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Introduction.

Let $N$ be a positive integer, and let

$\Gamma_{0}(N)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in SL_{2}(Z)|c\equiv 0(mod N)\}$ .

Let $X_{0}(N)$ be the modular curve which corresponds to $\Gamma_{0}(N)$ . For each positive divisor
$N^{\prime}$ of $N$ with $(N^{\prime}, N/N^{\prime})=1$ (in which case we write $N^{\prime}\Vert N$), $W_{N^{\prime}}=W_{N’}^{\langle N)}$ denotes the
corresponding Atkin-Lehner involution on $X_{O}(N)$ . ( $W_{1}$ is the identity.) It is known that
the $W_{N^{\prime}}$ generate an elementary 2-abelian group, which we denote by $W(N)$ . The group
$W(N)$ is of order $2^{\omega\langle N)}$ , where $\omega(N)$ is the number of distinct prime divisors of $N$.
Furthermore, these involutions are all defined over $Q:W(N)\subseteq Aut_{\Phi}(X_{0}(N))$ .

Let $W^{\prime}$ be a subgroup of $W(N)$ . Then the hyperellipticity of the quotient curve
$X_{0}(N)/W^{\prime}$ has been determined for two extreme cases (i.e., for $W^{\prime}=\{1\}$ or $W(N)$).

THEOREM 1 ([12]). There are nineteen values ofNfor which $X_{0}(N)$ is hyperelliptic,
$i.e.,$ $X_{0}(N)$ is hyperelliptic if and only if

$N=22,23,26,28-31,33,35,37,39-41,46-48,50,59,71$ .

THEOREM 2 ([8] [6]). Put $X_{0}^{*}(N)=X_{0}(N)/W(N)$. There are 64 values ofNfor which
$X_{0}^{*}(N)$ is hyperelliptic.

(i) $X_{0}^{*}(N)$ is ofgenus two ifandonly $ifN$ is in thefollowing list(57 values in total):

67, 73, 85, 88, 93, 103, 104, 106, 107, 112,
115, 116, 117, 121, 122, 125, 129, 133, 134, 135,
146, 147, 153, 154, 158, 161, 165, 166, 167, 168,
170, 177, 180, 184, 186, 191, 198, 204, 205, 206,
209, 213, 215, 221, 230, 255, 266, 276, 284, 285,
286, 287, 299, 330, 357, 380, 390.
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(ii) $X_{0}^{*}(N)$ is hyperelliptic with genus $\geq 3$ if and only if
$N=136,171,176,207,252,279,315$ .

REMARK 1. Defining equations of hyperelliptic modular curves $X_{0}(N)$ are given
in [4] [11] [15], and those of hyperelliptic modular curves $X_{0}^{*}(N)$ are given in [11]
[5] [6].

Now the purpose of this article is to determine all hyperelliptic curves $X_{0}(N)/W^{\prime}$

for proper subgroups $W^{\prime}$ of $W(N)$ for all $N$. As the results for genus two case are
known [5], we restrict ourselves to the case where the genus is greater than two. Note
that if there is a proper subgroup $W^{\prime}$ of $W(N)$ such that $X_{0}(N)/W^{\prime}$ is a hyperelliptic
curve of genus $\geq 3$ , then the integer $N$ must satisfy the following conditions:

(i) Nis nota power ofa prime number;
(ii) $X_{0}(N)$ is of genus $\geq 5$ ;
(iii) $X_{0}^{*}(N)$ is subhyperelliptic, by which we mean that it is either rational, elliptic

or hyperelliptic. (Hence in particular $N\leq 390.$ )
Moreover, since there is a model of $X_{0}(N)$ , and hence of $X_{0}(N)/W^{\prime}$ , over $Q$ having

good reduction at all $ptN$ ([10]), it follows from Ogg’s observation [12] [13] that

PROPOSITION 1. For a positive integer $N$, put $\psi(N):=N\prod_{q|N}(1+1/q)$ , where the
product is over prime divisors of N. Let $p$ be a prime number such that $p$ {’ N. If one has

$\frac{1}{2^{\omega(N)-r}}\frac{p-1}{12}\psi(N)+2^{r}hs>2(p^{2}+1)$ ,

then $X_{0}(N)/W^{\prime}$ is non-hyperelliptic for any subgroup $W^{\prime}$ of $W(N)$ such thai
$[W(N):W^{\prime}]=2^{r}$ . Here $h$ is the largest divisor of 24 with $h^{2}|N$, and $s=s_{2}s_{3}$ is defined $a_{L}|$

follows. Write $h=h_{2}h_{3}$ with $h_{2}|8$ and $h_{3}|3$ . Then

$s_{2}=\left\{\begin{array}{ll}3/4 & if 2|h_{2}^{2}\Vert N,\\1 & otherwise;\end{array}\right.$

$s_{3}=\left\{\begin{array}{ll}2/3 & if h_{3}^{2}=9\Vert N ,\\1 & otherwise.\end{array}\right.$

As an application, we see by setting $p=2$ or 3 or 5 that $X_{0}(N)/W^{\prime}$ is non-hyper
elliptic for all proper subgroups $W^{\prime}$ of $W(N)$ for

$N=112,117,135,136,146,147,153,158,159,166$ ,
171, 176, 177, 184, 188, 205, 206, 207, 209, 213,
215, 220, 221, 252, 255, 266, 279, 284, 285, 286,
287, 299, 315, 357, 380.

Taking a glance at this, we have the following list of $N$ for which the hyperellipticit\.
of quotients of $X_{0}(N)$ must be tested.
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TABLE 1

$N$

$42$ 46 51 52 55
63 65 66 68 69
77 78 80 82 84
91 92 93 94 95

104 105 106 108 110
119 120 122 123 124
134 138 140 141 142
156 161 165 168 170
195 198 204 210 222
390

56 57 58 60 62
70 72 74 75 76
85 86 87 88 90
96 98 99 100 102

111 114 115 116 118
126 129 130 132 133
143 145 150 154 155
174 180 182 186 190
230 231 238 276 330

We will determine the hyperellipticity of $X_{0}(N)/W^{\prime}$ for these $N$ by using various
methods which generalize those given in [8, App. $C$] and [6]. In particular, we will be
able to determine the hyperellipticity of $X=X_{O}(N)/W^{\prime}$ without calculating an equation
related to $X$ (cf. [8] [6]; especially [8, Prop. 2]).

1. The genus of the quotient $X_{o}(N)/W^{\prime}$ .
Let $X$ be the quotient curve of $X_{0}(N)$ by a subgroup $W^{\prime}$ of $W(N)$ :

$X=X_{0}(N)/W^{\prime}$ .

Since $X$ corresponds to the Fuchsian group $\Gamma^{\prime}$ generated by $\Gamma_{0}(N)$ and the elements of
$W^{\prime}$ , the space of holomorphic l-forms on $X$ can be canonically identified with the space

$S_{2}(\Gamma^{\prime})$ of cuspforms of weight 2 on $\Gamma^{\prime}$ . Obviously, we have
$S_{2}(\Gamma^{\prime})=S_{2}(N)^{W^{\prime}}=\{f\in S_{2}(N)|f|w=f(\forall w\in W^{\prime})\}$ ,

where $S_{2}(N)=S_{2}(\Gamma_{0}(N))$ . In particular, the genus of $X$ is equal to the dimension of
$S_{2}(N)^{W^{\prime}}$ . As one can find the data of the so-called W-splitting of $S_{2}(N)$ for $N\leq 300[2$ ,
Table 5], the dimension of $S_{2}(N)^{W’}$ is easily computed for $N\leq 300$ . Similar data for
larger $N$ can be computed by using trace formulas of Hecke operators (or by Remark
2 below). Since for $N\geq 301$ only $N=330$ and 390 remain to be tested, it is sufficient
for our purpose to give the data for these two values of $N$ (Table 2). (Remark. The
third column ofTable 2 gives the dimensions of direct summands $S_{2}(N)^{\langle\pm,\cdots,\pm)}$ of $S_{2}(N)$ ,
ordered lexicographically; see [2, Table 5].)

TABLE 2. The W-splitting of $S_{2}(N)$
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EXAMPLE 1. Let $N=42$ . From [2, Table 5], we see that the genera ofthe $X_{0}(42)/W$

are as follows.

REMARK 2. There is a formula for the number $v(N^{\prime})=v(N^{\prime};N)$ of fixed point
of $W_{N^{\prime}}$ on $X_{O}(N)$ . It is given by

$v(N^{\prime})=(\prod_{p|N/N^{\prime}}c_{1}(p))h(-4N^{\prime})$

$+\left\{\begin{array}{ll}(\prod_{p|N/N}, c_{2}(p))h(-N^{\prime}) & if 4\leq N^{\prime}\equiv 3 (mod4),\\0 & otherwise\end{array}\right.$

$+\{p|N/2\prod_{0}(1+(\frac{-4}{p}))$
$ifN^{\prime}=2otherwise$

$+\left\{\begin{array}{ll}\prod_{p|N/3}(1+(\frac{-3}{p})) & if N^{\prime}=3,\\0 & otherwise\end{array}\right.$

$+\left\{\begin{array}{ll}\prod_{p^{v}||N/4}(p^{[\frac{v}{2}]}+p^{[\frac{v-1}{2}]}) & if N^{\prime}=4,\\0 & otherwise ,\end{array}\right.$

where $h(-d)$ is the class number of primitive quadratic forms of discriminant $-d,$ $(-**$

is the Kronecker symbol and the functions $c_{i}(p)$ are defined as follows:



MODULAR CURVES 109

$c_{i}(p)=\left\{\begin{array}{ll}1+(\frac{-N^{\prime}}{p}) & if p\neq 2 and N^{\prime}\equiv 3 (mod4) ,\\1+(\frac{-4N^{\prime}}{p}) & if p\neq 2 and N^{\prime}\not\equiv 3 (mod4) ,\end{array}\right.$

$c_{1}(2)=\left\{\begin{array}{l}1ifN^{\prime}\equiv 1(mod4)and2||N\\0ifN^{\prime}\equiv 1(mod4)and4|N\\2ifN’\equiv 3(mod4)and2||N\\3+(\frac{-N^{\prime}}{2})ifN^{\prime}\equiv 3(mod4)and4||N\\3(1+(\frac{-N’}{2}))ifN^{\prime}\equiv 3(mod4)and8|N\end{array}\right.$

$c_{2}(2)=1+(\frac{-N^{\prime}}{2})$ if $N^{\prime}\equiv 3$ (mod4).

One can use this formula to compute the genus of $X_{0}(N)/W^{\prime}$ .

Let $X=X_{0}(N)/W^{\prime}$ be the quotient curve of $X_{0}(N)$ by a proper subgroup $W^{\prime}$ of
$W(N)$ . Then each non-trivial element $w$ of $W(N)/W^{\prime}$ induces an involution on $X$ :

$X_{0}(N)$–
$ x^{\underline{degree2}}x/\langle w\rangle$

– $X_{0}^{*}(N)$ .

First we determine all (X, w) such that $ X/\langle w\rangle$ are of genus zero, i.e., all hyperelliptic
curves $X$whose hyperelliptic involution is ofAtkin-Lehner type. If the genus of $ X/\langle w\rangle$ is
zero, then so is that of $X_{0}^{*}(N)$ . Since $N=119$ is the largest value of $N$ for which $X_{0}^{*}(N)$

is of genus $0$ , we see from [2, Table 5] that there are 32 hyperelliptic curves $X$ such
that their hyperelliptic involutions are of Atkin-Lehner type.

THEOREM 3. There are 32 pairs of $(N, W^{\prime})$ for which $X_{0}(N)/W^{\prime}$ is a hyperelliptic
curve of genus $g\geq 3$ such that the hyperelliptic involution $v=v(N, W^{\prime})$ comes from an
Atkin-Lehner involution. More precisely, $X_{0}(N)/W^{\prime}$ is a hyperelliptic curve of $g\geq 3$

having an Atkin-Lehner involution as its hyperelliptic involution if and only if $(N, W^{\prime})$ is
in the following list.
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Next assume that the genus of $X_{0}^{*}(N)$ is non-zero (i.e., $X_{O}^{*}(N)$ is either ellipti $($

or hyperelliptic). Then any of Atkin-Lehner involutions on $X=X_{0}(N)/W^{\prime}$ is non
hyperelliptic, hence has at most four fixed points whenever $X$ is hyperelliptic ([12, Prop
1]). Therefore if $W_{N^{\prime}}$ induces anon-trivial action on $X$ and has more than four fixet
points, then $X$ is non-hyperelliptic. We omit the list of $(N, W^{\prime})$ for which the $curv\{$

$X_{0}(N)/W^{\prime}$ tums out to be non-hyperelliptic in this way, since it would be of fairly $l\arg|$

size. The reader may recover the list immediately from [2, Table 5] and Table 2 above
Note also that one may save the time by observing that if there is a covering $ X\rightarrow$ ]

between algebraic curves $X$ and $Y$, and if $Y$ is non-subhyperelliptic, then so is X. $Ol$

the other hand, if there is a covering $X\rightarrow Y$ and if the genus of $X$ (resp. $Y$) is thre
(resp. two), then $X$ is necessarily hyperelliptic ([7, Prop. 2]). Thus we see that the $fiv|$

curves $X_{0}(85)/\langle W_{85}\rangle,$ $X_{0}(165)/\langle W_{11}, W_{15}\rangle,$ $X_{0}(114)/\langle W_{2}, W_{19}\rangle,$ $X_{0}(130)/\langle W_{2},$ $W_{13}$ .
and $ X_{0}(195)/\langle W_{5}, W_{39}\rangle$ are hyperelliptic (see [7]).

REMARK 3. We have determined the hyperellipticity of $X_{0}(N)/W^{\prime}$ for

$N=46,51,55,56,60,62,66,69,70,74,78,87,92$ ,

94, 95, 108, 110, 111, 119, 142, 143, 145, 155

in this section.
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2. Modular involutions.

In this section we always assume that $4|N$ or $9\Vert N$. Then $X_{O}(N)$ has modular
involutions of non-Atkin-Lehner type; i.e., those involutions which are not Atkin-
Lehner involutions but come from linear fractional transformations on the complex
upper half plane. In this section, we discuss their action on $S_{2}(N)$ . As a consequence,
we will be able to determine the hyperellipticity of $X_{0}(N)/W^{\prime}$ for some $(N, W^{\prime})$ .

Put $S_{\mu}=\left(\begin{array}{ll}\mu & l\\0 & \mu\end{array}\right)$ . Then $S_{2}$ is in the normalizer of $\Gamma_{0}(N)$ when $N$ is divisible by 4,

and $S_{3}$ is in the normalizer of $\Gamma_{0}(N)$ when $N$ is divisible by 9.

LEMMA 1. (i) Let $2^{\alpha}\Vert N$ with $\alpha\geq 2$ . Then as automorphisms of $X_{0}(N)$ we have

$S_{2}^{2}=1$ ; $S_{2}W_{p^{v}}=W_{p^{v}}S_{2}$ if $p\neq 2$ .

(ii) Let $2^{\alpha}\Vert N$ with $\alpha\geq 3$ and put $V_{2}=S_{2}W_{2^{\alpha}}S_{2}$ . Then as automorphisms of $X_{0}(N)$

we have

$V_{2}^{2}=1$ ; $V_{2}W_{p^{v}}=W_{p^{v}}V_{2}$ .
(iii) Let 9 $\Vert N$ and put $V_{3}=S_{3}W_{9}S_{3}^{2}$ . Then as automorphisms of $X_{O}(N)$ we have

$V_{3}^{2}=1$ ; $V_{3}W_{p^{v}}=W_{9}^{\epsilon}W_{p^{v}}V_{3}$ ,

where

$\epsilon=\left\{\begin{array}{ll}0 & if p^{v}\equiv 0,1(mod 3),\\1 & otherwise.\end{array}\right.$

PROOF. This follows from a direct calculation. $\square $

The following two propositons generalize Propositions 2 and 3 of [6]. Proofs are
similar to those in [6].

PROPOSITION 2, Let $N$ be a positive integer such that $8|$N. Let $N^{\prime}$ be a positive
divisor of $N$ and let $d$ be a positive divisor of $N/N^{\prime}$ . Define integers $\alpha,$

$\beta$ and $\gamma$ by

$2^{\alpha}\Vert N$ , $2^{\alpha-\beta}\Vert N^{\prime}$ , 2 $\Vert d$ ,

so that $N=2^{\alpha}M$ and $N^{\prime}=2^{\alpha-\beta}M^{\prime}$ for some positive odd integers $M,$ $M^{\prime}$ with $M^{\prime}$ M. Let
$f=\sum a_{n}q^{n}$ be a newform of weight 2 on $\Gamma_{0}(N^{\prime})$ such that $f|W_{2^{\alpha-\beta}}^{\langle N’)}=\lambda f$, and put

$g_{\pm}^{\langle d)}=f^{\langle d)}\pm f^{(d)}|W_{2^{\alpha}}^{\langle N)}=f^{\langle d)}\pm 2^{\beta-2\gamma}\lambda f^{(d’)}$

with $d^{\prime}=2^{\beta-2\gamma}d$, where we write $f^{\langle d)}(\tau)=f(d\tau)$ , etc. Then the second column in the
following table gives the common eigenforms for $V_{2}$ and $W_{2^{\alpha}}$ , with eigenvalues $\lambda(V_{2})$ and
$\lambda(W_{2^{\alpha}})$ .
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PROPOSITION 3. Let $N$ be a positive integer such that $9\Vert N,$ $N^{\prime}$ a positive divisor $oj$

N. Write $N=3^{2}M,$ $N^{\prime}=3^{2-\beta}M^{\prime}$ with $M^{\prime}|M$. Let $f=\sum a_{n}q^{n}$ be a newform of weight \’A

on $\Gamma_{0}(N^{\prime})$ such that $f|W_{32\beta}^{(N\underline’)}=\lambda f$, andput $f_{\chi}=\sum a_{n}\chi(n)q^{n}$ , where $\chi=(-.\underline{3})$ . If $\beta=0$ , ther

we further assume that $\lambda=+1$ . Finally let $d$ be a positive divisor of $M/M^{\prime}$ . Then th6

second column in the following table gives the common eigenforms for $V_{3}$ and $W_{9}$ , with
eigenvalues $\lambda(V_{3})$ and $\lambda(W_{9})$ .
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Here we write $f^{\langle d)}(\tau)=f(d\tau)$ , etc.

REMARK 4. Let the symbols be as in Proposition 3, so in particular $f$ is a newform
of weight 2 on $\Gamma_{0}(N^{\prime})$ . Suppose $\beta=0$ , so that $9\Vert N^{\prime}$ . Then $\lambda=+1$ if and only if $f_{\chi}$ is
also a newform of weight 2 on $\Gamma_{0}(N^{\prime})$ .

Using the above two propositions, we find that

THEOREM 4. The quotient curve $X_{0}(N)/W^{\prime}$ is a hyperelliptic curve of genus $g\geq 3$

with hyperelliptic involution $v$ comingfrom a non-A tkin-Lehner modular involution, $\iota f$ and
only if the pair $(N, W^{\prime})$ is in the following list. (As usual, $W^{\prime}$ is assumed to be proper.)

Applying [12, Prop. 1], we also find that the curve $X_{0}(N)/W^{\prime}$ is non-hyperelliptic
for the following $(N, W^{\prime})$ :

Hereg is the genus of X $=X_{0}(N)/W^{\prime}and\overline{g}isthegenusofX/\langle w\rangle$ .

REMARK 5. We have determined the hyperellipticity of $X_{0}(N)/W^{\prime}$ for

$N=72,104,126$ , 168

in this section. (The curve $ X_{O}(126)/\langle W_{63}\rangle$ is not hyperelliptic by Propositon 1.)
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3. Some isomorphisms.

In this section we give some isomorphisms between certain quotient curves 01
$X_{0}(N)$ .

PROPOSITION 4. Assume that 4 $\Vert N$ and write $N=4M$. Let $W^{\prime}$ be a subgroup $0_{J}$

$W(N)$ generatedby $W_{4},$ $W_{M_{1}},$ $\cdots,$ $W_{M_{s}}(M_{i}\Vert M)$ . Then we have thefollowing isomorphism

$ X_{0}(N)/W^{\prime}\cong X_{0}(2M)/\langle\{W_{M_{i}}\}_{i}\rangle$ .

PROOF. See [6, Prop. 7]. $\square $

From this we have
$X_{O}(68)/\langle W_{4}\rangle\cong X_{0}(34)$ , $X_{0}(82)/\langle W_{41}\rangle\cong X_{0}^{*}(164)$ ,

$ X_{O}(84)/\langle W_{4}, W_{7}\rangle\cong X_{0}(42)/\langle W_{7}\rangle$ , $X_{0}(98)/\langle W_{49}\rangle\cong X_{0}^{*}(196)$ ,

$X_{0}(106)/\langle W_{53}\rangle\cong X_{0}^{*}(212)$ , $X_{0}(118)/\langle W_{59}\rangle\cong X_{O}^{*}(236)$ ,

$X_{O}(154)/\langle W_{7}, W_{11}\rangle\cong X_{0}^{*}(308)$ , $X_{0}(174)/\langle W_{3}, W_{29}\rangle\cong X_{O}^{*}(348)$ ,

$ X_{0}(180)/\langle W_{4}, W_{9}\rangle\cong X_{0}(90)/\langle W_{9}\rangle$ , $ X_{0}(180)/\langle W_{4}, W_{5}\rangle\cong X_{0}(90)/\langle W_{5}\rangle$ ,

$ X_{0}(180)/\langle W_{4}, W_{45}\rangle\cong X_{0}(90)/\langle W_{45}\rangle$ , $X_{0}(198)/\langle W_{9}, W_{11}\rangle\cong X_{0}^{*}(396)$ ,

$ X_{0}(204)/\langle W_{4}, W_{51}\rangle\cong X_{0}(102)/\langle W_{51}\rangle$ , $X_{0}(210)/\langle W_{3}, W_{5}, W_{7}\rangle\cong X_{0}^{*}(420)$ ,

$X_{0}(238)/\langle W_{7}, W_{17}\rangle\cong X_{0}^{*}(476)$ , $ X_{O}(276)/\langle W_{4}, W_{23}\rangle\cong X_{0}(138)/\langle W_{23}\rangle$ .
According to Lemma 1 (iii), we also have

PROPOSITION 5. Assume that $ 9\Vert$ N. Let $W^{\prime}$ be a subgroup of $W(N)$ generated b)
$W_{N_{1}},$ $\cdots,$ $W_{N_{t}}(N_{i}\Vert N)$ , and let $ W^{\prime\prime}=\langle\{W_{9}^{\epsilon\langle N_{i})}W_{N_{i}}\}_{i}\rangle$ , where

$\epsilon(M)=\left\{\begin{array}{ll}0 & \iota fM\equiv 1 mod3 or \iota f9\Vert M and M/9\equiv 1 mod3 ,\\1 & otherwise .\end{array}\right.$

Then we have the following isomorphism:
$X_{0}(N)/W^{\prime}\cong X_{0}(N)/W^{\prime\prime}$

From this we have
$ X_{0}(90)/\langle W_{18}, W_{10}\rangle\cong X_{0}(90)/\langle W_{2}, W_{5}\rangle$ ,

$ X_{O}(99)/\langle W_{99}\rangle\cong X_{0}(99)/\langle W_{11}\rangle$ ,

$ X_{0}(180)/\langle W_{36}, W_{20}\rangle\cong X_{0}(180)/\langle W_{5}, W_{36}\rangle$ ,

$ X_{0}(198)/\langle W_{11}, W_{18}\rangle\cong X_{O}(198)/\langle W_{2}, W_{99}\rangle$ .

REMARK 6. We have determined the hyperellipticity of $X_{0}(N)/W^{\prime}$ for

$N=68,82,98$ , 118
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in this section.

4. Fixed points of Atkin-Lehner involutions.

In this section, we discuss the fixed points of Atkin-Lehner involutions. The
important fact is that these involutions are defined over $Q$ , so that we can make use
of Ogg’s observation (see [6, Prop. 6]).

PROPOSITION 6. Let $W^{\prime}$ be a (proper) subgroup of $W(N)$ with $2^{\omega\langle N)-r}$ elements, $so$

that $W(N)/W^{\prime}$ is a subgroup of order $2^{r}$ of $Aut_{Q}X$, where $X=X_{0}(N)/W^{\prime}$ is ofgenus $\geq 3$ .
Take an element $W_{N^{\prime}}$ of $W(N)\backslash W^{\prime}$ . Assume that there are elements $W_{N^{\prime}’}$ and $W_{N^{\prime}’}$ , of
$W^{\prime}$ such that the numbers offixed points of $W_{N_{1}}=W_{N^{\prime}}W_{N^{\prime}’}$ and $W_{N_{2}}=W_{N^{\prime}}W_{N’},$ , are
given by

$v(N_{1})=2^{\omega\langle N)-r}$ , $v(N_{2})=3\cdot 2^{\omega\langle N)-r}$

Assume further that
(i) $N_{2}\not\equiv 3$ (mod4) or $(i^{\prime})N_{2}\equiv 3$ (mod8) and $2|(N/N_{2})$ ;
(ii) $3|h(-4N_{2})$ .

Then $X$ is not hyperelliptic.

PROOF. By assumption (ii) on $h(-4N_{2})$ , we have $N_{2}\geq 5$ . Therefore by Remark 2
we Pnd that

$v(N_{2})=\left\{\begin{array}{ll}c_{1}\cdot h(-4N_{2})+c_{2}\cdot h(-N_{2}) & if N_{2}\equiv 3 (mod4)\\c_{1}\cdot h(-4N_{2}) & otherwise.\end{array}\right.$

But we assume $(i^{\prime})$ if $N_{2}\equiv 3$ (mod4), hence the coefficient $c_{2}$ vanishes. This means that
the set of fixed points of $W_{N_{2}}$ consists of pairs $(E, C)$ with $E$ defined over a field of
degree dividing 3 $\cdot 2^{\omega(N)-r}$ and divisible by 3. The group $W^{\prime}$ , which is an elementary
2-group, acts fixed-point-freely on this set. Thus, this set contributes to three conjugate
fixed points of $W_{N_{2}}$ on $X$. Now apply [6, Prop. 6]. $\square $

EXAMPLE 2. Let $N=58=2\cdot 29$ and $ W^{\prime}=\langle W_{2}\rangle$ . The genus of $X=X_{O}(58)/W^{\prime}$ is
three, and $W_{29}$ has four fixed points on $X$. The involution $W_{58}$ (resp. $W_{29}$) has two
(resp. six) fixed points on $X_{0}(58)$ , contributing to one (resp. three) fixed points of $W_{29}$

on $X$. Since $h(-4\cdot 29)=6$ , we see from Proposition 6 that $X$ is non-hyperelliptic.

The pairs $(N, W^{\prime})$ to which Proposition 6 applies are listed in Table 3.

REMARK 7. We have determined the hyperellipticity of $X_{0}(N)/W^{\prime}$ for

$N=58,76,86,106,122,124,132,134$ ,

140, 150, 174, 182, 190, 222

in this section.
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TABLE 3. List of $(N, W^{\prime})$ to which Prop. 6 can be applied

(If the fixed points of $W_{N_{1}}$ consist of cusps, then we marked $‘‘*$ in the sixth column.)

5. Reduction modulo $p$ .
Let $p$ be a prime number and $N$ a positive integer such that $N=pM,$ $p\{\prime M$ . Tht

reduction modulo $p$ of $X_{0}(pM)$ consists of two copies $Z,$ $Z^{\prime}$ of $X_{0}(M)$ in characteristit
$p$ , intersecting transversally at the supersingular points ([3]; see Figure 1). For the
actions of Atkin-Lehner involutions on $X_{0}(N)$ mod $p$ , see e.g., [6, \S 5]. Let $W^{\prime}$ be a
subgroup of $W(N)$ . If $W^{\prime}$ is generated by some of $W_{N^{\prime}}$ with $ptN^{\prime}$ , then $X_{O}(N)/W^{\prime}mod 1$

is again of the shape in Figure 1 with $Z=Z^{\prime}=X_{O}(M)/W^{\prime}$ . If $W^{\prime}$ contains some $W_{N’}$ with
$p|N^{\prime}$ , then $X_{0}(N)/W^{\prime}$ mod $p$ becomes as in Figure 2:
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FIGURE 1. $X_{0}(pM)$ modp FIGURE 2

where the normalization of $Z^{\prime\prime}$ is isomorphic to $X_{0}(M)/W^{\prime\prime}$ with $W^{\prime\prime}$ consisting of all
$W_{N^{\prime}}\in W^{\prime}$ such that $p\{/N^{\prime}$ . Now assume that $X=X_{0}(N)/W^{\prime}$ is hyperelliptic. Assume
further for simplicity that the special fibre $\mathscr{X}\otimes F_{p}$ of the minimal model $X$ of $X$ at $p$

is as in Figure 1 or 2. (It is easy to generalize the following argument to the case in
which one needs to blow up the singularities to reach the minimal model; see also
Example 3.)

Case 1. Assume that $\mathscr{X}\otimes F_{p}$ is as in Figure 1 and that $|Z\cap Z^{\prime}|\geq 3$ . Then the
hyperelliptic involution $u$ of $X$ acts on $\mathscr{X}\otimes F_{p}$ in such a way that it exchanges $Z$ for
$Z^{\prime}$ and maps $\alpha\in Zto\alpha\in Z^{\prime}$ if $\alpha$ isasupersingular point (to see this, consider the graph
of $\mathscr{X}\otimes F_{p}$). Therefore $v=W_{p}u$ fixes each component of $\mathscr{X}\otimes F_{p}$ ; it fixes each $F_{p}$-rational
supersingular point and exchanges properly $F_{p^{2}}$-rational supersingular point $\alpha$ for its
conjugate $\overline{\alpha}$ .

Case 2. Assume that $\mathscr{X}\otimes F_{p}$ is as in Figure 2. Then the hyperelliptic involution
$u$ of $X$ acts on the normalization of $\mathscr{X}\otimes F_{p}$ , so there exists an element $u$ of order 2 of
$Aut_{F_{p}}(X_{0}(M)/W^{\prime\prime})$ such that

(1) $ u\alpha=\alpha^{\prime}:=W_{N^{\prime}}\alpha$

for all properly $F_{p^{2}}$-rational supersingular points $\alpha$ on $Z^{\prime\prime}$ , where $W_{N’}$ , is a representative
of $W^{\prime}/W^{\prime\prime}$ (note that $W^{\prime}/W^{\prime\prime}\cong Z/2Z$).

All the supersingular points of $X_{0}(N)$ mod $p$ can be calculated by using the covering
map $X_{0}(N)\rightarrow P_{j}^{1}$ over $F_{p}$ . In fact, Fricke [4] gave an explicit equation of the covering
map $X_{0}(N)\rightarrow P_{j}^{1}$ over $Q$ for all $X_{0}(N)$ with genus $g\leq 1$ and for some hyperelliptic $X_{O}(N)$ .
We list these coverings in Tables 4 and 5.

EXAMPLE 3. Let $N=42=2\cdot 3\cdot 7$ . We must check the hyperellipticity of $X_{0}(42)/W^{\prime}$

for $ W^{\prime}=\langle W_{2}\rangle$ and $\langle W_{7}\rangle$ (see Example 1). Take $p=7$ . Then $X_{0}(42)$ mod 7 is as in
Figure 1 with $Z=Z^{\prime}=X_{0}(6)$ . The modular curve $X_{0}(6)$ is of genus zero, and its defining
equation is given by

(2) $j=256\frac{(x+3)^{3}(x^{3}+9x^{2}+21x+3)^{3}}{x(x+4)^{3}(2x+9)^{2}}$ .

The only supersingular j-invariant in characteristic $p=7$ is $j=12^{3}$ , and the
supersingular points on $X_{0}(6)$ are obtained by solving the equation (2):

(3) $(x^{2}+x+4)(x^{2}+4x+5)(x^{2}+6x+6)=0$ ,

namely,
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TABLE 4. The j-invariant $j=F_{M}\langle P$) of $P\in X_{0}\langle M$ ) $(X_{O}(M)\cong P^{1})$

$\alpha_{1}=3-3\sqrt{-1}$ , $\alpha_{2}=-2+\sqrt{-1}$ , $\alpha_{3}=-3+2\sqrt{-1}$

and their conjugates. Let $(E, C)$ be a pair representing any one of $\alpha_{i}$ or $\overline{\alpha}_{i}(i=1,2,3)$ .
It is easy to check that $|Aut(E, C)|=2$ , so Figure 1 itself is the special fibre at $p=7$ of
the minimal model of $X_{0}(42)$ (over Z).

(i) $ W^{\prime}=\langle W_{2}\rangle$ . Put $ X=X_{0}(42)/\langle W_{2}\rangle$ and consider $X$ modulo $p=7$ , which is of
the shape in Figure 1 with $ Z=Z^{\prime}=X_{O}(6)/\langle W_{2}\rangle$ . Since $W_{2}\alpha_{1}=\alpha_{1}$ and $W_{2}\alpha_{i}=\overline{\alpha}_{i}(i=$

$2,3)$ , we see that the special fibre $\mathscr{X}\otimes F_{7}$ at $p=7$ of the minimal model $\mathscr{X}$ of $X$ is
as follows:

FIGURE 3



MODULAR CURVES 119

TABLE 5. The j-invariant $j=F_{M}(P)$ of $P\in X_{0}(M)(X_{0}(M)\not\cong P^{1})$

Here $\beta_{i}$ is the image of $\alpha_{i}$ under the map $ X_{0}(6)\rightarrow X_{0}(6)/\langle W_{2}\rangle$ . The curve $ X_{0}(6)/\langle W_{2}\rangle$

is parametrized by

$x^{\prime}=x+x|W_{2}=\frac{x^{2}-18}{x+4}$ ,

so we have

$\beta_{1}=-1+\sqrt{-1}$ , $\beta_{2}=3$ , $\beta_{3}=1$ .

Now assume that $X$ is hyperelliptic, with hyperelliptic involution $u$ . Then $u$ acts on
$\mathscr{X}\otimes F_{7}$ and $v=W_{7}u$ must fix $Z$ and $Z^{\prime}$ with $v\beta_{1}=\beta_{1},$ $v\beta_{l}=\beta_{i}(i=2,3)$ . But no elements
of $PGL_{2}(F_{7})$ satisfy this property. Hence $X$ is not hyperelliptic.

(ii) $ W^{\prime}=\langle W_{7}\rangle$ . Put $ X=X_{0}(42)/\langle W_{7}\rangle$ . Then the special fibre $\mathscr{X}\otimes F_{7}$ at $p=7$ of
the minimal model ex of $X$ is as in Figure 2, with $Z^{\prime\prime}=X_{0}(6)$ . There are three conjugate
pairs of properly $F_{72}$-rational supersingular points, that is, the roots of the equation
(3). It can easily be checked that there does not exist an element of order 2of $PGL_{2}(F_{7})$

with the property (1), so we conclude that $X$ is non-hyperelliptic.

Proceeding as in Example 3, we see that the curve $X_{0}(N)/W^{\prime}$ is non-hyperelliptic
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for $(N, W^{\prime})$ given in Tables 6 and 7.

REMARK 8. The meaning of symbols given in Table 4 would be clear. Let us
exaplain those given in Table 5. The second column gives the defining equations of
$X_{0}(M)$ and the covering map $X_{0}(M)\rightarrow X_{O}(m)$ :

$X_{0}(M)\in(x, y)\mapsto\left\{\begin{array}{ll}x_{m}\in X_{0}(m) & if X_{O}(m)\cong P^{1} ;\\(x_{15}, y_{15})\in X_{O}(15) & if m=15,\end{array}\right.$

where $x_{m},y_{m}$ are generators of the function field $Q(X_{0}(m))$ of $X_{0}(m)$ given in Tables 4 and 5.

TABLE 6

TABLE 7

(The last column of Tables 6 and 7 indicates the figure of $X_{O}(N)/W’ modp.$ )
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For $M=24,32$ and 36, the actions of Atkin-Lehner involutions are given by
the group law on $X_{0}(M)$ ; explicit action will be written down by using the addition
formula. For example, let $M=24$ . Then

$\left\{\begin{array}{l}(x, y)|W_{24}=(12(3x+6+y)/x^{2},6(x+4)(x^{2}+18x+36+6y)/x^{3})\\(x, y)|W_{3}=(-3(x+4)/(x+3), 3y/(x+3)^{2})\end{array}\right.$

The action of $W_{32}$ on $X_{0}(32)$ described in Table 5 includes an ambiguity; but this
would not affect our arguments.

The data for $M=30$ are not given in [4]; these can be obtained by calculating the
relations among modular forms (i.e., in the same manner as in [4]).

REMARK 9. We have determined the hyperellipticity of $X_{O}(N)/W^{\prime}$ for

$N=42$ , 52, 57, 63, 65, 77, 80, 84, 85, 88, 90, 91,
93, 96, 99, 102, 105, 114, 115, 116, 120, 123, 129, 130,

133, 138, 141, 156, 161, 170, 186, 198, 204, 230, 276.

6. Methods using the trace formulas of Hecke operators.

In this section we use the trace formulas of Hecke oprators to conclude that none
of the remaining cases is hyperelliptic. We refer to [9] [16] for explicit trace formulas.
Except for very few cases, the method explained in Section 5 would apply to the
remaining cases. This method, however, would become complicated when $N$ grows
(especially when divisible by three or more distinct primes); sometimes direct use of the
trace formulas would be helpful.

6.1. Rational points over finite fields. Let $X$ be the quotient curve of $X_{0}(N)$ by
a subgroup $W^{\prime}$ of $W(N)$ . Then $X$ is defined over $Q$ , and there is a model of $X/Q$ which
has good reduction outside $N$ ([10]). Let $p$ be a prime number with $p,\ell N$. Then $X$ has
good reduction at $p$ and the number of rational points of $\tilde{X}=X$ mod $p$ over $F_{p^{\alpha}}$ can
be computed by using the trace formula of Hecke operators:

$|\tilde{X}(F_{p^{\alpha}})|=1+p^{\alpha}-trT(p^{\alpha})|S_{2}(N)^{W^{\prime}}$

$+\left\{\begin{array}{ll}p. tr T(p^{\alpha}‘ 2)|S_{2}(N)^{W’} & if \alpha\geq 2,\\0 & otherwise.\end{array}\right.$

This is a direct deduction from the so-called Eichler-Shimura congruence relation. If $X$

is hyperelliptic, then we must have

$|\tilde{X}(F_{q})|\leq 2(1+q)$ ,

since $\tilde{X}$ is a double covering of $P^{1}$ over $F_{p}$ . It follows from this observation that $X$ is
non-hyperelliptic for the following $(N, W^{\prime})$ , as indicated in the third column:



122 MASAHIRO FURUMOTO AND YUJI HASEGAWA

6.2. Gap sequences. Let $X$ be an algebraic curve over $C$ of genus $g$ . The
Weierstrass gap sequence $G_{P}$ at a point $P$ of $X$ is defined by

$G_{P}=$ {$n\in Z|n>0$ and $(f)_{\infty}\neq n(P)$ for all $f\in C(X)$},

where $C(X)$ is the function field of $X$ over $C$ and $(f)_{\infty}$ is the polar divisor of $f$ A point
$P$ on $X$ is called a Weierstrass point if $G_{P}\neq\{1,2, \cdots, g\}$ . If $X$ is hyperelliptic and $P$ is
a Weierstrass point $ofX$, then $G_{P}=\{1,3,5, \cdots, 2g-1\}$ . Now recall that the gap sequence
at $P=\overline{i\infty}\in X_{0}(N)/W^{\prime}$ can easily be computed by the following formula

$G_{P}=$ {$n\in Z|\exists f\in S_{2}(N)^{W’}$ such that $ f=q^{n}+\cdots$ }.

(A basis of $S_{2}(N)^{W’}$ is obtained by using trace formulas of Hecke operators.) Thus we
see that $X_{O}(N)/W^{\prime}$ is non-hyperelliptic for the following $(N, W^{\prime})$ , since the point $P=\overline{i\infty}$

is a Weierstrass point with gap sequence $G_{P}\neq\{1,3, \cdots, 2g-1\}$ .

7. Defining equations of hyperelliptic curves $X_{O}(N)/W^{\prime}$ with $g\geq 3$ .
In this section, we present the defining equations of all the hyperelliptic curves

$X_{0}(N)/W^{\prime}(W^{\prime}\neq\{1\}, W(N))$ with $g\geq 3$ . One finds in [11] [15] an algorithm for computing
the equations of (hyperelliptic) modular curves (see also [8]).
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