

1 1/q 1 (p—1)/p
(—— f w(x)"dx) (— j w(x) PP~ 1’dx) <C
|B| Jp |B| Jp

holds for all ball BcR", where C is a constant independent of B.

DEerFINITION 4. For 0<A<n and 1<p< + o0, the Morrey space is defined by
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1 1/p
L"”‘(R")={f€Lf’oc(R") S f N pa=sup (7 J | f(») I”dy) <+ OO} .

o Jaen
Note that L”°(R")=LP(R").

Next we state main results of this paper. If ¥ belongs to B, we obtain pointwise
estimates for 7', and T, and, if V belongs to B,, we obtain pointwise estimates for the
adjoint operators 7§ and T%.

THEOREM 1. Suppose Ve B, and 0<a<B<1. Then there exists a constant C such
that

| T, f()<CM (| f)x), feCrRT),
where y=2(f — a).

THEOREM 2. Suppose VeB,,0<a<1/2<B<1, and p—a=>1/2. Then there exists
a constant C such that

| T f () <CM[ f)x), feCPRY),
where y=2(f—o)—1.

REMARK 2. In Theorem 1 the case («, f)=(1,1) and in Theorem 2 the case
(o, B)=(1/2, 1) was shown in [KS, Theorem 1].

THEOREM 3. Suppose Ve B,, for some q,>n/2, 0<a<B<1, and let 1/q,=1~—
®/q. Then there exists a constant C such that

| T¥f() | < C{M,, (| f12)x)} e, feCPRT),
where y=2(f —a).

THEOREM 4. Suppose Ve B,, for some g, >n/2, 0<a<1/2<B<]1, and f—a>1/2.
And let

1/q2={1_°‘/‘h> if qi=n,
1—(a+1)/q,+1/n, if nj2<q,<n.
Then there exists a constant C such that

| T3 f(x)| < C{M,, (I f 1))}, feCPRT),
where y=2(f —o)—1.

REMARK 3. In Theorem 3 the case («, f)=(1, 2) and the case («, B)=(1/2, 1/2)
were shown in [KS, Theorem 2(1)], [Sh, Theorem 5.10] respectively. In Theorem 4 the
case (a, f)=(1/2, 1) was shown in [Sh, Theorem 4.13].

Weighted norm inequalities for fractional maximal operators and fractional inte-
gral operators and their boundedness in Morrey spaces are known (e.g. [MW], [Sa],
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[CF], and [FR]). Therefore from these theorems we can obtain weighted estimates and
boundedness on Morrey spaces for T; and T,. We shall next state these estimates as
corollaries.

COROLLARY 1. Assume VeB, and 0<a<pB<I.
(1) Let 1<p<nfy and let 1/q=1/p—7y/n, where y=2(B—a). We assume we A4, ,.
Then there exists a constant C such that
T I Lawmy < Cll S Wl Logry 5 feCyr®R).

(2) Let 1<p<n/y and let 0<A<n—yp, where y=2(B—a). Then there exists a
constant C such that

IT g2 Clfllpz,  fECFRT),
where 1/q=1/p—y/(n— ).
COROLLARY 2. Assume VeB,, 0<a<1/2<p<1, and p—a=>1/2.
(1) Letl<p<n/yandlet1/q=1/p—y/n, wherey=2(f—a)—1. We assume we 4, ,.
Then there exists a constant C such that
“(Tzf)W“Lo(nv-)S C“fW“men) s feCyRT).

(2) Let 1<p<n/y and let 0 <A <n—yp, where y=2(f—a)—1. Then there exists a
constant C such that

I Toflga<Clfllpas  feCTRY,
where 1/q=1/p—y/(n—A).

REMARK 4. (1) If a=p in Corollary 1 and if f—a=1/2 in Corollary 2, the
condition for w is we A4, ,, which is equivalent to that w” belongs to the Muckenhoupt
A, class. Moreover Corollary 1 for (¢, f)=(1, 1) and Corollary 2 for (, B)=(1/2, 1) were
shown in [KS, Corollary 1(1)].

(2) For w(x)=1, the cases (o, f)=(1, 1), (1/2, 1/2) in Corollary 1(1) and the case
(o, B)=(1/2, 1) in Corollary 2(1) were shown in [Sh, Remark 2.9], [Sh, Theorem 5.10],
[Sh, Theorem 4.13] respectively.

As a corollary of Theorem 3, we obtain

COROLLARY 3. Suppose VeB,, for some q,>n/2. Let 0<a<f<l, y=
2(B—a). And let

1
l<p<— ', —=——-1  —=1-—
a/qy +y/n q p n q2 q:

In addition assume w2 € A4, 10, Where 1/p+1/p' =1, 1/q+1/q’=1. Then there exists
a constant C such that

(T fIw Limr) S C“fw“LP(R") s feCsyR").
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ReMARK 5. (1) In Corollary 3 the case (x, f)=(1, 1) was shown in [KS, Theorem
2 (1)]. For w(x)=1, the cases (x, f)=(1, 1) and (a, f)=(1/2, 1/2) were shown in [Sh,
Theorem 3.1], [Sh, Theorem 5.10] respectively.

(2) Itis well known that if Ve B, for some g>1 then there exists ¢>0 such that
VeB,.. ([Ge]). Using this fact, under the assumption VeB,,, we can also obtain
weighted estimates by Theorem 3.

(3) If we take the limit g, — + oo, then the condition w™ € 4,,,, ,,, becomes
w~leAd, ,, which is equivalent to we 4, . Therefore, Corollary 3 is an extension of
Corollary 1 (1).

As a corollary of Theorem 4, we obtain
COROLLARY 4. Suppose Ve B, for some q,>n/2. Let

{osasw_sﬁsl, if q,=n,
O<a<l2<p<l1, if nf2<q,<n.

And let B—a>1/2, y=2(f—a)—1,

1 1 9 1 1
<p<— ., =t e,
1/py+vy/n q p n q, D1
where
l/p ={a/q19 l..f qlzn,
Y le+lg—1n, if ni2<q <n.

In addition assume w™ € Ay, 110, Where 1/p+1/p'=1, 1/g+1/q'=1. Then there exists
a constant C such that

T2 W Loy < Cl Wl Loy, S€CG(RY).

REMARK 6. In Corollary 4 the case w(x)=1 and («, f)=(1/2, 1) was shown in [Sh,
Theorem 4.13].

We first note that the case (a, §)=(0, 1/2) for T, can be derived from the well
known results. In fact, singular integral operators are bounded on LP(R"; w(x)dx) and
Morrey spaces ([ St, pages 205 and 221] and [CF]) and hence Corollary 2 and Corollary
4 for this case immediately follow from the fact that T, is a Calder6n-Zygmund operator
under the assumption Ve B,, for some ¢g; >n ([Sh, Theorem 0.8]).

For the case VeB,, for some n/2<g;<n Corollary 4 does not cover the case
(o, B)=(0, 1/2) since it is not known whether T, is a Calderén-Zygmund operator or
not. Under this assumption L? boundedness of 7, was directly proved by Shen but
only for w(x)=1 ([Sh, Theorem 0.5]).

The plan of this paper is as follows. In section 2, we recall the estimates of the
fundamental solution of the operator —A+(¥(x)+it), 1€R, which was established
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by Shen. With these estimates, we prove the theorems in section 3, which contain the
proof of corollaries.

2. Preliminaﬁes.

First we recall the definition of the auxiliary function m(x, V) and its properties
which was obtained by Shen. '

DEerINITION 5 ([Sh]). For xeR”, the function m(x, V) is defined by

1 { r? J
——=supsr>0: ——— V(y)dysl}.
m(xs V) |B(x, r)l B(x,r)

LeMMA 1 ([Sh]). Assume that Ve B, for some q>n/2. Then there exists a constant
C such that, for 0<r<R< + o0,

r 2 R njqg—2 R 2
. V(y)dy < C(—) —_— V(y)dy.
l B(xa r) I B(x,r) r | B(x’ R) | B(x,R)

By Lemma 1 we see that
O<m(x, V)< + © for VeB,, q>n/2,

r? 1
_— Viydy=1 for r=——.
| B(x, )| B(x,r) m(x, V)

Next we recall the estimate of the fundamental solution of the Schrédinger operator
([Sh]). Let I'(x, y, t) denote the fundamental solution for the operator —A + (V(x) + it),
teR. Then we have

LemMA 2 ([Sh]). Let k>0 be an integer.
(1) Under the assumption V€ B,,, there exists a constant C, such that

C 1
{(1+]1< "2 x—y {14+mx, V)| x—p|}*  |x—yI""%

(2) Under the assumption Ve B,, there exists a constant C, such that

IT(x, y, 7)<

C, 1

V.I(x,y, 7)< . .
VL0 y, ) {1+t | x—y 31 +m(x, V)| x—y[}* |x—p[*"!

REMARK 7. These estimates (Lemma 2) also hold when m(x, V) is replaced by
m(y, V). We see this by I'(x, y, T)=I'(y, x, —1) or by the following estimate: There exist
positive constants C, k, such that

C{l+|x—y|m(y, V)}'" V<1 +|x—y|m(x, V)
(see [Sh, Corollary 1.5]).
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3. Proofs.

Proor orF THEOREM 1. By the functional calculus, we may write, forall0<f <1,

(—A+ V)-ﬂ=ij (—it) H(— A+ V+it)~'dr . 1)
2t Jr
Let feCg. From (—A+V+it)” ' f(x)= [ g I(x, y, 7) f(»)dy, it follows that
T,f(x) =f K (x, pV(x)f(y)dy , ()]
Rn
where
1 -
K\(x, y)= { . JR(—zr) Br(x, y, tydr , for 0<p<1, 3)
I'(x,y,0), for Bg=1.

By Lemma2 (1), forall 0 < <1 and all integer k >2, there exists a constant C, such that

C, 1
{1+m(x, V)|x—y|}¥ |x—y|""2¢

Let r=1/m(x, V). Since Ve B, V(x)<Cm(x, V)? a.e. Therefore we obtain

Gy 1
. V a d

IKl(xa J’) I S

C))

I T f(x)| <

+ o0 l 1
SCCk Z = * —
j=—o 20 1lp<|{x—y|<2Jr {l+r llx—yl}k |x_y|" 2k

L)1y
r

g2 1
<ccC R
F e (T427 0 (i 26w

where y=2(f —«) and we choose k>3. []

J | S ldy < CM(| £ ),
B(x,27r)

PrOOF OF THEOREM 2. Let fe Cg°. As in the proof of Theorem 1, we have

T,f(x) =f Ky(x, WV S (n)dy , )

where

1 .
Kz(x,y)={ E;J.R(—n) bV .I(x, y, )dt , for 12<pf<1, | ©)

V.[(x,y,0), for p=1.

By Lemma 2 (2), forall 1/2 < <1 and all integer k > 2, there exists a constant C; such that
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C, . 1
{14+m(x, V)|x—y|}* |x—yr-26*+1"°

Then as in the proof of Theorem 1, we obtain

| Tof ()| < CM (| £ Nx) ,

K> (x, )<

Q)

where y=2(8—a)—1. [J
ProOOF OF THEOREM 3. Let fe Cg. Using(2) and (3), the adjoint of T, is given by

TEf(x)= J K\(y, x)V(y)*f(y)dy .
-

And by Lemma 2 (1), for all integer k>2, there exists a constant C, such that
C, _ 1
{14+mlx, V)| x—yl}* |x—y["~2 "~
Let r=1/m(x, V). By Holder’s inequality, it follows that
C. . 1
re {14+mlx, V)| x—yl}*  |x—p[|""%

[ Kq(y, x)|<

T f(x) < VY| f(y)ldy

< ¥ G VLS O)ldy

=@ Jas-tr<ixmyis2r (LH277HQITI 2

<CC -*f (2jr)2ﬁ { 1 J V(y)lhdy}a/ql
T e U 2TT) L@ Jagam

{—1 f | () e }'
(2jr )" B(x,27r) ¢ i’ '

From the assumptions we have 0 <2(f —a)g, <n. Thus, letting y=2(f —a) we see that

| T f(x)| < CCAM, (| £1%)(x)} /92 Jf (27r)? { 1
1 SCLnM,y,, i (142770 1B, 29| Jamam

Since V(x)dx is a doubling measure, for the case j > 1 there exists a constant C,, such that

V(y)dy}“ .

2

(27r)? i . r
—_— Viydy<29C{C-27"" ——— (y)dy
I B(x’ 2Jr) I B(x,27r) |B(xa r)l B(x,r)
=2y, (®)
where ko =2—n+log, C,. For the case j<0, by Lemma 1 we obtain
(27r)? ro\"-2 2
2" : V(py<C(—— —— | VoM
| B(x, 2'r)| J px,29m) 2’r | B(x, )| JBex.n

=C(2/)> " 9)
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Hence if we take k sufficiently large, we can conclude

| T¥f ()| < C{M,. (| f 1))} o2 . [
ProOF OF THEOREM 4. Let fe C§°. Using(5) and (6), the adjoint of T, is given by

T3 f(x) =J K>(y, x)V(y)f (y)dy .
R”

Case g, > n: By Lemma 2 (2), for all integer k > 2, there exists a constant C, such that
Cy . 1

{1+mx, VIx—yl}* |x—pr=2*1 "

Let r=1/m(x, V). Then as in the proof of Theorem 3, it follows that

TH@<ce, 5 JE { : f V(y)q'dy}%
B e 4277 L@ Jaanm

{ 1 J‘ If )'q 4 }1/‘12
(zj" ) J B, 20m) b 4 .

From the assumptions we have 0 < {2(8—a)— 1}g, <n. Thus, letting y=2(8—a)—1 and
using (8) and (9) we can conclude | T% f(x) | < C{M,,,(| f [#)(x)} /¢

Case n/2<gq, <n: We fix x,, yoeR". Let R=|x,—y,|/4. Then following estimate
was obtained by Shen: For all positive integer k, there exists a constant C, such that

' Vyr(y05 xOs T)I

| Ky(y, ¥) | <

Gk 1 () 1
= 1/2 phk k -2 -1 Y + -1
(A +1)2R¥{1+m(xo, V)R}* [ R" Byo.R) 1V —Yol" R"
(see [Sh, page 538]). Thus, by (6), for all integer k > 2, there exists a constant C, such that

Ky(¥o, Xo) 2 ! V(») 1
| Kx(vos %) < { : f e L1
s {1+m(xo, V)R}k Rr—28 B(yo.R) [y—yol" 1 Rr—28+1

Let r=1/m(x, V). We choose p, such that 1/p, =1/gq, — 1/n. Then from the assumptions
we have 1/p, +a/q, +1/g,=1. By Holder’s inequality, it follows that

+ oo - .
IT3f(0)|< X | K>(y, )| V(¥ | f(0)|dy
j=—0 J2i-1r<|x~y|<2ir
-i-zoo . 1 ) p 1/p1
< (2’r)"{ : f | Ka(y, x) | y}
J=—o (2Jr)n 2~ p<|x—y|<2Jr ?

{ 1 J‘ S }rx/ql{ 1 f ( )Iq 4 }1/‘12
(2jr)" B(x,27r) Oy (2jr)” B(x,Zfr)If Y Y .
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Using Minkowski’s inequality and Hardy-Littlewood-Sobolev’s inequality, we obtain

iyl Ky Py}
(w{ . j K 91 y}
Q@I Joicseinoyiei

CC(2°r)" 1 1 o L1 1
S(l +2773 [ @iry=2871 {(er)" Lx—ylszfﬂr o) dy} - (27281 ]

ia2p—1 9ip)2
cca, @ (a
(14+2777°) | B(x, 27r)| B(x,27r)

For the case j>1, using (8) we obtain

V(y)dy+1} .

@it

. 1 - 1/ps
(2’r)"{ J | K5(y, x)|° ‘dJ/} <CG
2i-lp<|x—y|<2Ir

@) (142773
For the case j<0, using (9) we obtain
. 1 - 1/p1 (21".)2[3— 1
21,-);.{ : J | K,(y, x) |P*d } <cC, =T ____ .
( @°r)" Jai-tr<)x—yl<20r 2 4 , (142773

Then it follows that

* q2 1/q2
I T2/ (1< COAMa (1 1)) q{j; (127 T2 Te2r

1 a
. - V(y)d R
{(2"" ) J B(x,2Jr) 0 y}

where y=2(B—a)—1. Using (8) and (9) once more, and taking k sufficiently large, we
finally obtain | 7% f(x) | < C{M, (| £ |1®)x)}%2. O

o @i 2 (2fr)2“}

ProOOF OF COROLLARY 1. (1). Case a>0: Under the assumption weAd,,,
weighted LP-L? estimate holds for the fractional maximal operator ((MW]). This
estimate and Theorem 1 yield the desired estimate.

Case a=0: Let K,(x, y) be the kernel of the operator T,. Note that if Ve L}3(R"),
V>0, there is a constant C such that

| Ki(x, y)| < (10)

|x—y|"=28"°
where 0<fB<1. Since under the assumption we 4, , weighted L?-L? estimate holds
for the fractional integral operator ((MW1]), the desired estimate follows.

(2). Case a>0: For 0 <y <n the operator M, is bounded on Morrey spaces ([CF]
and [FR]). By Theorem 1 T, is also bounded there. '

Case a=0: The fractional integral operator is bounded on Morrey space ([CF)).
Hence by (10) T, is also bounded there. []
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At the end of Section 1 we have mentioned that Corollary 2 and Corollary 4 are
true for the case («, f)=(0, 1/2). Hence we prove these corollaries for other cases in this
section.

PrOOF OF COROLLARY 2. (1). Case a>0: Using Theorem 2 and the same idea
of the proof of Corollary 1(1), we arrive at the desired estimate.

Case a=0 and 1/2<f<1: Let K,(x, y) be the kernel of the operator T,. Note that
if Ve Li/2(R"), V>0, there is a constant C such that

| Ky(x, Y < an

|x_y|n—2ﬁ+1 ?
where 1/2 <f<1. Since under the assumption we 4, , weighted LP-L? estimate holds
for the fractional integral operator ((MW]), the desired estimate follows.

(2). Using Theorem 2 and the same idea of the proof of Corollary 1(2), we arrive
at the desired estimate. [

PrOOF OF COROLLARY 3. Case a>0: Let y=2(f—a) and let 1/g,=1—a/g;. And
for ¢’ such that g, <q'<n/y let 1/p’=1/q"—7y/n. Then from the assumptions we have

’ 1 1
q<n V‘]z.

0<vyg,<n, 1< s - =—
9 Y4 Pla: 49 n

By Theorem 3 and the boundedness of the fractional maximal opeyrator, there exists a
constant C such that

WTFfw™? Lo @y <Cll fw™ 1“LG’(R") s feCy(R").

Now the desired estimate follows since 1/p+1/p'=1 and 1/g+1/q'=1.
Case a=0: Since g,=1 the condition for w is w™'e 4, ,, which is equivalent to
we A, .. Then as in the proof of Corollary 1(1), we arrive at the desired estimate. []

PROOF OF COROLLARY 4. Case a>0: Let y=2(f—a)—1 and let 1/g,=1—1/p,,
where

1/ _{O‘/%, ‘ lf ‘tha
PPZV @+ 1)gi—1yn,  if nm2<gq,<n.

And for q'such thatq, <q’'<n/ylet 1/p’=1/q’ —y/n. Then from the assumptions we have

' 1 1
q<n’ '}’512.

0<yg,<n, 1< - =—
4. V9> p'la, 4'/q» n

Then the desired estimate follows from Theorem 4 as in the proof of Corollary 3.
Case a=0 and 1/2< B <1: Using (11) and the same idea of the proof of Corollary
3, we arrive at the desired estimate. [
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