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Summary. There are two types of generalizations of selfdecomposability of probability measures on
$R^{d},$ $d\geq 1$ : the c-decomposability and the C-decomposability of Lo\‘eve and Bunge on the one hand, and the
semi-selfdecomposability of Maejima and Naito on the other. The latter implies infinite divisibility but the
former does not in general. For $d\geq 2$ introduction of operator (matrix) normalizations yields four kinds of
classes of distributions on $R^{d}:L_{0}(b, Q),\tilde{L}_{0}(b, Q),$ $L_{0}(C, Q)$ , and $\tilde{L}_{0}(C, Q)$ , where $0<b<1,$ $Q$ is a $d\times d$ matrix
with eigenvalues having positive real parts, and $C$ is a closed multiplicative subsemigroup of $[0,1]$ containing
$0$ and 1. Further, each of these classes generates the Urbanik-Sato type decreasing sequence of its subclasses.
Characterizations and relations ofthese classes and subclasses are established. They complement and generalize
results of Bunge, Jurek, Maejima and Naito, and Sato and Yamazato.

1. Introduction and preliminaries.

In Maejima and Natio [9], the notion of semi-selfdecomposable distributions on
$R^{d}$ was introduced as an extension of selfdecomposable distributions, and the class of
such distributions and its nested subclasses containing semistable distributions were
studied. The distributions in those classes were defined as limiting distributions of the
normalized partial sums, with scalar normalization, of independent infinitesimal
$R^{d}$-valued random variables, where each limit is taken through a subsequence. In this
paper, we enlarge those classes by allowing the linear operator normalizations in the
normalized partial sums. As a result, we extend the notion of semi-selfdecomposability
to that of operator semi-selfdecomposability.

On the other hand, Bunge [1] extended the notion of selfdecomposability to another
direction by introducing the class of C-decomposable distributions. This is also an
extension of c-decomposability in the earlier work of Lo\‘eve [6], (also see Lo\‘eve [7],
page 312). While semi-selfdecomposable distributions are infinitely divisible, the
distributions in the class by Bunge [1] are not necessarily infinitely divisible. He studied
the class and its decreasing subclasses. Here we also extend his notion to the linear
operator setting $((C, Q)$-decomposability), and compare two generalizations of operator
selfdecomposable distributions. Operator selfdecomposable distributions were discussed
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in Jurek [4] and Sato and Yamazato $[13, 14]$ .
We start with notation we are going to use in this paper. $\mathscr{P}(R^{d})$ is the class of all

probability distributions on $R^{d},$ $I(R^{d})$ is the class of all infinitely divisible distributions
on $R^{d},$ $M_{+}(R^{d})$ is the class of all $d\times d$ matrices all of whose eigenvalues have positive
real parts, $Q^{\prime}$ is the transposed matrix of $Q\in M_{+}(R^{d}),$ $I$ is the identity matrix, $\hat{\mu}(z)$ ,
$z\in R^{d}$, is the characteristic function of $\mu\in \mathscr{P}(R^{d}),$ $\mu^{*t},$ $t\geq 0$ , is the t-th $\infty nvolution$ power
of $\mu\in \mathscr{P}(R^{d}),$ $\mathscr{L}(X)$ is the law of $X,$ $\langle, \rangle$ is the Euclidean inner product in $R^{d}$ , and $|\cdot|$ is
the norm induced by $\langle, \rangle$ in $R^{d}$ . For $b>0,$ $b^{Q}=\sum_{n=0}^{\infty}(n!)^{-1}(\log b)^{n}Q^{n}$ . If $b=0$ and
$Q\in M_{+}(R^{d})$, then $b^{Q}$ is defined to be $0$ . Convergence ofprobability distributions is always
weak convergence. Whenever we write $H\subset \mathcal{P}(R^{d})$ , we mean that $\emptyset\neq H\subset \mathscr{P}(R^{d})$ .

Let $0<b<1$ and $Q\in M_{+}(R^{d})$ .

DEFINITION 1.1. Let $H\subset \mathcal{P}(R^{d})$ . A distribution $\mu\in \mathscr{P}(R^{d})$ is said to belong to the
class $\tilde{K}(H, b, Q)$ if there exist independent $R^{d}$-valued random variables $\{X_{j}\},$ $a_{n}>0,$ $\uparrow\infty$ ,
$c_{n}\in R^{d},$ $k_{n}\in N,$ $\uparrow\infty$ , such that

(1.1) $\lim\underline{a_{n}}=b$ ,
$n\rightarrow\infty a_{n+1}$

(1.2) $\mathscr{L}(X_{j})\in H$ ,

(1.3) $\mathscr{L}(a_{n}^{-Q}\sum_{j=1}^{k_{n}}X_{j}+c_{n})\rightarrow\mu$ .

If, furthermore, the infinitestimal condition:

(1.4) $\lim_{n\rightarrow\infty}\max_{1\leq j\leq k_{n}}P\{|a_{n}^{-Q}X_{j}|>\epsilon\}=0$ , $\forall\epsilon>0$ ,

is satisfied, we say that $\mu\in \mathcal{P}(R^{d})$ belongs to the class $K(H, b, Q)$ .

From the definition, we see that

(1.5) $K(H, b, Q)\subset\tilde{K}(H, b, Q)$ ,

(1.6) $K(H, b, Q)\subset I(R^{d})$ ,

(1.7) $K(H_{1}, b, Q)\subset K(H_{2}, b, Q)$ if $H_{1}\subset H_{2}$ ,

(1.8) $\tilde{K}(H_{1}, b, Q)\subset\tilde{K}(H_{2}, b, Q)$ if $H_{1}\subset H_{2}$ .
The class $K(H, b, I)$ was introduced in Maejima and Natio [9], and the class

$\tilde{K}(\mathscr{P}(R^{d}), c, I)$ coincides with the class $L_{c}$ on page 312 of Lo\‘eve [7].

DEFINITION 1.2. A class $H\subset \mathscr{P}(R^{d})$ is said to be Q-completely closed if $H$ is closed
under $co$nvergence, convolution, and Q-type equivalence. Here $H$ is said to be closed
under Q-type equivalenoe if $\mathscr{L}(X)\in H,$ $a>0$ , and $c\in R^{d}$ imply $\mathscr{L}(a^{-Q}X+c)\in H$. If,
furthermore, $H\subset I(R^{d})$ and $H$ is closed under going to the t-th convolution power for
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any $t>0$ , we say that $H$ is Q-completely closed in the strong sense.

Our basic results are the following two statements. All theorems and propositions
in this section will be proved in the next section.

THEOREM 1.1. (i) Suppose that $H\subset \mathscr{P}(R^{d})$ is Q-completely closed. $If\mu\in K(H, b, Q)$ ,

then there exists $\rho\in H\cap I(R^{d})$ such that

(1.9) $\hat{\mu}(z)=\hat{\mu}(b^{Q^{\prime}}z)\hat{\rho}(z)$ , $\forall z\in R^{d}$

(ii) IfH is Q-completely closed in the strong sense, then the converse of(i) is also true.
(iii) If $H$ is Q-completely closed in the strong sense, then so is $K(H, b, Q)$ .

THEOREM 1.2. (i) Suppose that $H\subset \mathscr{P}(R^{d})$ is Q-completely closed. Then $\mu\in$

$\tilde{K}(H, b, Q)$ if and only if there exists $\rho\in H$ such that (1.9) is satisfied.
(ii) If $H$ is Q-completely closed, then so is $\tilde{K}(H, b, Q)$ .

In Theorem 1.1, the distribution $\rho$ in (1.9) is uniquely determined by $\mu,$
$b$ , and $Q$ ,

since $\hat{\mu}(z)\neq 0$ by (1.6). But, in Theorem 1.2, the $\rho$ is not always unique. The problem
of uniqueness is discussed in Lo\‘eve [6].

In view of these theorems, it is natural to introduce the following definition.

DEFINITION 1.3. Let $0\leq c\leq 1$ , $Q\in M_{+}(R^{d})$ , and $H\subset \mathscr{P}(R^{d})$ . A probability
distribution $\mu\in \mathscr{P}(R^{d})$ is said to be $(c, Q, H)$-decomposable if $\hat{\mu}(z)=\hat{\mu}(c^{Q}’ z)\hat{\rho}(z)$ with some
$\rho\in H$. Given $\mu\in \mathscr{P}(R^{d}),$ $Q\in M_{+}(R^{d})$ , and $H\subset \mathscr{P}(R^{d})$ , we denote by $D_{Q,H}(\mu)$ the set of
$c\in[0,1]$ such that $\mu$ is $(c, Q, H)$-decomposable.

PROPOSITION 1.1. Suppose that $H$ is Q-completely closed. If $D_{Q,H}(\mu)\neq\{1\}$ , then
$D_{Q,H}(\mu)$ is a closed multiplicative subsemigroup of $[0,1]$ containing $0$ and 1.

The following proposition is a direct consequence of Theorems 1.1 and 1.2.

PROPOSITION 1.2. (i) $\mu\in\tilde{K}(H, b, Q)$ if and only if $\mu$ is $(b, Q, H)$-decomposable,
provided that $H$ is Q-completely closed.

(ii) $K(H, b, Q)=\tilde{K}(H, b, Q)$ , whenever $H$ is Q-completely closed in the strong sense.
(iii) Suppose that $H$ is Q-completely closed and $H\cap I(R^{d})$ is Q-completely closed

in the strong sense. Then, the following three conditions are equivalent: $\mu\in K(H, b, Q)$ ;
$\mu\in K(H\cap I(R^{d}), b, Q);\mu$ is $(b, Q, H\cap I(R^{d}))$-decomposable.

In case $d=1,$ $Q=I$, and $H=\mathscr{P}(R^{d})$ , a decisive study of the semigroup $D_{Q,H}(\mu)$ was
made by Ilinskii [3], and some examples of similarly defined multiplicative sub-
semigroups of [-1, 1] were given by Urbanik [17]. For general $d$ and $H=\mathscr{P}(R^{d})$ , the
class $\{c^{Q} : c\in D_{Q,H}(\mu)\}$ is a subsemigroup of the Urbanik decomposability semigroup
$D(\mu)$ in Jurek and Mason [5].

Following Bunge [1], let or be the collection ofall closed multiplicative subsemigroup
$C$ of $[0,1]$ such that $c\not\equiv\{0,1\}$ . Define, for $C\in \mathfrak{C}$ ,
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$K(H, C, Q)=\bigcap_{b\in C\backslash \{0,1\}}K(H, b, Q)$ ,

$\tilde{K}(H, C, Q)=\bigcap_{beC\backslash \{O,1\}}\tilde{K}(H, b, Q)$ .

Note that, by Proposition 1.2 (i), $\tilde{K}(H, C, Q)$ is the class of $\mu$ such that $C\subset D_{Q,H}(\mu)$

provided that $H$ is Q-completely closed. The class $\tilde{K}(H, C, I)$ coincides with the clas.
$\mathscr{L}^{C}(H)$ introduced by Bunge [1]. (For the detail of its proof, see Proposition 2.4 in the
next section.)

Distributions in $K(\mathcal{P}(R^{d}), [0,1], I)$ are usually called selfdecomposable. Urbanil
[16] introduced the notion of a slowly varying sequence of random variables and founc
a decreasing sequence of subclasses of the class of selfdecomposable distributions. Satc
[11] defined an operation to make a new subclass from a subclass and showed $tha$)

iteration of his operation generates the sequence of Urbanik. Our operation $K(\cdot,$ $b,$ $Q$

is a development from his operation. We now define four kinds of classes ofdistributions
and the Urbanik-Sato type nested classes.

DEFINITION 1.4. For $0<b<1$ and $Q\in M_{+}(R^{d})$ , define

$L_{0}(b, Q)=K(\mathcal{P}(R^{d}), b, Q)$ ,

$L_{m}(b, Q)=K(L_{m-1}(b, Q),$ $b,$ $Q$), $m=1,2,$ $\cdots$ ,

$L_{\infty}(b, Q)=\bigcap_{m\Rightarrow 0}^{\infty}L_{m}(b, Q)$ .

Similarly define
$\tilde{L}_{m}(b, Q)$ , $m=0,1,2,$ $\cdots,$ $\infty$ ,

using $\tilde{K}$ instead of $K$. Furthermore, for $C\in \mathfrak{C}$ , define

$L_{O}(C, Q)=K(\mathscr{P}(R^{d}), C, Q)$ ,

$L_{m}(C, Q)=K(L_{m-1}(C, Q),$ $C,$ $Q$), $m=1,2,$ $\cdots$ ,

$L_{\infty}(C, Q)=\bigcap_{m=0}^{\infty}L_{m}(C, Q)$ ,

and define
$\tilde{L}_{m}(C, Q)$ , $m=0,1,2,$ $\cdots,$ $\infty$ ,

using $\tilde{K}$ instead of $K$.
In particular, we call $\mu\in \mathcal{P}(R^{d})$ operator semi-selfdecomposable if $\mu\in L_{O}(b, Q)fo1$

some $0<b<1$ and $Q\in M_{+}(R^{d})$ , and $(C, Q)$-decomposable if $\mu\in\tilde{L}_{0}(C, Q)$, respectively.
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PROPOSITION 1.3. Let Ce $\mathfrak{C}$ . Then we have the following nested classes.

$I(R^{d})\supset L_{0}(b, Q)\supset L_{1}(b, Q)\supset\cdots\supset L_{\infty}(bQ)$ ,

$I(R^{d})\supset L_{0}(C, Q)\supset L_{1}(C, Q)\supset\cdots\supset L_{\infty}(C, Q)$ ,

$\tilde{L}_{0}(b, Q)\supset\tilde{L}_{1}(b, Q)\supset\cdots\supset\tilde{L}_{\infty}(b, Q)$ ,

$\tilde{L}_{0}(C, Q)\supset\tilde{L}_{1}(C, Q)\supset\cdots\supset\tilde{L}_{\infty}(C, Q)$ .

PROPOSITION 1.4. Let $C_{1},$ $C_{2}\in \mathfrak{C}$ and suppose $C_{1}\subset C_{2}$ . Then for any $ 0\leq m\leq\infty$ ,

$L_{m}(C_{1}, Q)\supset L_{m}(C_{2}, Q)$ ,

$\tilde{L}_{m}(C_{1}, Q)\supset\tilde{L}_{m}(C_{2}, Q)$ .

Classes $L_{m}([0,1], Q)$ with $C$ chosen as $[0,1]$ are the finite-dimensional case of the
classes studied in Jurek’s paper [4]. A one-parameter continuous multiplicative group
$\{U_{t}, t>0\}$ with $U_{t}\rightarrow 0$ as $t\downarrow 0$ is used there in place of $b^{Q}$ , but any such matrix group
$\{U_{t}, t>0\}$ is expressed as $U_{t}=t^{Q}$ with $Q\in M_{+}(R^{d})$ . Note that $Q\in M_{+}(R^{d})$ is equivalent
to that $t^{Q}\rightarrow 0$ as $t\downarrow 0$ (Sato [12], Lemma 2.6).

Operator selfdecomposable distributions are defined in the following way (Sato
and Yamazato $[13, 14]$). Let $OL(Q)$ be the class of $\mu\in \mathscr{P}(R^{d})$ such that there exist
independent $R^{d}$-valued random variables $\{X_{j}\},$ $a_{n}>0,$ $\uparrow\infty$ , and $c_{n}\in R^{d}$ satisfying

$\mathscr{L}(a_{n}^{-Q}\sum_{j=1}^{n}X_{j}+c_{n})\rightarrow\mu$ , $ n\rightarrow\infty$

and

lim max $P\{|a_{n}^{-Q}X_{j}|>\epsilon\}=0$ , $\forall\epsilon>0$ .
$n\rightarrow\infty 1\leq j\leq n$

It is known that $\mu\in OL(Q)$ if and only if $\mu$ is $(c, Q, \mathscr{P}(R^{d}))$-decomposable for every
$c\in[0,1]$ . That is, $OL(Q)=L_{0}([0,1], Q)$ by our terminology in this paper. See Proposition
2.5 for details. Distributions $\mu\in OL(Q)$ are called Q-selfdecomposable. A distribution
$\mu$ is called operator selfdecomposable if it is Q-selfdecomposable for some $Q\in M_{+}(R^{d})$ .
Our terminology is different from that of Jurek and Mason [5]. The class of operator
selfdocomposable distributions in the sense of Jurek and Mason [5] is called the class
$OL$ in Sato and Yamazato [13] and is strictly bigger than the class of operator
selfdecomposable distributions in our sense (see Yamazato [19]). But both definitions
coincide as long as the distributions considered are full (that is, are not concentrated
in any proper hyperplane in $R^{d}$). This is a consequence of a theorem of Urbanik [15].

In Section 2, we shall prove the results stated in this section and show that, for
$ 0\leq m\leq\infty$ ,

$L_{m}([0,1], Q)=\bigcap_{b\in\langle 01)},L_{m}(b, Q)=\tilde{L}_{m}([0,1], Q)=\bigcap_{b\in\langle 01)}.\tilde{L}_{m}(b, Q)$ .
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This should be compared with the fact that, if $C=\{b^{n}\}_{n=0}^{\infty}\cup\{0\}$ with some $b\in(O, 1)$ ,
then for $ 0\leq m<\infty$ ,

$L_{m}(C, Q)\subsetneqq\tilde{L}_{m}(C, Q)$ ,

since $\tilde{L}_{m}(C, Q)\cap(I(R^{d}))^{c}\neq\emptyset$ (Bunge [1] when $d=1$ ).
In Section 3 we shall give characterization $of\mu eL_{m}(b, Q)$ , for $ 0\leq m\leq\infty$ , in properties

of its Gaussian covariance matrix and L\’evy measure. Examples will show that

$L_{m}(b, Q)\supsetneqq L_{m+1}(b, Q)$

for $ 0\leq m<\infty$ .
We shall study $L_{\infty}(C, Q)$ and $\tilde{L}_{\infty}(C, Q)$ in Section 4. It will be shown that

$L_{\infty}(C, Q)=\tilde{L}_{\infty}(C, Q)$

for any $C\in \mathfrak{C}$ . The main result in Section 4 is the following. Define, for $C\in \mathfrak{C}$,

$--(C)=\{b\in(0,1) : C\subset\{b^{n}\}_{n=0}^{\infty}\cup\{0\}\}$ .
$When_{-}^{-}(C)$ is nonempty, let $b_{0}$ be its infimum. Clearly $b_{o-}e^{-}(C)$ in this case. Then

$L_{\infty}(C, Q)=L_{\infty}(b_{0}, Q)$ if $\Xi(C)\neq\emptyset$ ,

$L_{\infty}(C, Q)=L_{\infty}([0,1], Q)$ if $--(C)=\emptyset$ .
We shall examine, in Section 5, the relationship between $L_{m}(C, I)$ and

$\bigcap_{b\in C\backslash \{0,1\}}L_{m}(b, I)$ when $d=1$ and $C\neq[0,1]$ . It will be shown that, for $ 1\leq m<\infty$ , there
exists $C\in \mathfrak{C}$ such that

$L_{m}(C, 1)\subsetneqq\bigcap_{b\in C\backslash \{0,1\}}L_{m}(b, 1)$ ,

$\tilde{L}_{m}(C, 1)\subsetneqq\bigcap_{b\in C\backslash \{0,1\}}\tilde{L}_{m}(b1)$ .

We conclude this section with other related problems which are not dealt with in
this paper. The distribution in the class $L_{\infty}([0,1], Q)$ is called completely operator
selfdecomposable in Sato and Yamazato [14], where the relationship between the class
$L_{\infty}([0,1], Q)$ and that of operator stable distributions was studied. A natural question
is how the class $L_{\infty}(b, Q)$ is related to that of operator semi-stable distributions. This
problem is discussed in another paper [10] by the authors of the present paper.

Another important problem is the continuity properties (the absolute continuity
and the smoothness for instance) of distributions in the classes we are discussing here.
This is studied in Watanabe [18].

2. Basic results on $K(H, b, Q)$ and $\tilde{K}(H, b, Q)$.
Throughout this paper, let $0<b<1,$ $Q\in M_{+}(R^{d})$ , and $C\in \mathfrak{C}$ . The following two
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propositions can be proved in the same way as for Proposition 2.3 in Maejima and
Naito [9].

PROPOSITION 2.1. If $H\subset \mathscr{P}(R^{d})$ is Q-completely closed, then $K(H, b, Q)\subset H$ and
$\tilde{K}(H, b, Q)\subset H$.

PROPOSITION 2.2. We have

$K(H, b, Q)\subset K(H, b^{n}, Q)$ for any $n\in N$ ,

$\tilde{K}(H, b, Q)\subset\tilde{K}(H, b^{n}, Q)$ for any $n\in N$ .

This following proposition is also obvious from the definition and Proposition 2.2.

PROPOSITION 2.3. If
$C=\{b^{n}\}_{n=0}^{\infty}\cup\{0\}$ for some $b\in(O, 1)$ ,

then

$K(H, C, Q)=K(H, b, Q)$ ,

$\tilde{K}(H, C, Q)=\tilde{K}(H, b, Q)$ .

Bunge [1] introduced the following class when $d=1$ .
DEFINITION 2.1. Suppose that $H\subset \mathscr{P}(R^{d})$ is I-completely closed. A distribution

$\mu\in \mathcal{P}(R^{d})$ is said to belong to the class $\mathscr{L}^{C}(H)$ , if, for every $b\in C\backslash \{0,1\}$ , there exist
independent $R^{d}$-valued random variables $\{X_{j}^{b}\},$ $a_{n}^{b}>0$ , $c’\in R^{d}$ such that

(2.1) $\lim\frac{a_{n}^{b}}{b}=b$ ,
$n\rightarrow\infty a_{n+1}$

(2.2) $\mathscr{L}(X_{j}^{b})\in H$ ,

(2.3) $\mathscr{L}((a_{n}^{b})^{-1}\sum_{j=1}^{n}X_{j}^{b}+c_{n}^{b})\rightarrow\mu$ .

Then we have the following.

PROPOSITION 2.4. $\mathscr{L}^{C}(H)=\tilde{K}(H, C, I)$ .
PROOF. The differences in the definitions oftwo classes are that $ a_{n}\uparrow\infty$ and $\sum_{j=1}^{k_{n}}X_{j}$

in Definition 1.1. If $\mu\in\tilde{K}(H, C, I)$ , then $X_{j}^{b}:=\sum_{l=k_{j- 1}+1}^{k_{j}}X_{l}$ satisfies (2.3) and hence
$\mu\in \mathscr{L}^{C}(H)$ . Conversely if $\mu\in \mathscr{L}^{C}(H)$ , then $ a_{n}^{b}<a_{n+1}^{b}\rightarrow\infty$ for large $n$ , since $0<b<1$ , and
hence $\mu\in\tilde{K}(H, C, I)$ . $\square $

We are now going to prove the statements mentioned in Sections 1 and2 up to now.

PROOF OF THEOREM 1.1. (i) The same as for Theorem 2.1 (i) of Maejima and
Naito [9].

(ii) We first show that (1.9) implies that $\hat{\mu}(z)\neq 0,$ $\forall z\in R^{d}$ . If not, there exists $z_{0}\cdot\in R^{d}$
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such that $\hat{\mu}(z_{0})=0$ and $\hat{\mu}(z)\neq 0$ when $|z|<|z_{0}|$ . We have $\lim_{t\downarrow 0}t^{Q}x=0$ for every $x\in R^{d}$ ,
since $Q\in M_{+}(R^{d})$ . Hence for large $n$ ,

(2.4) $|b^{nQ^{\prime}}z_{0}|<|z_{0}|$ .
It follows from (1.9) that, for every $n=1,2,$ $\cdots$ , there exists $\rho_{n}\in H\cap I(R^{d})$ such that

$0=\hat{\mu}(z_{0})=\hat{\mu}(b^{nQ^{\prime}}z_{0})\hat{\rho}_{n}(z_{0})$ .
By (2.4), we have $\hat{\mu}(b^{nQ^{\prime}}z_{0})\neq 0$ , which implies $\hat{\rho}_{n}(z_{0})=0$, contradicting that $\rho_{n}\in I(R^{d})$ .
Thus $\hat{\mu}(z)\neq 0,$ $\forall z\in R^{d}$ . The rest of the proof is the same as for Theorem 2.1 (ii) of
Maejima and Naito [9].

(iii) The same as for Theorem 2.1 (iii) of Maejima and Naito [9]. $\square $

PROOF OF THEOREM 1.2. (i) “If part.” By the repeated use of (1.9), we have for
any $n\geq 1$

$\hat{\mu}(z)=\hat{\mu}(b^{\langle n+1)Q}’ z)\prod_{j=0}^{n}\hat{\rho}(b^{jQ}’ z)$ .

Sinoe $b^{\langle n+1)Q^{\prime}}z\rightarrow 0$ as $ n\rightarrow\infty$ , we have

$\hat{\mu}(z)=\lim_{n\rightarrow\infty}\prod_{j=0}^{n}\hat{\rho}(b^{jQ^{\prime}}z)=\lim_{n\rightarrow\infty}\prod_{j=0}^{n}\hat{\rho}(b^{(n-j)Q^{\prime}}z)$ .

If we define independent random variables $\{X_{j}\}$ by
$\mathscr{L}(X_{j}Xz)=\hat{\rho}(b^{-jQ}’ z)\wedge$ ,

then $\mathscr{L}(X_{j})\in H$ and

$\mathscr{L}(b^{nQ}\sum_{j=0}^{n}X_{j})\rightarrow\mu$ .

Therefore, (1.3) holds with $a_{n}=b^{-n},$ $k_{n}=n$ , and $c_{n}=0$ .
(i) “Only if part.” We need the following lemma.

LEMMA 2.1 (Lo\‘eve [6]). Suppose $\mu_{n},$ $\sigma_{n},$
$\rho_{n}\in \mathcal{P}(R^{d}),$

$\mu_{n}\rightarrow\mu,$ $\sigma_{n}\rightarrow\sigma$, and $\mu_{n}=$

$\sigma_{n}*\rho_{n}$ . Then $\rho_{n}$ converges through a subsequence of $n$ .
Now suppose $\mu e\tilde{K}(H, b, Q)$ . Then there exist $\{X_{j}\},$ $\{a_{n}\},$ $\{c_{n}\}$ , and $\{k_{n}\}$ satisfying

$(1.1)-(1.3)$ in Definition 1.1. We have

(2.5) $a_{n}^{-Q}\sum_{j=1}^{k_{n}}X_{j}+c_{n}=a_{n}^{-Q}a_{n-1}^{Q}(a_{n-1}^{-Q}\sum_{j=1}^{k_{n-1}}X_{j}+c_{n-1})$

$+(a_{n}^{-Q}\sum_{+j=k_{n-1}1}^{k_{n}}X_{j}+c_{n}-a_{n}^{-Q}a_{n-1}^{Q}c_{n-1})$

and denote the distributions of the left hand side of (2.5) and of the first and the second
terms on the right hand side of (2.5) by $\mu_{n},$ $\sigma_{n}$, and $\rho_{n}$ , respectively. By (1.3), $\mu_{n}\rightarrow\mu$,
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and by (1.3) and (1.1), $\hat{\sigma}_{n}(z)\rightarrow\hat{\mu}(b^{Q^{\prime}}z)$ . Thus by Lemma 2.1, $\rho_{n}$ converges, through a
subsequence of $n$ , to $\rho$ (say) in $\mathscr{P}(R^{d})$ . However, since $\mathscr{L}(X_{j})\in H$ and $H$ is Q-completely
closed, we conclude that $\rho\in H$ and $\hat{\mu}(z)=\hat{\mu}(b^{Q}’ z)\hat{\rho}(z)$ in the limit.

(ii) We only show that $\tilde{K}(H, b, Q)$ is closed under convergence. Let $\mu_{n}\in\tilde{K}(H, b, Q)$

and suppose $\mu_{n}\rightarrow\mu_{\infty}$ . By (i), for each $n\geq 1$ ,

$\hat{\mu}_{n}(z)=\hat{\mu}_{n}(b^{Q^{\prime}}z)\hat{\rho}_{n}(z)$ , $\rho_{n}\in H$ .
Again by Lemma 2.1, $\rho_{n}$ converges, through a subsequence of $n$ , to $\rho_{\infty}$ (say) in $\mathscr{P}(R^{d})$ .
Since $H$ is closed under convergence, we see that

$\hat{\mu}_{\infty}(z)=\hat{\mu}_{\infty}(b^{Q}’ z)\hat{\rho}_{\infty}(z)$ , $\rho_{\infty}\in H$ .

Thus by (i) again, we conclude that $\mu_{\infty}\in\tilde{K}(H, b, Q)$ . Closedness under convolution and
Q-type equivalence can be shown similarly. $\square $

PROOF OF PROPOSITION 1.1. Denote by $\delta_{x}$ the unit mass at $x$ . First note that $\delta_{0}\in H$.
In fact, $\mathscr{L}(X)\in H$ implies that $\delta_{0}=\lim_{n\rightarrow\infty}\mathscr{L}(b_{n}^{Q}X)\in H$ when $b_{n}\downarrow 0$ . Next note that
$1\in D_{Q,H}(\mu)$ , which follows from that $\delta_{0}\in H$. Let $b_{1}$ and $b_{2}$ be in $D_{Q,H}(\mu)$ . Then, for

$j=1,2,\hat{\mu}(z)=\hat{\mu}(b_{j}^{Q^{\prime}}z)\hat{\rho}_{j}(z)$ with some $\rho_{j}\in H$. Hence
$\hat{\mu}(z)=\hat{\mu}(b_{2}^{Q}’ b_{1}^{Q}’ z)\hat{\rho}_{2}(b_{1}^{Q}’ z)\hat{\rho}_{1}(z)$ .

Note that $b_{2}^{Q}’ b_{1}^{Q}’=(b_{2}b_{1})^{Q^{\prime}}$ and that $\hat{\rho}_{2}(b_{1}^{Q^{\prime}}z)\hat{\rho}_{1}(z)$ is the characteristic function of a
distribution in $H$. Hence $b_{1}b_{2}\in D_{Q,H}(\mu)$ . Now we can show that $0\in D_{Q,H}(\mu)$ . In fact, we
can choose $c\neq 1$ in $D_{Q.H}(\mu)$ . Then $c^{n}\in D_{Q,H}(\mu)$ for $n=1,2,$ $\cdots$ and hence $\hat{\mu}(z)=\hat{\mu}(c^{nQ^{\prime}}z)\hat{\rho}_{n}(z)$

for some $\rho_{n}\in H$, which implies that $p_{n}\rightarrow\mu,$ $\mu\in H$, and $0\in D_{Q.H}(\mu)$ . Closedness of $D_{Q,H}(\mu)$

is proved from Lemma 2.1. $\square $

PROOF OF PROPOSITION 1.2. (i) Restatement of Theorem 1.2 (i).
(ii) If $H$ is Q-completely closed in the strong sense, then, by its definition,

$H=H\cap I(R^{d})$ . Thus the assertion follows from Theorems 1.1 and 1.2.
(iii) If $\mu\in K(H, b, Q)$ , then it is $(b, Q, H\cap I(R^{d}))$-decomposable by Theorem 1.1. If

$\mu$ is $(b, Q, H\cap I(R^{d}))$-decomposable, then $\mu\in\tilde{K}(H\cap I(R^{d}), b, Q)=K(H\cap I(R^{d}), b, Q)$ by
(i) and (ii). Finally, $K(H\cap I(R^{d}), b, Q)\subset K(H, b, Q)$ by (1.7). $\square $

PROOF OF PROPOSITION 1.3. We have $I(R^{d})\supset L_{0}(b, Q)$ by (1.6). It follows from (1.7)
and the definition that $L_{0}(b, Q)\supset L_{1}(b, Q)$ . Hence $L_{m}(b, Q)\supset L_{m+1}(b, Q)$ by induction and
(1.7). The other assertions are proved similarly. $\square $

PROOF OF PROPOSITION 1.4. For $m=0$ , we have

$L_{0}(C_{1}, Q)=K(\mathscr{P}(R^{d}), C_{1}, Q)=\bigcap_{b\in C_{1}\backslash \{O,1\}}K(\mathscr{P}(R^{d}), b, Q)$

$\supset\bigcap_{b\in C_{2}\backslash \{0,1\}}K(\mathscr{P}(R^{d}), b, Q)=K(\mathscr{P}(R^{d}), C_{2}, Q)$

$=L_{0}(C_{2}, Q)$ .
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If $L_{m}(C_{1}, Q)\supset L_{m}(C_{2}, Q)$ , then

$L_{m+1}(C_{1}, Q)=K(L_{m}(C_{1}, Q),$ $C_{1},$ $Q$) $=\bigcap_{b\in C_{1}\backslash \{O,1\}}K(L_{m}(C_{1}, Q),$
$b,$ $Q$)

$\supset\bigcap_{b\in C_{1}\backslash \{O,1\}}K(L_{m}(C_{2}, Q),$
$b,$ $Q$) (by (1.7))

$\supset\bigcap_{b\in C_{2}\backslash \{0,1\}}K(L_{m}(C_{2}, Q),$
$b,$ $Q$) $=K(L_{h}(C_{2}, Q),$ $C_{2},$ $Q$)

$=L_{m+1}(C_{2}, Q)$ .
The assertion for $\tilde{L}$ can be proved in exactly the same way if we use (1.8) instead $0$

(1.7) above. $\square $

THEOREM 2.1. Let $ 0\leq m\leq\infty$ . $\mu eL_{m}(b, Q)$ ifand only if there exists $\rho_{m}eL_{m-1}(b,$ $Q$

such that $\hat{\mu}(z)=\hat{\mu}(b^{Q^{\prime}}z)\hat{\rho}_{m}(z)$ , where $L_{-1}(b, Q)$ and $L_{\infty-1}(b, Q)$ are understood as $I(R^{d})$ ant

$L_{\infty}(b, Q)$ , respectively. Furthermore, $L_{m}(b, Q)$ is Q-completely closed in the strong sense.

PROOF. Obviously $I(R^{d})$ is Q-completely closed in the strong sense. Thus tht
assertion for $m=0$ comes from Proposition 1.2 (iii). Then we can prove the assertion
for $ 1\leq m<\infty$ by induction, using Theorem 1.1 (i), (ii), and (iii). Let $\mu eL_{0}(b, Q)$ . Then
since $\hat{\mu}(z)\neq 0,$

$\rho_{0}$ is determined uniquely, and $\mu\in L_{\infty}(b, Q)$ if and only if $\rho_{0}\in L_{\infty}(b, Q)$

The assertion for $ m=\infty$ thus follows. $\square $

REMARK 2.1. The statement of Theorem 2.1 remains valid for $\tilde{L}$ in place of $L,$ $i$

$\tilde{L}_{-1}(b, Q)$ is understood as $\mathscr{P}(R^{d})$ and if we delete “in the strong sense” at the end. Proo
is straightforward from Theorem 1.2 in case $ 0\leq m<\infty$ . If $\mu\in\tilde{L}_{\infty}(b, Q)$ , then for even
$m<\infty,$ $\mu\in\tilde{L}_{m}(b, Q)$ and $\hat{\mu}(z)=\hat{\mu}(b^{Q}’ z)\hat{\rho}_{m}(z)$ with some $\rho_{m}\in\tilde{L}_{m-1}(b, Q)$ . By Lemma 2.1, $\rho_{r}$

tends to some $\rho_{\infty}$ as $ m\rightarrow\infty$ through a subsequence, and $\hat{\mu}(z)=\hat{\mu}(b^{Q}’ z)\hat{\rho}_{\infty}(z)$ . Sinct
$p_{m^{\prime}}\in\tilde{L}_{m}(b, Q)$ for $m^{\prime}>m$ , we see $\rho_{\infty}e\tilde{L}_{m}(b, Q)$ and hence $\rho_{\infty}\in\tilde{L}_{\infty}(b, Q)$ . Conversely, if 1
is $(b, Q,\tilde{L}_{\infty}(b, Q))$-decomposable, then it is $(b, Q,\tilde{L}_{m}(b, Q))$-decomposable for all $ m<\infty$

and hence $\mu\in\tilde{L}_{\infty}(b, Q)$ .
REMARK 2.2. The class $L_{\infty}(b, Q)$ is the largest class that is invariant under th $($

operation $K(\cdot, b, Q)$ . The class $L_{\infty}(C, Q)$ is the largest class that is invariant under th $($

operation $K(\cdot, C, Q)$ . These statements remain valid if we replace $L$ and $K$ by $\tilde{L}an($

$\tilde{K}$, respectively. Proof is as follows. $L_{\infty}(b, Q)=K(L_{\infty}(b, Q),$ $b,$ $Q$) by Theorem 2.1 an $($

Proposition 1.2. If $H$ satisfies $K(H, b, Q)=H$, then $L_{\infty}(b, Q)\supset H$ since, by the repeated us $($

of (1.7), $L_{m}(b, Q)\supset H$ for $ 0\leq m<\infty$ . For $Ce\mathfrak{C},$ $L_{\infty}(C, Q)\supset K(L_{\infty}(C, Q),$ $b,$ $Q$) $b1$

Proposition 2.1, and hence $L_{\infty}(C, Q)\supset K(L_{\infty}(C, Q),$ $C,$ $Q$). On the other hand,

$L_{\infty}(C, Q)=\bigcap_{m<\infty}L_{m}(C, Q)=\bigcap_{m<\infty}K(L_{m-1}(C, Q),$
$C,$ $Q$)

$=\bigcap_{m<\infty b\in}\bigcap_{c\backslash \{0,1\}}K(L_{m-1}(C, Q),$
$b,$ $Q$),
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and hence $\mu\in L_{\infty}(C, Q)$ implies that $\hat{\mu}(z)=\hat{\mu}(b^{Q}’ z)\hat{\rho}_{b}(z)$ for $b\in C\backslash \{0,1\}$ with
$p_{b}\in L_{m-1}(C, Q)$ . This $\rho_{b}$ does not depend on $m$ and thus $\rho_{b}eL_{\infty}(C, Q)$ . Hence
$L_{\infty}(C, Q)\subset K(L_{\infty}(C, Q),$ $b,$ $Q$ ) for $b\in C\backslash \{0,1\}$ . It follows that $ L_{\infty}(C, Q)\subset$

$K(L_{\infty}(C, Q),$ $C,$ $Q$). Hence the equality holds. If$K(H, C, Q)=H$ , then we have $L_{0}(C, Q)\supset H$

from that $K(\mathscr{P}(R^{d}), b, Q)\supset K(H, b, Q)$ and, similarly $L_{m}(C, Q)\supset H$ for all $m$ , that is,
$L_{\infty}(C, Q)\supset H$. The assertion for $\tilde{L}$ and $\tilde{K}$ is proved similarly by use of Lemma 2.1.

PROPOSITION 2.5. $I(R^{d})\supset OL(Q)=L_{O}([0,1], Q)=\tilde{L}_{0}([0,1], Q)$ .
$PR\infty F$. The following three statements are equivalent: $\mu\in OL(Q);\mu$ is $(b, Q, \mathscr{P}(R^{a}))-$

decomposable for all $ b\in(O, 1);\mu$ is $(b, Q, I(R^{d}))$-decomposable for all $b\in(O, 1)$ . This
is essentially Theorem 2.1 and Corollary 2.4 of Sato [11]. See also Theorem 3.3.5
of Jurek and Mason [5]. On the other hand, $\mu$ is $(b, Q, \mathcal{P}(R^{d}))$-decomposable for
all $b$ if and only if $\mu\in\tilde{L}_{0}([0,1], Q)$ , by Theorem 1.2. Also, $\mu$ is $(b, Q, I(R^{d}))$-decom-
posable for all $b$ if and only if $\mu eL_{0}([0,1], Q)$ , by Proposition 1.2 (iii). Thus the
proposition is proved.

Now, let us compare $L_{m}(C, Q)$ and $\bigcap_{b\in C\backslash \{0,1\}}L_{m}(bQ)$ . In general, we see that, for
$ 1\leq m<\infty$ ,

(2.6) $L_{m}(C, Q)=K(L_{m-1}(C, Q),$ $C,$ $Q$)

$=\bigcap_{b\in C\backslash \{0.1\}}K(L_{m-1}(C, Q),$
$b,$ $Q$)

$\subset\bigcap_{b_{1}.b_{2}\in C\backslash \{0,1\}}K(L_{m-1}(b_{1}, Q),$
$b_{2},$ $Q$)

$\subset\bigcap_{b\in C\backslash \{0.1\}}K(L_{m-1}(b, Q),$
$b,$ $Q$)

$=\bigcap_{b\in C\backslash \{0,1\}}L_{m}(b, Q)$ .

The resulting inclusion for $ m=\infty$ follows from the case $ m<\infty$ . Then a natural question
is when two sides are equal. The answer is the following.

THEOREM 2.2. For $ 0\leq m\leq\infty$ ,
(i) $L_{m}([0,1], Q)=\bigcap_{b\in\langle 0,1)}L_{m}(b, Q)$ ,
(ii) $\tilde{L}_{m}([0,1], Q)=\bigcap_{b\in\langle 0,1)}\tilde{L}_{m}(b, Q)$ ,
(iii) $L_{m}([0,1], Q)=\tilde{L}_{m}([0,1], Q)$ .
REMARK 2.3. If $C\neq[0,1]$ , the statement of Theorem 2.2 is not necessarily true.

A counterexample for (i) and (ii) will be given in Section 5.

PROOF OF THEOREM 2.2. We first show (i). Let $ 0\leq m<\infty$ . Let $b_{n}=2^{-2^{-n}}$ . Then
$b_{n}=b_{n+1}^{2}$ and $\lim_{n\rightarrow\infty}b_{n}=1$ . Thus by Proposition 2.2,
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(2.7) $L_{m}(b_{n+1}, Q)\subset L_{m}(b_{n}, Q)$ .

Let

(2.8) $K_{m}=\bigcap_{n=1}^{\infty}L_{m}(b_{n}, Q)$ .

If we could show

(2.9) $K_{m}=L_{m}([0,1], Q)$ ,

then, by (2.6), we would get (i) for $ 1\leq m<\infty$ . On the other hand, (i) for $m=0$ is true
by Definition 1.4.

For any be $(O, 1)$ , there exist $ N(k)\uparrow\infty$ and $ n(k)\uparrow\infty$ as $ k\rightarrow\infty$ such that

(2.10) $\lim_{k\rightarrow\infty}b_{N\langle k)}^{n\{k)}=\lim_{k\rightarrow\infty}2^{-n\langle k)2^{-N\langle k)}}=b$ .

It follows from (2.7) and (2.8) that

$K_{m}=\bigcap_{k=1}^{\infty}L_{m}(b_{N\{k)}, Q)$ .

Let $\mu eK_{m}$ . Then, by Theorem 2.1, there exists $\rho eL_{m-1}(b_{N(k)}, Q)$ for each $k\geq 1$ and

$\hat{\mu}(z)=\hat{\mu}(b_{N\langle k)}^{Q’}z)\hat{\rho}(z)=\hat{\mu}(b_{N\langle k)}^{n\langle k)Q^{\prime}}z)\prod_{j=0}^{n\langle k)-1}\hat{\rho}(b\dot{k}_{\{k)}^{Q’}z)=\hat{\mu}(b_{N\langle k)}^{n(k)Q^{\prime}}z)\hat{\rho}_{k}(z)$ ,

where $\rho_{k}eL_{m-1}(b_{N\langle k)}, Q)$ . Here we understand $L_{-1}(b_{N\langle k)}, Q)=I(R^{d})$ as in Theorem 2.1.
Let $ k\rightarrow\infty$ . Then we have from (2.10)

(2.11) $\hat{\mu}(z)=\hat{\mu}(b^{Q\prime}z)\lim_{k\rightarrow\infty}\hat{\rho}_{k}(z)$ ,

and $\rho_{\infty}$
$:=\lim_{k\rightarrow\infty}\rho_{k}e\bigcap_{k=1}^{\infty}L_{m-1}(b_{N\{k)}, Q)=K_{m-1}$ , with the understanding that

$K_{-1}=I(R^{d})$ . If $m=0$ , then (2.11) means that $\hat{\mu}(z)=\hat{\mu}(b^{Q^{\prime}}z)\hat{\rho}_{\infty}(z),$ $p_{\infty}\in I(R^{d})$, for any
$be(O, 1)$, and hence $\mu\in L_{O}([0,1], Q)$ . Thus we have (2.9) for $m=0$ . This together with
(2.6) and (2.11) implies (2.9) for $ 0\leq m<\infty$ by induction. For $ m=\infty$ , we have

$\bigcap_{be\langle 01)},L_{\infty}(b, Q)=\bigcap_{m=0}^{\infty}\bigcap_{b\in(01)}.L_{m}(b, Q)=\bigcap_{m=0}^{\infty}L_{m}([0,1], Q)=L_{\infty}([0,1], Q)$ .

This shows (i).
To show (ii), use Remark 2.1 instead of Theorem 2.1. Note that (2.6) holds with

$\tilde{L}$ and $\tilde{K}$ in place of $L$ and $K$, respectively. Then the proof of (i) works with replacement
of $L$ by $\tilde{L}$ . The only place we must be careful is the convergence of $\hat{\rho}_{k}(z)$ in (2.11), as
$\hat{\rho}_{k}(z)$ can possibly vanish for some $zeR^{d}$ . But here we can use Lemma 2.1, to see
convergence through a subsequence.

We finally show (iii). We have, by their definitions,
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$L_{1}([0,1], Q)=K(L_{0}([0,1], Q), [0,1], Q)$ ,

$\tilde{L}_{1}([0,1], Q)=\tilde{K}(\tilde{L}_{0}([0,1], Q), [0,1], Q)$ .

Recall that $L_{0}([0,1], Q)=\tilde{L}_{0}([0,1], Q)by$ Proposition2.5. Since $L_{m}(b, Q)is$ Q-completely
closed in the strong sense, so is $L_{m}([0,1], Q)$ by (i). Hence by Proposition 1.2 (ii),
$L_{1}([0,1], Q)=\tilde{L}_{1}([0,1], Q)$ . Repeating this argument, we conclude that, for any $m\geq 1$ ,
$L_{m}([0,1], Q)=\tilde{L}_{m}([0,1], Q)$ . This completes the proof. $\square $

3. Characterization for $L_{m}(b, Q),$ $ 0\leq m\leq\infty$ .
We are going to characterize the classes $L_{m}(b, Q),$ $ 0\leq m\leq\infty$ , in terms of Gaussian

covariance matrices and L\’evy measures in the L\’evy-Khintchine representation of
their characteristic functions.

The characteristic function of any $\mu\in I(R^{d})$ is uniquely expressed in the form

(3.1) $\hat{\mu}(z)=\exp[i\langle\gamma, z\rangle-\frac{1}{2}\langle z, Az\rangle+\int_{R^{d}}r(z, x)v(dx)]$ ,

$r(z, x)=e^{i\langle z.x\rangle}-1-\frac{\langle z,x\rangle}{1+|x|^{2}}$ ,

where $\gamma\in R^{d},$ $A$ (called the Gaussian covarianoe matrix of $\mu$) is a symmetric nonnegative
definite $d\times d$ matrix, and $v$ (called the L\’evy measure of $\mu$) is a measure on $R^{d}$ satisfying
$v(\{0\})=0$ and $\int_{R^{d}}|x|^{2}(1+|x|^{2})^{-1}v(dx)<\infty$ . We call $(\gamma, A, v)$ the generating triplet of
$\mu\in I(R^{d})$ .

For a $d\times d$ matrix $B$ we use the following notation: $BE=\{Bx:xeE\}$ for $E\subset R^{d}$ ,
$T_{B}v(E)=v(\{x:Bx\in E\})$ for a measure $v$ on $R^{d}$ . We use a mapping $\Psi_{B}$ from the class
of symmetric $d\times d$ matrices into itself defined by $\Psi_{B}(A)=A-BAB^{\prime}$ . Its iteration is
$\Psi_{B}^{l}=\Psi_{B}\circ\Psi_{B}^{l-1}$ for $l=2,3,$ $\cdots$ with $\Psi_{B}^{1}=\Psi_{B}$ . Also let $\mathscr{B}_{0}(R^{d})$ be the class of Borel sets
$E$ in $R^{d}$ such that $E\subset\{|x|>\epsilon\}$ for some $\epsilon>0$ .

Following (3.4.3) in Jurek and Mason [5], we introduce a $norm|\cdot|_{Q}$ in $R^{d}$ depending
on $Q$ :

$|x|_{Q}=\int_{0}^{1}\frac{|u^{Q}x|}{u}du$ , $x\in R^{d}$

Since, for $Q\in M_{+}(R^{d})$ , there exist $c_{j}>0(1\leq j\leq 4)$ such that $ c_{1}u^{c_{2}}|x|\leq|u^{Q}x|\leq$

$c_{3}u^{c_{4}}|x|,$ $0<u\leq 1,$ $|x|_{Q}$ is well defined. The norm $|_{Q}$ is comparable with the Euclidean
norm . An advantage of the norm $|_{Q}$ is that for any $xeR^{d}\backslash \{0\},$ $t\rightarrow|t^{Q}x|_{Q}(t>0)$

is strictly increasing (Proposition 3.4.3 in Jurek and Mason [5]). Thus for any $b\in(O, 1)$

and $QeM_{+}(R^{d}),$ $\sup_{|x|_{Q}\leq 1}|b^{Q}x|_{Q}<1$ . We write $B=b^{Q}$ and define

$S_{B}=$ {$x\in R^{d}$ : $|x|_{Q}\leq 1$ and $|B^{-1}x|_{Q}>1$ }.
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PROPOSITION 3.1 (Luczak [8], pp. 289-290). For each $xeR^{4}\backslash \{0\}$ , let $\tau_{x}=$

$\{B^{n}x;neZ\}$ . Then
(i) $\{xeR^{d} ; |x|_{Q}=1\}\subset S_{B}$,
(ii) if $x,$ $y\in S_{B},$ $x\neq y$, then $\tau_{x}\cap\tau_{y}=\emptyset$ .
(iii) if $xeS_{B}$, then $\tau_{x}\cap S_{B}=\{x\}$ ,
(iv) for any $x\in R^{d}\backslash \{0\},$ $\tau_{x}\cap S_{B}\neq\emptyset$ ,
(v) $ B^{n}S_{B}\cap B^{m}S_{B}=\emptyset$ for $n\neq m$ ,
(vi) $\{xeR^{d} : 0<|x|_{Q}\leq 1\}=\bigcup_{n\geq 0}B^{n}S_{B}$ and $\{xeR^{d} ; |x|_{Q}>1\}=\bigcup_{n<0}B^{n}S_{B}$ .

PROPOSITION 3.2. (i) If $v$ is the IAvy measure of $\mu eI(R^{d})$, then there exist afinite
measure $v_{O}$ on $S_{B}$ anda Borelmeasurablefunction $g_{n}$ : $ S_{B}\rightarrow[0, \infty$ )for each $neZ$ satisfying
the following conditions.

(a) For $E\in \mathscr{B}(S_{B}),$ $v_{O}(E)=0$ if and only if $v(B^{n}E)=0,$ $\forall n\in Z$ ,
(b) $\int_{s_{B}}v_{0}(dx)\sum_{n\in Z}(|B^{-n}x|_{Q}^{2}\wedge 1)g_{n}(x)<\infty$ ,

(c) $\sum_{n\in Z}g_{n}(x)>0,$ $v_{0}- a.e.$ ,

(d) $v(E)=\int_{S_{B}}v_{0}(dx)\sum_{n\in Z}g_{n}(x)1_{E}(B^{-n}x),$ $\forall Ee\ovalbox{\tt\small REJECT}(R^{d})$ .
These $\{v_{O}, g_{n}, neZ\}$ are uniquely determined in the following sense. If $\{v_{0}, g_{n}, n\in Z\}$

and $\{\tilde{v}_{0},\tilde{g}_{n}, neZ\}$ satisfy the above conditions, then there exists a Borelmeasurablefunction
$h(x)$ with $ 0<h(x)<\infty$ such that

$\tilde{v}_{0}(dx)=h(x)v_{0}(dx)$ ,

$g_{n}(x)=h(x)\tilde{g}_{n}(x)$ , $v_{0}- a.e$. , $\forall ne$ Z.

(ii) Conversely, if $v_{0}$ , a finite measure on $S_{B}$, and $g_{n},$ $neZ$ , Borel measurbable
functions from $S_{B}$ into $[0, \infty$), are given, and satisfy (b) and (c), then $v$ defined by (d) is
the L\’evy measure of some $\mu eI(R^{d})$ and (a) is also satisfied.

We call $\{v_{0}, g_{n}, neZ\}$ determined uniquely from $v$ in (i) above the $S_{B}$-representation
of $v$ . In the following, we may write $g(n, x)$ for $g_{n}(x)$ occasionally.

PROOF. (i) Define

$v_{0}(E)=\sum_{n\in Z}2^{-|n|}\frac{v(B^{n}E)}{v(B^{n}S_{B})}$ , $Ee\mathscr{B}(S_{B})$ ,

with the convention that $v(B^{n}E)/v(B^{n}S_{B})=0$ when $v(B^{n}S_{B})=0$ . It is obvious that $v_{0}$ is a
finite measure and satisfies (a).

Let $[v]_{B^{n}S_{B}}$ be the restriction of $\nu$ to $B^{n}S_{B}$ . Then $[\nu]_{B^{n}S_{B}}$ is absolutely continuous
with respect to $T_{B^{n}}v_{0}$ . Then by the Radon-Nikodym theorem, there exists $h_{n}(x)$ on $B^{n}S_{B}$

such that

$v(dx)=h_{n}(xKT_{B^{n}}v_{0})(dx)$ on $B^{n}S_{B}$ .
Hence
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$v(E)=\sum_{n\in Z}v(E\cap B^{n}S_{B})$

$=\sum_{n\in Z}\int_{E\cap B^{n}S_{B}}h_{n}(x)(T_{B^{n}}v_{0})(dx)$

$=\sum_{neZ}\int_{s_{B}}1_{E}(B^{n}x)h_{n}(B^{n}x)v_{0}(dx)$ .

Thus, if we define $g_{-n}(x)=h_{n}(B^{n}x)$, then (d) holds.
As to (b), we have, by using (d),

(3.2) $\int_{s_{B}}v_{0}(dx)\sum_{n\in Z}(|B^{-n}x|_{Q}^{2}\wedge 1)g_{n}(x)=\int_{R^{d}}(|x|_{Q}^{2}\wedge 1)v(dx)<\infty$ .

As to (c), if $E\in \mathscr{B}(S_{B})$ , then by (d),

(3.3) $v(B^{-n}E)=\int_{S_{B}}v_{0}(dx)g_{n}(x)1_{E}(x)=\int_{E}v_{0}(dx)g_{n}(x)$ .

Thus, if $v_{0}(E)>0$ , then

$\int_{E}\sum_{n\in Z}g_{n}(x)v_{0}(dx)=\sum_{n\in Z}v(B^{-n}E)>0$

by (a).
We are going to show the uniqueness of $\{v_{0}, g_{n}, n\in Z\}$ . Suppose that $\{v_{0}, g_{n}, neZ\}$

and $\{\tilde{v}_{0},\tilde{g}_{n}, n\in Z\}$ satisfy $(a)-(d)$ . It follows from (a) that $v_{0}$ and $\tilde{v}_{0}$ are absolutely
continuous each other so that $\tilde{v}_{0}(dx)=h(x)v_{0}(dx)$ for some Borel measurable function $h$

with $ 0<h(x)<\infty$ . For any $E\in \mathscr{B}(S_{B})$ , by (3.3),

$v(B^{-n}E)=\int_{E}v_{0}(dx)g_{n}(x)$

and

$v(B^{-n}E)=\int_{E}\tilde{v}_{0}(dx)\tilde{g}_{n}(x)=\int_{E}v_{0}(dx)h(x)\tilde{g}_{n}(x)$ .

Hence we conclude that $g_{n}(x)=h(x)\tilde{g}_{n}(x),$ $v_{0}- a.e$ .
(ii) For given $\{v_{0}, g_{n}, n\in Z\}$ satisfying (b) and (c), define $v$ by (d). Then by (3.2)

and (b), we have $\int_{R^{d}}(|x|^{2}\wedge 1)v(dx)<\infty$ , and by (d), $v(\{0\})=0$ . Hence $v$ is the L\’evy
measure of some $\mu\in I(R^{d})$ . $(a)$ also follows from (c) by (3.3). This completes the
proof. $\square $

PROPOSITION 3.3. Suppose that $\mu\in I(R^{d})$ has the generating triplet $(\gamma, A, v)$. $A$

necessary and sufficient condition for that $\mu eL_{0}(b, Q)$ is that
(i) $\Psi_{B}(A)$ is nonnegative definite, and
(ii) $v(E)-v(B^{-1}E)\geq 0$ for any $E\in \mathscr{B}_{0}(R^{d})$ .
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PROOF. By Theorem 2.1, $\mu eL_{O}(b, Q)$ if and only if $\hat{\rho}(z)=\hat{\mu}(z)/\hat{\mu}(B^{\prime}z)$ is infinitely
divisible characteristic function. We have, form (3.1),

$\hat{\rho}(z)=\exp\{i\langle(I-B)\gamma+c, z\rangle-\frac{1}{2}\langle(A-BAB^{\prime})z, z\rangle+\int_{R^{d}\backslash \{O\}}r(z, x)(v(dx)-v(d(B^{-1}x)))\}$ ,

where

$c=\int_{R^{d}\backslash \{0\}}(\frac{11}{1+|B^{-1}x|^{2}1+|x|^{2}})x\nu(dx)$ .

Therefore, for that $\rho\in I(R^{d})$, it is necessary and sufficient that A-BAB’ is nonnegative
definite (which is $(i)$) and

$v(E)-v(B^{-1}E)\geq 0$ , $\forall Ee\mathscr{B}_{0}(R^{d})$ ,

(which is (ii)). $\square $

The following theorem is an extension of the results of Sato [11], Jurek [4], and
Maejima and Naito [9].

THEOREM 3.1. Let $0\leq m\leq\infty,$ $\mu eI(R^{d}),$ $A$ its Gaussian covariance matrix, $v$ its L\’evy
measure, and let $\{v_{0}, g(n, x), n\in Z\}$ be the $S_{B}$-representation of $v$ . Then the following three
statements are equivalent.

(i) $\mu eL_{m}(b, Q)$,
(ii) $\Psi_{B}^{l}(A),$ $1\leq l\leq m+1$ , are nonnegative definite, and $(I-T_{B})^{l}v\geq 0,1\leq l\leq m+1$ .

on $g_{0}(R^{d})$,
(iii) $\Psi_{B}^{l}(A),$ $1\leq l\leq m+1$ , are nonnegative definite, and $(-1)^{l}\Delta^{l}g(n,$ $x\geq 0,$ $neZ$

$v_{0}- a.e$. $x$ for $1\leq l\leq m+1$ , where for $k(n),$ $neZ,$ $\Delta k(n)=k(n+1)-k(n)$ .
(In the above, where $m=\infty,$ $1\leq l\leq m+1$ should be read as $1\leq l<\infty.$)

PROOF. Note that the condition that $(-1)^{l}\Delta^{l}g(n, x)\geq 0$ for $v_{0}- a.e.x$ does not depend
on the choice of our $S_{B}$-representation of $v$ , as the representation has uniqueness in the
sense described in Proposition 3.2 (i). Also note that, since $Ee\mathscr{B}_{0}(R^{d})$ implies thal
$B^{-1}E\in\ovalbox{\tt\small REJECT}_{O}(R^{d}),$ $(I-T_{B})^{l}v_{O}$ is well-defined on $\mathscr{B}_{0}(R^{d})$ for $l\geq 1$ .

We first show the equivalence of (i) and (ii). Since

$(I-T_{B})v(E)=v(E)-v(B^{-1}E)$ ,

we have $(i)\Leftrightarrow(ii)$ for $m=0$ by Proposition 3.3. Next we suppose $(i)\Leftrightarrow(ii)$ for $m$ and
will show it for $m+1$ . By Theorem 2.1, $\mu eL_{m+1}(b, Q)$ if and only if $\hat{\mu}(z)=\hat{\mu}(b^{Q^{\prime}}z)\hat{\rho}(Z_{d}^{\backslash }$

for some $\rho eL_{m}(b, Q)$ . The Gaussian covariance matrix $A_{\rho}$ of $\rho$ is $A_{\rho}=\Psi_{B}(A)$ . Hence

$\Psi_{B}^{l}(A_{\rho})=\Psi_{B}^{l+1}(A)$ ,

and therefore $\Psi_{B}^{l}(A_{\rho})$ are nonnegative definite for $1\leq l\leq m+1$ if and only if $\Psi_{B}^{l}(A)$ are
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nonnegative definite for $2\leq l\leq m+2$ . Similarly, the L\’evy measure $v_{\rho}$ of $\rho$ satisfies
$\nu_{\rho}=v-T_{B}v$ on $\mathscr{B}_{0}(R^{d})$ . Hence

$(I-T_{B})^{l}v_{\rho}=(I-T_{B})^{l+1}v$ on $\mathscr{B}_{0}(R^{d})$

and therefore

$(I-T_{B})^{l}v_{\rho}\geq 0$ , $1\leq l\leq m+1$ , on $\mathscr{B}_{0}(R^{d})$

if and only if

$(I-T_{B})^{l}v\geq 0$ , $2\leq l\leq m+2$ , on $\mathscr{B}_{0}(R^{d})$ .
This proves the case for $m+1$ .

We next show the equivalence of (ii) and (iii). We have, for $E\in \mathscr{B}_{0}(R^{d})$,

$((I-T_{B})\nu)(E)=v(E)-v(B^{-1}E)$

$=\int_{s_{B}}v_{0}(dx)(\sum_{n\in Z}g_{n}(x)1_{E}(B^{-n}x)-\sum_{n\in Z}g_{n}(x)1_{B^{-1}E}(B^{-n}x))$

$=\int_{s_{B}}v_{0}(dx)\sum_{n\in Z}(g_{n}(x)-g_{n+1}(x))1_{E}(B^{-n}x)$

$=\int_{s_{B}}v_{0}(dx)\sum_{n\in Z}(-\Delta g(n, x))1_{E}(B^{-n}x)$ .

Hence for $E\in \mathscr{B}(S_{B})$ ,

$(I-T_{B})v(B^{-n}E)=\int_{s_{B}}v_{0}(dx)\sum_{m\epsilon Z}(g_{m}(x)-g_{m+1}(x))1_{B^{-n}E}(B^{-m}x)$

$=\int_{E}(-\Delta g(n, x))v_{0}(dx)$ ,

and thus

$(I-T_{B})v\geq 0$ on $\mathscr{B}_{0}(R^{d})$

if and only if

$-\Delta g(n, x)\geq 0$ , $\forall neZ$ , $v_{0}- a.e$ . $x$ .
Using the above expression of $(I-T_{B})v$ in plaoe of (d) of Proposition 3.2, we get

$(I-T_{B})^{2}\nu(E)=\int_{s_{B}}v_{0}(dx)\sum_{n\in Z}\Delta^{2}g(n, x)1_{E}(B^{-n}x)$ .

Repeating this argument, we conclude, for each $1\geq 1$ , that

$(I-T_{B})^{l}v\geq 0$ on $\mathscr{B}_{0}(R^{d})$
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if and only if

$(-1)^{l}\Delta^{l}g(n, x)\geq 0$ , $\forall n\in Z$ , $v_{0}- a.e$ . $x$ .
This completes the proof. $\square $

PEMARK 3.1. In Proposition 1.3, we have seen that

(3.4) $L_{m}(b, Q)\supset L_{m+1}(b, Q)$ , $ 0\leq m<\infty$ ,

(3.5) $L_{m}(C, Q)\supset L_{m+1}(C, Q)$ , $ 0\leq m<\infty$ .
The inclusion (3.4) is proper, and the inclusion (3.5) is also proper for any $Ce$ C. We
show below that the inclusion in (3.4) is proper by giving an example of
$\mu\in L_{m}(b, Q)\backslash L_{m+1}(b, Q)$ . To show that the inclusion in (3.5) is proper, we need Theorem
4.4 in the next section, and thus we shall show it in Remark 4.2 right after Theorem
4.4 in the next section.

To show that the inclusion in (3.4) is proper, fix $x_{0}eR^{d}\backslash \{0\}$ . For $ 0\leq m<\infty$ , define

$v_{m}(dx)=\sum_{n\in Z}k_{m}(n)\delta_{B^{-n}x_{O}}(dx)$ .

If we assume that $k_{m}(n)\geq k_{m}(n+1)\geq 0,$ $\forall neZ$ , then

$(I-T_{B})v_{m}(\{B^{-n}x_{O}\})=v_{m}(\{B^{-n}x_{O}\})-v_{m}(\{B^{-\{n+1)}x_{O}\})$

$=k_{m}(n)-k_{m}(n+1)\geq 0$ .
Henoe, by Theorem 3.1, $v_{m}$ is the L\’evy measure of some $\mu eL_{0}(b, Q)$ , provided that

(3.6) $\sum_{n\geq 0}k_{m}(n)<\infty$ and $\sum_{n<0}|B^{-n}x_{0}|^{2}k_{m}(n)<\infty$ .

Fix $0<c<1$ and let

(3.7) $k_{0}(n)=\left\{\begin{array}{ll}c^{n}, & n\geq 0\\1, & n<0.\end{array}\right.$

Then

$(I-T_{B})v_{O}(\{B^{-n}x_{0}\})=k_{O}(n)-k_{O}(n+1)$

$=\left\{\begin{array}{ll}(1-c)c^{n}, & n\geq 0\\0, & n<0\end{array}\right.$

$\geq 0$ , neZ ,

and

$(I-T_{B})^{2}v_{0}(\{B^{-n}x_{0}\})<0$ if $n=-1$ .
Thus, $byTheorem3.1,$ $v_{0}$ is the L\’evy measure ofa $\mu eL_{0}(b, Q)\backslash L_{1}(b, Q)$.
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Starting with $\{k_{0}(n), n\in Z\}$ above, define $\{k_{m}(n), n\in Z\},m\geq 1$ , inductively as follows:

(3.8) $k_{m}(n)=\left\{\begin{array}{l}c^{n},n\geq 0\\1+(1-c)\sum_{j=n}^{-1}k_{m-1}(j),n<0\end{array}\right.$

Then

$(I-T_{B})v_{m}(\{B^{-n}x_{0}\})=k_{m}(n)-k_{m}(n+1)$

$=\left\{\begin{array}{l}(1-c)c^{n},n\geq 0\\(1-c)k_{m-1}(n),n<0\end{array}\right.$

$=(1-c)v_{m-1}(\{B^{-n}x_{0}\})$ .

Thus

$(I-T_{B})^{l}v_{m}(\{B^{-n}x_{0}\})\geq 0$ for $l=1,2,$ $\cdots,$ $m+1$ , for any $n\in Z$ ,

$(I-T_{B})^{m+2}v_{m}(\{B^{-n}x_{0}\})<0$ , for some $ne$ Z.

Thus, $v_{m}$ is the L\’evy measure of some $\mu\in L_{m}(b, Q)\backslash L_{m+1}(b, Q)$ , onoe again by Theorem
3.1. In the above, it is easily seen that (3.7) and (3.8) satisfy the condition (3.6). If one
wants to construct a full measure in $L_{m}(b, Q)\backslash L_{m+1}(b, Q)$ , then it is enough to choose
a set of linearly independent $d$ vectors $\{x_{1}, \cdots, x_{d}\}$ in $R^{d}$, and to define $v_{m}$ by

$\nu_{m}(dx)=\sum_{n\in Z}k_{m}(n)\sum_{j=1}^{d}\delta_{B^{-n}x_{j}}(dx)$ .

4. The class $L_{\infty}(C, Q)$.
Define

$\mathscr{P}_{\log^{m}}(R^{d})=\{\mu\in \mathscr{P}(R^{d}):\int_{R^{4}}(\log(1+|x|))^{m}\mu(dx)<\infty\}$ .

The following two theorems are extensions of some results in Bunge [1]. In the following,
Ce $\mathfrak{C}$ and $QeM_{+}(R^{d})$ .

THEOREM 4.1. Let $ 0\leq m<\infty$ .
(i) $If\mu\in\tilde{L}_{m}(C, Q)$ , thenfor any $b\in C\backslash \{0,1\}$ , there exists $\eta_{b}\in \mathscr{P}_{\log^{m+1}}(R^{d})$ such that

(4.1) $\hat{\mu}(z)=\prod_{n=0}^{\infty}\hat{\eta}_{b}(b^{nQ}’ z)^{()}m+nm$

where $(^{m+n}m)$ are the binomial coefficients.
(ii) Let $0<b<1$ and take $\mu e\mathscr{P}(R^{d})$ . If there exists $\eta_{b}e\mathscr{P}_{\log^{m+1}}(R^{d})$ satisfying (4.1),

then $\mu\in\tilde{L}_{m}(C, Q)$ with $C=\{b^{n}\}_{n=0}^{\infty}\cup\{0\}$ .
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THEOREM 4.2. $\tilde{L}_{\infty}(C, Q)\subset I(R^{d})$ .
Bunge [1] showed the above theorems when $d=1$ . Howeveer a slight modification

of his proofs concludes Theorems 4.1 and 4.2, and thus we omit their proofs here.
We see, from (1.5), (1.7), (1.8), and the definitions, that

(4.2) $L_{m}(C, Q)\subset\tilde{L}_{m}(C, Q)$ , $ 0\leq m\leq\infty$ .

On the other hand, Bunge [1] also showed that $\tilde{L}_{m}(C, Q)\cap(I(R^{d}))^{c}\neq\emptyset$ when
$ d=1,0\leq m<\infty$ , and $C=\{b^{n}\}_{n=0}^{\infty}\cup\{0\}$ . The same fact is also true for $d\geq 2$ . For, if $Wt$

take $\eta_{b}$ with compact support in (ii) of The$0$rem 4.1, then the resulting $\mu$ has alsc
compact support and is not infinitely divisible. Henoe for $ 0\leq m<\infty$ and such a $C$,

$L_{m}(C, Q)\subsetneqq\tilde{L}_{m}(C, Q)$ .
However, because of Theorem 4.2, it is worthwhile to compare $L_{\infty}(C, Q)$ and $\tilde{L}_{\infty}(C, Q)$

(This problem was already proposed in Maejima and Naito [9].) Actually we have tht
following.

THEOREM 4.3. $L_{\infty}(C, Q)=\tilde{L}_{\infty}(C, Q)$ .
PROOF. Because of (4.2), it is enough to show that $\tilde{L}_{\infty}(C, Q)\subset L_{\infty}(C, Q)$ . We havt

by Remark 2.2, Theorem 4.2 and (1.8), and Proposition 1.2 (iii) that $\tilde{L}_{\infty}(C, Q)=$

$\tilde{K}(\tilde{L}_{\infty}(C, Q),$ $C,$ $Q$) $\subset\tilde{K}(I(R^{d}), C, Q)=K(\mathscr{P}(R^{d}), C, Q)=L_{0}(C, Q)$ . Repeating this argument
we conclude that $\tilde{L}_{\infty}(C, Q)\subset\bigcap_{m<\infty}L_{m}(C, Q)=L_{\infty}(C, Q)$ . $\square $

As we have announced in Section 1, our main theorem in this section is the following
Recall the definition of $\Xi(C)$ stated in Section 1.

THEOREM 4.4. (i) When $\Xi(C)\neq\emptyset,$ $L_{\infty}(C, Q)=L_{\infty}(b_{0}, Q)$ , where $b_{0}=\inf\Xi(C)$ .
(ii) $When--(C)=\emptyset,$ $L_{\infty}(C, Q)=L_{\infty}([0,1], Q)$ .

We need several lemmas.

LEMMA 4.1. Let $0\leq m<\infty.$ A necessary andsufficient conditionfor that $\mu eL_{m}(C,$ $Q$

is that the Gaussian covariance matrix $A$ and the L\’evy measure $v$ of $\mu eI(R^{d})$ satisfJ
the following. For any $n\leq m+1$ , for any not necessarily distinct $b_{j}eC\backslash \{0,1$

$(j=1,2, \cdots, n)$ , with $B_{j}=b_{j}^{Q}$ ,

(4.3) $(I-T_{B_{1}})\cdots(I-T_{B_{n}})v\geq 0$ on $\mathscr{B}_{0}(R^{d})$

and

(4.4) $\Psi_{B_{1}}\circ\cdots\circ\Psi_{B_{n}}(A)$ is nonnegative definite.
PROOF. If $m=0$, then the assertion is just Proposition 3.3. We assume that th$($

assertion is true for $m$ , and will show for $m+1$ . Recall the definition of $L_{m+1}(C,$ $ Q\rangle$, that is

$L_{m+1}(C, Q)=K(L_{m}(C, Q),$ $C,$ $Q$) $=\bigcap_{b\in C\backslash \{O,1\}}K(L_{m}(C, Q),$
$b,$ $Q$).
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Thus $\mu\in L_{m+1}(C, Q)$ if and only if, $foranyb\in C\backslash \{0,1\},$ $\rho_{b}$ satisfying $\hat{\mu}(z)=\hat{\mu}(b^{Q^{\prime}}z)\hat{\rho}_{b}(z)$

is in $L_{m}(C, Q)$ . By Proposition 3.3, the L\’evy measure $v_{\rho_{b}}$ and the Gaussian covariance
$matrixA_{\rho b}$ of $\rho_{b}satisfyv_{\rho_{b}}=(I-T_{b^{Q}})von\mathscr{B}_{0}(R^{d})andA_{\rho_{b}}=\Psi_{b^{Q}}(A)$ . By the assumption
of the induction, $\rho_{b}\in L_{m}(C, Q)$ if and only if (4.3) and (4.4) hold for $v_{\rho b}$ and $A_{\rho_{b}}$ in place
of $v$ and $A$ . Then it is equivalent to (4.3) and (4.4) for all $n\leq m+2$ . This is the assertion
for $m+1$ . $\square $

Lemma 4.1 yields

LEMMA 4.2. $\mu\in L_{\infty}(C, Q)$ if and only if (4.3) and (4.4) holdfor any $n\geq 1$ .
REMARK 4.1. If $C=\{b^{n}\}_{n=0}^{\infty}\cup\{0\}$ , then, by Proposition 2.3, $L_{m}(C, Q)=L_{m}(b, Q)$

and Lemma 4.1 is reduced to Theorem 3.1 $(i)\Leftrightarrow(ii)$ . Note that if $v-T_{b^{Q}}v\geq 0$ on $\mathscr{B}_{0}(R^{d})$

and $\Psi_{b^{Q}}(A)$ is nonnegative definite, then $v-T_{b^{nQ}}\nu\geq 0$ on $\mathscr{B}_{0}(R^{d})$ and $\Psi_{b^{nQ}}(A)$ is
nonnegative definite for any $n\geq 1$ .

In Theorem 3.1 with $ m=\infty$ , the condition for $\{g(n, x), n\in Z\}$ is called complete
monotonicity. Namely, in general, $\{k(n), n\in Z\}$ is called a completely monotone sequence
if

{ $-1)^{l}\Delta^{l}k(n)\geq 0$ for $l\geq 0$ , $n\in Z$ .
The following gives us an integral representation of completely monotone sequences.

LEMMA 4.3. If $\{k(n), n\in Z\}$ is completely monotone, then there exists a unique
measure $\rho$ on $(0,1$ ] such that

(4.5) $k(n)=\int_{0,1l}x^{n}p(dx)$ , $n\in Z$ .

Conversely, $\{k(n), n\in Z\}$ having the representation (4.5) is completely monotone.

PROOF. Suppose $\{k(n)\}$ is completely monotone and not identically zero. Then
$k(n)>0$ for all $n\in Z$ . In fact, if $k(n)=0$ for some $n$ , then, choosing $n_{0}eZ$ that satisfies
$k(n_{0})>0$ and $k(n_{0}+p)=0$ for any $p\geq 1$ , we have

$0\leq(-1)^{l}\Delta^{l}k(n_{0}-1)=\sum_{j=0}^{l}\left(\begin{array}{l}l\\j\end{array}\right)(-1)^{j}k(n_{0}+j-1)=k(n_{0}-1)-lk(n_{0})$

and thus

$0<k(n_{0})\leq\frac{1}{l}k(n_{0}-1)\rightarrow 0$ as $ l\rightarrow\infty$ ,

which is a contradiction. For $p\in Z_{+}$ , we apply Theorem 1 on the Hausdorff moment
problem in p. 225 of Feller [2] to $k(n-p)/k(-p),$ $n\in Z_{+}$ , where $Z_{+}$ is the set of all
nonnegative integers. Then there exists a unique measure $\rho_{p}$ on $[0,1]$ such that
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(4.6) $k(n-p)=\int_{[0.1]}x^{n}\rho_{p}(dx)$ , $n\in Z_{+}$ .

In particular,

(4.7) $k(n)=\int_{[0.1]}x^{n}\rho_{0}(dx)$ , $neZ_{+}$ .

On the other hand, sinoe

$k(n)=k(n+p-p)=\int_{[0,1]}x^{n+p}\rho_{p}(dx)$ ,

we have by the uniqueness of $\rho_{p}$ that

(4.8) $\rho_{0}(dx)=x^{p}\rho_{p}(dx)$ ,

implying $\rho_{0}(\{0\})=0$ . This together with (4.7) implies (4.5) for $n\geq 0$ , if we take $\rho_{0}$ as $\rho$ .
Furthermore, sinoe

$k(n-p)=k(n+1-p-1)=\int_{[0.1]}x^{n+1}\rho_{p+1}(dx)$ , $neZ_{+}$ ,

we have again by the uniqueness of $\rho_{p}$ that

$\rho_{p}(dx)=x\rho_{p+1}(dx)$ ,

implying $p_{p}(\{0\})=0$ . Thus from (4.6) with $n=0$ and (4.8),

$k(-p)=\int_{[0,1]}\rho_{p}(dx)=\int_{0.1l}x^{-p}\rho_{0}(dx)=\int_{0,1l}x^{-p}\rho(dx)$ ,

which is (4.5) for $n<0$ . The uniqueness of $\rho$ is trivial. Conversely, $k(n)$ in (4.5) satisfies

$(-1)^{l}\Delta^{l}k(n)=\sum_{j=0}^{l}(_{j}^{l}\phi-1)^{j}k(n+j)$

$=\sum_{j=0}^{l}(_{j}^{l}\lambda-1)^{j}\int_{0.1l}x^{n+j}\rho(dx)$

$=\int_{0,1l}x^{n}(1-x)^{l}\rho(dx)\geq 0$ ,

and henoe $\{k(n), n\in Z\}$ is completely monotone. a
COROLLARY 4.1. Let $0<b<1$ . If $\{k(n), neZ\}$ is completely monotone, then there

exists a unique measure $\Gamma$ on $[0, \infty$ ) such that

$k(n)=\int_{I0.\infty)}b^{n\alpha}\Gamma(d\alpha)$ .
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PROOF. In (4.5), change the variable $x\in(O, 1$ ] to $\alpha\in[0, \infty$ ) by $\alpha=\log x/\log b$ , and
define for $Ee\mathscr{B}([0, \infty))$ ,

$\Gamma(E)=\rho(\{x:\frac{\log x}{\log b}eE\})$ .

Then from (4.5)

$k(n)=\int_{0.1l}x^{n}\rho(dx)=\int_{l0,\infty)}b^{n\alpha}\Gamma(d\alpha)$ .

This completes the proof. $\square $

We extend the notion of complete monotonicity for functions on $Z$ to that for
functions on $Z^{k},$ $k\geq 1$ . Let $F$ be a function on $Z^{k}$ . For $1\leq j\leq k$, define

$\Delta_{j}F(n_{1}, \cdots, n_{k})=F(n_{1}, \cdots, n_{j}+1, \cdots, n_{k})-F(n_{1}, \cdots, n_{j}, \cdots, n_{k})$ ,

and denote thel times iteration of $\Delta_{j}$ by $\Delta_{j}^{l}$ .
DEFINITION 4.1. A function $F$ on $Z^{k}$ is said to be completely monotone if for any

$l_{j}\in Z_{+}(1\leq j\leq k)$ and $(n_{1}, \cdots, n_{k})eZ^{k}$ ,

$(-1)^{l_{1}+\cdots+l_{k}}\Delta_{1^{1}}^{l}\cdots\Delta_{k^{k}}^{l}F(n_{1}, \cdots, n_{k})\geq 0$ .

LEMMA 4.4. If $F$ on $Z^{k}$ is completely monotone, then there exists a unique fintte
measure $\rho$ on $(0,1]^{k}$ such that

(4.9) $F(n_{1}, \cdots, n_{k})=\int_{0,1l^{k}}x_{1}^{n_{1}}\cdots x_{k}^{n_{k}}\rho(dx)$ ,

where $x=(x_{1}, \cdots, x_{k})$ . Conversely, if (4.9) holds for $F$ on $Z^{k}$ , then $F$ is completely mono-
tone.

PROOF. The latter part is obvious, because

$(-1)^{l_{1}+\cdots+l_{k}}\Delta_{1^{1}}^{l}\cdots\Delta_{k^{k}}^{l}F(n_{1}, \cdots, n_{k})=\int_{0,1l^{k}}x_{1}^{n_{1}}(1-x_{1})^{l_{1}}\cdots x_{k^{k}}^{n}(1-x_{k})^{l_{k}}\rho(dx)\geq 0$ .

We show the first part by induction with respect to $k$ . The case $k=1$ is Lemma 4.3.
Suppose the assertion is true for $k$ . Let $F(n_{1}, \cdots, n_{k+1})$ be completely monotone on
$Z^{k+1}$ . For a fixed $n\in Z,$ $F(n_{1}, \cdots, n_{k}, n),$ $(n_{1}, \cdots, n_{k})\in Z^{k}$ , is completely monotone. Thus
for any $n\in Z$ , there exists a unique finite measure $\rho_{n}$ on $(0,1]^{k}$ such that

(4.10) $F(n_{1}, \cdots, n_{k}, n)=\int_{0,1l^{k}}x_{1}^{n_{1}}\cdots x_{k}^{n_{k}}\rho_{n}(dx)$ .

Using the Hahn decomposition, we can verify the uniqueness even among the class of
finite signed measures. Since $F(n_{1}, \cdots, n_{k}, n)$ is completely monotone on $Z^{k+1}$ ,
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$\tilde{F}_{\langle l.n)}(n_{1}, \cdots, n_{k}):=(-1)^{l}\Delta_{k+1}^{l}F(n_{1}, \cdots, n_{k}, n)$

$=\int_{\{0,1l^{lc}}x_{1}^{n_{1}}\cdots x_{k^{k}}^{n}(-1)^{l}\Delta^{l}\rho_{n}(dx)$

is completely monotone on $Z^{k}$ . Here we are using the notation $\Delta\rho_{n}=p_{n+1}-\rho_{n}$ . Thus
by the induction hypothesis, $(-1)^{l}\Delta^{l}p_{n}$ should be the unique measure in the representation
of $\tilde{F}_{\langle l,n)}(n_{1}, \cdots, n_{k})$ , and so

(4.11) $(-1)^{l}\Delta^{l}\rho_{n}\geq 0$ , $\forall l\geq 0$ , $\forall n\in Z$ .

From this, we observe that $\rho_{n}$ is absolutely continuous with respect to $\rho_{0}$ for any $ne$ Z.
Let $E$ satisfy $\rho_{0}(E)=0$ . Then (4.11) implies that $\rho_{n}(E)=0$ for any $neZ$ by the argument
at the beginning of the proof of Lemma 4.3. Thus we get the absolute continuity and
there exists $F_{x}$ such that

(4.12) $\rho_{n}(dx)=F_{x}(n)\rho_{0}(dx)$ .

It follows from (4.11) and (4.12) that

$(-1)^{l}\Delta^{l}F_{x}(n)\geq 0$ , $\forall l\geq 1$ ,

for $\rho_{0}- a.e$ . $x$ . Use Lemma 4.3. Then, for $\rho_{0}- a.e$ . $x$, there exists a unique finite measure
$\rho_{x}$ on $(0,1$ ] such that

(4.13) $F_{x}(n)=\int_{\langle O,1l}y^{n}\rho_{x}(dy)$

and $\rho_{x}(E)$ is measurable in $x$ for any $E\in \mathscr{B}((O, 1$ ]). Combining (4.10), (4.12), and (4.13),

we have

$F(n_{1}, \cdots, n_{k}, n_{k+1})=\int_{0,1l^{lc+1}}x_{1}^{n_{1}}\cdots x_{k+1^{1}}^{n_{le+}}\rho(d(x, x_{k+1}))$ ,

where

$\rho(E)=\int_{(O,1l^{k}}\rho_{0}(dx)\int_{0.1l}\rho_{x}(dy)1_{E}(x, y)$ , $\forall E\in \mathscr{B}((0,1]^{k+1}$),

and conclude that the representation (4.9) is true for $k+1$ in plaoe of $k$ . The uniqueness
of $\rho$ in the representation (4.9) is evident by the standard argument, as the class of
functions $x_{1}^{n_{1}}\cdots x_{k}^{n_{k}}$ with $(n_{1}, \cdots, n_{k})\in Z_{+}^{k}$ generates all continuous functions on
$[0,1]^{k}$ . $\square $

We are now ready to prove Theorem 4.4.

PROOF OF THEOREM 4.4.
Step 1. Fix $d$ and let $I_{G}$ and $I_{N}$ be the class of Gaussian distributions on $R^{d}$ and

that of purely non-Gaussian infinitely divisible distributions on $R^{d}$ , respectively. We let
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point distributions belong to both $I_{G}$ and $I_{N}$ . Any $\mu\in I(R^{d})$ has the decomposition
$\mu=\mu_{G}*\mu_{N}$ with $\mu_{G}\in I_{G}$ and $\mu_{N}\in I_{N}$ , uniquely up to factors ofpoint distributions. Theorem
3.1 says that $\mu\in L_{\infty}(b, Q)$ if and only if $\mu eI(R^{d})$ and both $\mu_{G}$ and $\mu_{N}$ are in $L_{\infty}(b, Q)$ .
Also, by Lemma 4.2, we have that $\mu eL_{\infty}(C, Q)$ if and only if $\mu\in I(R^{d})$ and both $\mu_{G}$ and
$\mu_{N}$ belong to $L_{\infty}(C, Q)$ . Hence, in order to prove the theorem, we can handle $L_{\infty}(C, Q)\cap I_{G}$

and $L_{\infty}(C, Q)\cap I_{N}$ separately.
Step 2. Let us prove that

$(i)^{\prime}$ $L_{\infty}(C, Q)\cap I_{N}=L_{\infty}(b_{0}, Q)\cap I_{N}$, when $\Xi(C)\neq\emptyset$ ,
(ii)’ $L_{\infty}(C, Q)\cap I_{N}=L_{\infty}([0,1], Q)\cap I_{N}$ , when $\Xi(C)=\emptyset$ .
We first show $(i)^{\prime}$ . Suppose $\mu\in L_{\infty}(C, Q)\cap I_{N}$ with L\’evy measure $\nu$ . Let $De\mathscr{B}_{0}(R^{d})$ .

For any $k\geq 1$ , any $b_{j}\in C\backslash (0,1$ }, $1\leq j\leq k$ , and $(n_{1}, \cdots, n_{k})\in Z^{k}$ , define with $B_{j}=b_{j}^{Q}$ ,

(4.14) $F_{D}(n_{1}, \cdots, n_{k})=v(B_{1}^{-n_{1}}\cdots B_{k}^{-n_{k}}D)$ .
Notioe that for any $l_{j}\geq 1,1\leq j\leq k$ ,

$(-1)^{l_{1}+\cdots+l_{k}}\Delta_{1^{1}}^{l}\cdots\Delta_{k^{k}}^{l}F_{D}(n_{1}, \cdots, n_{k})=(I-T_{B_{1}})^{l_{1}}\cdots(I-T_{B_{k}})^{l_{k}}v(B_{1}^{-n_{1}}\cdots B_{k}^{-n_{k}}D)$ .
In Lemma 4.2, we can choose the identical $b_{j}$ as many times as we want. Hence

$(I-T_{B_{1}})^{l_{1}}\cdots(I-T_{B_{k}})^{l_{k}}v\geq 0$ on $\mathscr{B}_{O}(R^{d})$ .
Thus, by Lemma 4.4, there exists a finite measure $\rho_{D}$ on $(0,1]^{k}$ such that

$F_{D}(n_{1}, \cdots, n_{k})=\int_{0,1l^{k}}x_{1}^{n_{1}}\cdots x_{k^{k}}^{n}\rho_{D}(dx)$ .

As in Corollary 4.1, by the change of variable $x=(x_{1}, \cdots, x_{k})$ to $\alpha=(\alpha_{1}, \cdots, \alpha_{k})$ by
$\alpha_{j}=\log x_{j}/\log b_{j}$ and by defining $\Gamma_{D}(d\alpha)=\rho_{D}(dx)$ , we have

(4.15) $F_{D}(n_{1}, \cdots, n_{k})=\int_{l0,\infty)^{k}}b_{k}^{n_{1}\alpha_{1}}\cdots b_{k^{k}}^{b\alpha_{k}}\Gamma_{D}(d\alpha)$ .

Since $b_{0}\in\Xi(C)$ , there exist $(p_{1}, \cdots,p_{k})\in Z^{k}$ and $b_{j}\in C\backslash \{0,1\},$ $1\leq j\leq k$, such that

(4.16) $b_{0}=\prod_{j=1}^{k}b_{j}^{p_{j}}$ .

To show this, we start with that any $b\in C\backslash \{0,1\}$ can be expressed as $b=b_{0}^{l\langle b)}$ for some
$l(b)eZ_{+}$ . Let

$C_{n}=\{b\in C\backslash \{0,1\} : l(b)\leq n\}$ ,

then $C_{n}\uparrow C\backslash \{0,1\}$ , and thus $ C_{n}\neq\emptyset$ for sufficiently large $n$ . If we let $g(n)=$

$g.c.d.\{l(b):b\in C_{n}\}$ , then $\Xi(C_{n})\ni b_{0}^{g\langle n)}$ . Sinoe $g(n)(\geq 1)$ is nonincreasing as $ n\uparrow\infty$ , there
exists $n_{O}$ such that $g(n)=g(n_{0})$ for $n\geq n_{O}$ . Thus

$C_{n}\subset\{(b_{0}^{g\langle n_{O})})^{k}\}_{k=1}^{\infty}$ .
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Since $C_{n}\uparrow C\backslash \{0,1\}$ , we have $b_{0}^{g\langle b_{0})}e\Xi(C)$ . Sinoe $b_{O}e^{-}-(C)$ is the minimum of $\Xi(c)$ , it
must be that $g(n_{0})=1$ . Thus

$g(n_{0})=g.c.d.$ { $l(b)$ : be $C_{n_{O}}$} $=1$ ,

and there exist $k\geq 1,$ $b_{j}eC_{n_{O}}$ and $p_{j}eZ(j=1,2, \cdots, k)$ such that $\sum_{j=1}^{k}l(b_{j})p_{j}=1$ . Thus

$b_{0}=b^{\Sigma j_{1}\iota_{\langle b_{j})p_{j}}}=\prod_{j=1}^{k}b_{j}^{p_{j}}$ ,

showing (4.16). Furthermore, for any $1\leq i<j\leq k$, there exist $q_{i},$ $q_{j}eZ_{+}$ such that $b_{i^{l}}^{q}=b_{j^{t}}^{q_{j}}$

Hence

$F_{D}(n_{1}, \cdots, n_{i}+q_{i}, \cdots, n_{j}, \cdots, n_{k})=F_{D}(n_{1}, \cdots, n_{i}, \cdots, n_{j}+q_{j}, \cdots, n_{k})$ ,

which we denote by $\tilde{F}_{D}(n_{1}, \cdots, n_{k})$ . By (4.15),

$\tilde{F}_{D}(n_{1}, \cdots, n_{k})=\int_{\iota 0,\infty)^{k}}b_{1^{1}}^{n\alpha_{1}}\cdots b_{k^{k}}^{n\alpha_{k}}b_{i^{i}}^{qa}{}^{t}\Gamma_{D}(d\alpha)$

$=\int_{\iota 0.\infty)^{k}}b_{1^{1}}^{n\alpha_{1}}\cdots b_{k^{k}}^{n\alpha_{k}}b_{J^{j}}^{q\alpha_{j}}\Gamma_{D}(d\alpha)$ .

Sinoe $\tilde{F}_{D}$ is completely monotone in $Z^{k}$ , by the uniqueness of $\rho$ in the representatior
(4.9), we have

$b_{i}^{q\iota\alpha_{i}}=b_{J}^{q_{j}\alpha_{j}}$ for $\Gamma_{D}- a.e$ . $\alpha$ ,

implying $\alpha_{i}=\alpha_{j}$ . Thus
$\Gamma_{D}([0, \infty)^{k}\backslash \{\alpha_{1}=\alpha_{2}=\cdots=\alpha_{k}\})=0$ ,

and by (4.14) and (4.15),

$v(b_{0}^{-nQ}D)=F_{D}(np_{1}, \cdots, np_{k})$

$=\int_{l0.\infty)}b_{1}^{np_{1}\beta}\cdots b_{k}^{np_{k}\beta}\overline{\Gamma}_{D}(d\beta)$

$=\int_{l0.\infty)}b_{0}^{n\beta}\overline{\Gamma}_{D}(d\beta)$ ,

where we define $\overline{\Gamma}_{D}(E)=\Gamma_{D}(\{(\beta, \cdots, \beta):\beta eE\})$ for $Ee\mathscr{B}([0, \infty))$ . Henoe $v(b_{0}^{nQ}D)$ is
completely monotone with respect to $n$ , and thus for any $l\geq 1$ ,

$(I-T_{b_{O}^{Q}})^{l}v(D)\geq 0$ .
Thus by Theorem 3.1 $(m=\infty)$, we conclude that $\mu\in L_{\infty}(b_{0}, Q)\cap I_{N}$ .

Conversely suppose $\mu eL_{\infty}(b_{0}, Q)\cap I_{N}$ . Let $b_{1},$ $\cdots,$ $b_{n}eC\backslash \{0,1\}$ . Note that therI
exists a positive integer $m(j)$ such that $b_{j}=b_{o}^{m(j)}$ . Henoe
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$\prod_{j=1}^{n}(I-T_{b_{j}^{Q}})v=(\prod_{j=1}^{n}(I+T_{b_{0}^{Q}}+T_{b_{0}^{2Q}}+\cdots+T_{b_{O}^{\langle m\{j)- 1)Q}}))(I-T_{b_{O}^{Q}})^{n}v\geq 0$

by Theorem 3.1 $(m=\infty)$ . Thus by Lemma 4.2, $\mu\in L_{\infty}(C, Q)\cap I_{N}$ . This proves $(i)^{\prime}$ .
We next show (ii)’. Sinoe $L_{\infty}(C, Q)\cap I_{N}\supset L_{\infty}([0,1], Q)\cap I_{N}$ by Proposition 1.4, it

is enough to show that $L_{\infty}(C, Q)\cap I_{N}\subset L_{\infty}([0,1], Q)\cap I_{N}$ . We consider two cases. Let
$Q$ be the set of all rational numbers.

Case 1. There exist $b_{1},$ $b_{2}eC\backslash \{0,1\}$ such that

$(417)C$

ase 2. For any $b_{1},$

$b_{2}\in C\backslash \{0,\frac{\log b_{2}}{1\}\log b_{1}}\not\in Q$

(4.18) $\frac{\log b_{2}}{\log b_{1}}\in Q$ .

We first treat Case 1. Suppose $\mu eL_{\infty}(C, Q)\cap I_{N}$ . Let $De\mathscr{B}_{0}(R^{d})$ such that $v(\partial D)=0$ ,
where $\partial D$ means the boundary of $D$ . Choose $b_{1},$ $b_{2}\in C\backslash \{0,1\}$ satisfying (4.17). Let

$F_{D}(n_{1}, n_{2})=v(b_{1}^{-n_{1}Q}b_{2}^{-n_{2}Q}D)$ , $(n_{1}, n_{2})eZ^{2}$

We have proved (4.15) without using that $--(C)\neq\emptyset$ . Hence

$F_{D}(n_{1}, n_{2})=\int_{l0,\infty)^{2}}b_{1}^{n_{1}\alpha_{1}}b_{2^{2}}^{n\alpha_{2}}\Gamma_{D}(d\alpha)$ ,

where $\alpha=(\alpha_{1}, \alpha_{2})$ . We can choose, by (4.17), $m(k),$ $n(k)eZ_{+}$ such that $m(k)\rightarrow\infty,$ $ n(k)\rightarrow\infty$

and $a_{k}:=b_{1}^{m\langle k)}b_{2}^{-n\langle k)}\rightarrow 1$ as $ k\rightarrow\infty$ . Thus

$v(b_{1}^{-m\langle k)Q}b_{2}^{n\langle k)Q}D)=F_{D}(m(k), -n(k))=\int_{\iota 0,\infty)^{2}}b_{1}^{m\langle k)\langle\alpha_{1}-\alpha_{2})}a_{k^{2}}^{\alpha}\Gamma_{D}(d\alpha)$ .

If $\Gamma_{D}(\{\alpha_{1}<\alpha_{2}\})>0$ , then we have a contradiction from the above equality, by letting
$ k\rightarrow\infty$ and using Fatou’s lemma. Thus, $\Gamma_{D}(\{\alpha_{1}<\alpha_{2}\})=0$ . Similarly we can show that
$\Gamma_{D}(\{\alpha_{1}>\alpha_{2}\})=0$ and conclude that $\Gamma_{D}(\{\alpha_{1}\neq\alpha_{2}\})=0$ . Henoe

$F_{D}(n_{1}, n_{2})=\int_{l0.\infty)}(b_{1}^{n_{1}}b_{2^{2}}^{n})^{\beta}\overline{\Gamma}_{D}(d\beta)$ ,

where $\overline{\Gamma}_{D}$ is defined as before. By (4.17), for any $a>0$ , we can choose $m(k),$ $n(k)\in Z$

such that $b_{1}^{-m\langle k)}b_{2}^{n\langle k)}$ decreases to $a$ as $ k\rightarrow\infty$ . Thus

$v(a^{Q}D)=\lim_{k\rightarrow\infty}F_{D}(m(k), -n(k))=\int_{l0,\infty)}a^{-\beta}\overline{\Gamma}_{D}(d\beta)$ .

This means that, for any be $(O, 1)$ and $n\geq 1$ ,
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$v(b^{-nQ}D)=\int_{l0,\infty)}b^{n\beta}\overline{\Gamma}_{D}(d\beta)$

and thus, for any $l\geq 1$ ,

(4.19) $(I-T_{b^{Q}})^{l}v(D)\geq 0$ .

By approximation, we observe that (4.19) is true for any $De\mathscr{B}_{0}(R^{d})$ . Thus by Theorem
3.1, we get that $\mu\in L_{\infty}(b, Q)\cap I_{N}$ . Hence, by Theorem 2.2, $\mu\in L_{\infty}([0,1], Q)\cap I_{N}$ .

We next consider Case 2. In Section 1 we have defined $\Xi(C)$ for $Ce\mathfrak{C}$ . But, here
we will use $\Xi(C)$ for any $C\subset[0,1]$ in the same definition. Let $\mu eL_{\infty}(C, Q)\cap I_{N}$ . By the
assumption (4.18), we can find $\{C_{n}, n=1,2, \cdots\}$ , a sequenoe of finite subsets of $C$, such
that $b_{n}:=\inf_{-}^{-}(C_{n}),$ $n\geq 1$ , satisfy

(4.20) $\frac{\log b_{n}}{\log b_{n+1}}\in Z_{+}$

and $b_{n}\uparrow 1$ as $ n\rightarrow\infty$ . To show this, we start with choosing an $a_{1}eC\backslash \{0,1\}$ and defining
$C_{1}=\{a_{1}\}$ . Trivially, $b_{1}=\inf\Xi(C_{1})=a_{1}$ . Next suppose that we are given $C_{n}\subset C\backslash \{0,1\}$

consisting of $n$ elements. By (4.18), $\Xi(C_{n})\neq\emptyset$ . Then as in (4.16), there exist $k\geq 1,$ $e_{j}\in C_{n}$

and $p_{j}eZ(j=1,2, \cdots, k)$ such that

(4.21) $b_{n}=\prod_{j=1}^{k}e_{j}^{p_{j}}$ .

Sinoe $--(C)=\emptyset$ , there exists $a_{n+1}eC\backslash \{0,1\}$ such that

$\frac{\log a_{n+1}}{\log b_{n}}\not\in Z$ ,

and define $C_{n+1}$ by $C_{n+1}=C_{n}\cup\{a_{n+1}\}$ . By (4.18) again, $\Xi(C_{n+1})\neq\emptyset$ , and since
$--(C_{n+1})\subset\Xi(C_{n})$, we have that $b_{n+1}\geq b_{n}$ . Sinoe $e_{j}eC_{n}\subset C_{n+1},j=1,2,$ $\cdots,$

$k$ , we have

$e_{j}=b_{n+1}^{l_{n+1}\langle e_{j})}$ for some $l_{n+1}(e_{j})eZ_{+}$ .
Thus by (4.21),

$ b_{n}=\prod_{j=1}^{k}b_{n+1}^{p_{j}l_{n+1}(e_{j})}=b_{n+1}^{\Sigma p_{j}l_{n+1}\{e_{j})}j- 1\iota$

Hence

$\frac{\log b_{n}}{\log b_{n+1}}=\sum_{j=1}^{k}p_{j}l_{n+1}(e_{j})eZ_{+}$ ,

which is (4.20). Sinoe $b_{n+1}>b_{n}$ , log $b_{n}/\log b_{n+1}\geq 2$ . Thus $b_{n}\uparrow 1$ as $ n\rightarrow\infty$ . By (4.20), we
see that $b_{n}=b_{n+1}^{m}$ for some $m\geq 2$ . Thus, by the repeated use of Proposition 2.2,

$L_{\infty}(b_{n+1}, Q)\subset L_{\infty}(b_{n}, Q)$ .
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If we let $\tilde{C}_{n}(\subset C)$ be the smallest closed multiplicative subsemigroup including
$C_{n}u\{0,1\}$ , then the assertion $(i)^{\prime}$ of this theorem gives us

$L_{\infty}(\tilde{C}_{n}, Q)\cap I_{N}=L_{\infty}(b_{n}, Q)\cap I_{N}$ ,

and thus

$L_{\infty}(C, Q)\cap I_{N}\subset\bigcap_{n\geq 1}L_{\infty}(b_{n}, Q)\cap I_{N}=\bigcap_{m<\infty}\bigcap_{n\geq 1}L_{m}(b_{n}, Q)\cap I_{N}$ .

Since $b_{n}\uparrow 1$ , for any $b\in(O, 1)$ , we can find $n(k),$ $m(k)\geq 1$ such that $n(k),$ $ m(k)\rightarrow\infty$ and
$b_{n\langle k)}^{m\langle k)}\rightarrow b$ as $ k\rightarrow\infty$ . Henoe we can show, as in the proof of Theorem 2.2, that
$\bigcap_{n\geq 1}L_{m}(b_{n}, Q)\subset L_{m}(b, Q)$ . Thus by Theorem 2.2, $L_{\infty}(C, Q)\cap I_{N}\subset L_{\infty}([0, l], Q)\cap I_{N}$ and
we conclude the assertion (ii)’.

Step 3. Next we consider $L_{\infty}(C, Q)\cap I_{G}$ . Let $\mu\in I_{G}$ with Gaussian covarianoe
matrix $A$ . Define, for any $k\geq 1$ and $b_{j}eC\backslash \{0,1\},$ $1\leq j\leq k$,

(4.22) $ F_{z}(n_{1}, \cdots, n_{k})=\langle A\prod_{j=1}^{k}b_{j^{j}}^{nQ}’ z,\prod_{j=1}^{k}b_{j^{j}}^{nQ}’ z\rangle$ .

We note the following two facts about $\mu\in I_{G}$ . By Theorem 3.1,
(i) $\mu eL_{\infty}(b, Q)ifandonlyifforanyzeR^{d}$,

$ k_{z}(n):=\langle Ab^{nQ}’ z, b^{nQ}’ z\rangle$

is completely monotone in $Z$ , and by Lemma 4.2,
(ii) $\mu\in L_{\infty}(C, Q)$ if and only if for any $k\geq 1,$ $b_{j}eC\backslash \{0,1\},$ $1\leq j\leq k$, and any $zeR^{d}$,

$F_{z}$ in (4.22) is completely monotone in $Z^{k}$ .
Then we can apply the argument in Step 2 to show the statement of Theorem 4.4 for
$\mu\in L_{\infty}(C, Q)\cap I_{G}byusingF_{z}$ above in plaoe $ofF_{D}inStep2$ . $\square $

REMARK 4.2. As we promised in Remark 3.1, we apply Theorem 4.4 to show that

(4.23) $L_{m}(C, Q)\supsetneqq L_{m+1}(C, Q)$

for any Ce $\mathfrak{C}$ . To show (4.23), we first note that Theorem 6.2 of Jurek [4] implies that
(4.23) is true for $C=[0,1]$ , namely

(4.24) $L_{m}([0,1], Q)\supsetneqq L_{m+1}([0,1], Q)$ .
Now suppose $L_{m}(C, Q)=L_{m+1}(C, Q)$ for some $C\in \mathfrak{C}$ and $ m<\infty$ . Then

$L_{m+2}(C, Q)=K(L_{m+1}(C, Q),$ $C,$ $Q$) $=K(L_{m}(C, Q),$ $C,$ $Q$) $=L_{m+1}(C, Q)$ ,

and thus

$L_{m}(C, Q)=L_{\infty}(C, Q)$ .
By Theorem 4.4, $L_{\infty}(C, Q)$ equals either $L_{\infty}(b_{0}, Q)$ or $L_{\infty}([0,1], Q)$ . If $L_{\infty}(C, Q)=$

$L_{\infty}(b_{0}, Q)$ , then $C\subset\{b_{0}^{n}\}_{n=0}^{\infty}\cup\{0\}$ , and thus $L_{m}(b_{O}, Q)\subset L_{m}(C, Q)$ by Proposition 1.4 and
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by the repeated use of Proposition 2.3, which implies

$L_{m}(b_{0}, Q)\subset L_{\infty}(C, Q)=L_{\infty}(b_{0}, Q)$ ,

and contradicts that $L_{m}(b_{0}, Q)\supsetneqq L_{m+1}(b_{0}, Q)$ as shown in Remark 3.1. If
$L_{\infty}(C, Q)=L_{\infty}([0,1], Q)$ , then

$L_{m}([0,1], Q)\subset L_{m}(C, Q)=L_{\infty}(C, Q)=L_{\infty}([0,1], Q)$ ,

which contradicts (4.24). We thus conclude (4.23).

5. Examples for the relationship between $L_{m}(C, 1)$ and $\bigcap_{b\in C\backslash \{0.1\}}L_{m}(b, 1)$.
Let us recall Theorem 2.2, where we have proved that for $ 0\leq m\leq\infty$ ,

$L_{m}([0,1], Q)=\bigcap_{b\in\langle 01)}.L_{m}(b, Q)$ ,

$\tilde{L}_{m}([0,1], Q)=\bigcap_{b\in(01)}.\tilde{L}_{m}(b, Q)$ .

Then a natural question arises. If we replace $[0,1]$ by a general $Ce\mathfrak{C}$ , then do
similar relations hold? The answer is yes for $m=0just$ by the definition, and in general,
as we have seen in (2.6), $L_{m}(C, Q)\subset\bigcap_{b\in C\backslash \{0,1\}}L_{m}(b, Q)$ . In the following, we explicitly
give Ce $\mathfrak{C}$ for which the reverse inclusion does not hold, to answer the above question
negatively:

THEOREM 5.1. Let $d=1$ and $ 1\leq m<\infty$ . Let $p$ andq be twoprime numbers satisfying
$2(m+1)<p<q$, and let

$C=\{p^{-n_{1}}q^{-n_{2}} : n_{1}, n_{2}eZ_{+}\}\cup\{0\}$ .

Then

(i) $L_{m}(C, 1)\subsetneqq\bigcap_{b\in C\backslash \{0.1\}}L_{m}(b, 1)$ ,
(ii) $\tilde{L}_{m}(C, 1)\subsetneqq\bigcap_{b\in C\backslash \{O,1\}}\tilde{L}_{m}(b, 1)$ .
$PR\infty F$ . We first show (i). Let $\mu eI(R^{d})$ be purely non-Gaussian with the L\’evy

measure $v$ given by

(5.1) $v=\sum_{\langle n_{1},n_{2})\in D}f(n_{1}, n_{2})\delta_{p^{-n_{1}}q^{-n_{2}}}$
,

where
$D=\{(n_{1}, n_{2});n_{1}\geq 0, n_{2}\geq 3\}\cup\{(n_{1},2);n_{1}\geq 1\}\cup\{(n_{1},1):n_{1}\geq 3\}u\{(n_{1},0):n_{1}\geq 4\}$

and $f(n_{1}, n_{2})$ is determined below. Let $F$ be the boundary of $D$ , that is,

$F=\{(0, n_{2}) : n_{2}\geq 3\}u\{(n_{1},0) : n_{1}\geq 4\}u\{(1,2), (2,2), (3,1)\}$ .
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Let $D_{0}=D\backslash (F\cup\{(3,2)\})$ . The function $f(n_{1}, n_{2})$ in (5.1) is determined as follows: First
define $f$ for $(n_{1}, n_{2})\in F$ by

(5.2) $\left\{\begin{array}{l}f(0,n_{2})=0,n_{2}\geq 3\\f(1,2)=\frac{2}{m+2}\\f(2,2)=\frac{2m+2}{m+2}\\f(3,1)=1\\f(n_{1},0)=0,n_{1}\geq 4\end{array}\right.$

(5.3) $f(3,2)=m+1$ .
For $(n_{1}, n_{2})eD_{0}$ , define

(5.4) $f(n_{1}, n_{2})=(m+1)\{f(n_{1}-1, n_{2})+f(n_{1}, n_{2}-1)\}$ ,

starting from the nearest points to $F$ sucoessively. We define, for convenienoe,

$f(n_{1}, n_{2})=0$ , $(n_{1}, n_{2})eZ^{2}\backslash D$ .
The function $f(n_{1}, n_{2})$ is thus nondecreasing both in $n_{1}$ and in $n_{2}$ . Observe that

(5.5) $f(n_{1}, n_{2})\leq(2(m+1))^{n_{1}+n_{2}}$ .
For, first this relation is obvious for $(n_{1}, n_{2})eF\cup\{(3,2)\}$ . For $(n_{1}, n_{2})\in D_{O}$ , if $f(n_{1}, n_{2}-1)$

and $f(n_{1}-1, n_{2})$ satisfy (5.5), so does $f(n_{1}, n_{2})$ by (5.4). Thus (5.5) is true. It follows
from (5.5) that

(5.6) $\int_{0}^{\infty}xv(dx)=\sum_{\langle n_{1},n_{2})\in D}p^{-n_{1}}q^{-n_{2}}f(n_{1}, n_{2})$

$\leq\sum_{n_{1},n_{2}\geq 0}(\frac{2(m+1)}{p})^{n_{1}+n_{2}}$

$=(\frac{p}{p-2(m+1)})^{2}<\infty$ .

Thusv in (5.1) can be the L\’evy measure of some $\mu\in I(R^{d})$ . We see from $(5.2)-(5.4)$ that

(5.7) $f(n_{1}, n_{2})\geq(m+1)\{f(n_{1}-1, n_{2})+f(n_{1}, n_{2}-1)\}$ for $(n_{1}, n_{2})\neq(3,2)$ ,

(5.8) $f(3,2)=\frac{m+2}{2}f(2,2)$ .

By the monotonicity of $f(n_{1}, n_{2})$ and (5.7), for any $(n_{1}, n_{2})\in Z^{2}$ (including $(n_{1},$ $n_{2})=(3,2)$),

(5.9) $f(n_{1}, n_{2})\geq(m+1)f(n_{1}-k_{1}, n_{2}-k_{2})$

if $k_{1}\geq 2$ and $k_{2}\geq 0$ or $ifk_{1}\geq 0$ and $k_{2}\geq 1$ . Nowdefine, for $k_{1},$ $k_{2}eZ_{+}$ with $(k_{1}, k_{2})\neq(0,0)$,

$\Delta_{\{k_{1},k_{2})}f(n_{1}, n_{2})=f(n_{1}, n_{2})-f(n_{1}-k_{1}, n_{2}-k_{2})$ ,



504 MAKOTO MAEJIMA, KEN-ITI SATO AND TOSHIRO WATANABE

and denote the $l$ times iteration of $\Delta_{\{k_{1},k_{2})}$ by $\Delta_{(k_{1},k_{2})}^{l}$ . Write $\Delta_{1}$ for $\Delta_{\langle 1.O)}$ and $\Delta_{2}$ for
$\Delta_{\langle 0.1)}$ . If we let, for $j\geq 0$ and $1\leq l\leq m+1$ ,

$G_{j}=f(n_{1}-2jk_{1}, n_{2}-2jk_{2})-\frac{l-2j}{2j+1}f(n_{1}-(2j+1)k_{1}, n_{2}-(2j+1)k_{2})$ ,

then

(5.10) $\Delta_{(k_{1}.k_{2})}^{l}f(n_{1}, n_{2})=\sum_{j=0}^{l}\left(\begin{array}{l}l\\i\end{array}\right)(-1)^{j}f(n_{1}-jk_{1}, n_{2}-jk_{2})$

$=\sum_{j=0}^{[(l-1)\prime 2]}\left(\begin{array}{l}l\\2j\end{array}\right)G_{j}+R$ ,

where $[x]$ is the greatest integer less than or equal to $x$, and

$R=\left\{\begin{array}{ll}f(n_{1}-lk_{1}, n_{2}-lk_{2}), & if l is even\\0 , & if 1 is odd.\end{array}\right.$

We are now going to show that for any $(n_{1}, n_{2})eZ^{2}$ and any $1\leq l\leq m+1$ ,

(5.11) $\Delta_{(k_{1}.k_{2})}^{\iota}f(n_{1}, n_{2})\geq 0$ .

If $k_{1}\geq 2$ or if $k_{2}\geq 1$ , then (5.11) follows from (5.9) and (5.10), sinoe

$\frac{l-2j}{2j+1}\leq l\leq m+1$ for $j\geq 0$ .

It remains to show (5.11) for $k_{1}=1$ and $k_{2}=0$ . Namely, it is enough to show that for
$1\leq l\leq m+1,$ $(n_{1}, n_{2})eZ^{2}$ ,

(5.12) $\Delta_{1}^{l}f(n_{1}, n_{2})\geq 0$ .

Rewrite $G_{j}$ with $k_{1}=1$ and $k_{2}=0$ as

$g_{j}=f(n_{1}-2j, n_{2})-\frac{l-2j}{2j+1}f(n_{1}-2j-1, n_{2})$ , $j\geq 0$ .

When $n_{2}\neq 2,$ $g_{j}\geq 0$ for $j\geq 0$ by (5.7) and thus (5.12) holds by (5.10). Let $n_{2}=2$ . Notioe
that

$\frac{l-2j}{2j+1}\leq\frac{m+2}{2}$ for $j\geq 1$ .

We have $g_{j}\geq 0$ for $j\geq 1$ by using (5.7) when $n_{1}-2j\neq 3$ and (5.8) when $n_{1}-2j=3$ . Also,
if $n_{1}\neq 3$ , then $g_{0}\geq 0$ by (5.7). Thus if $n_{1}\neq 3$ , then $g_{j}\geq 0$ for $j\geq 0$ , and we have (5.12)

for $n_{1}\neq 3,$ $n_{2}=2$ . Finally, we have
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$\Delta_{1}^{l}f(3,2)=f(3,2)-lf(2,2)+\frac{l(l-1)}{2}f(1,2)$

$=(m+1)-l\frac{2(m+1)}{m+2}+\frac{l(l-1)}{2}\frac{2}{m+2}$

$=\frac{1}{m+2}\{l^{2}-(2m+3)l+(m+1)(m+2)\}\geq 0$ .

This concludes (5.12) for all $(n_{1}, n_{2})\in Z^{2}$ and thus (5.11).
We next examine $\Delta_{2}^{m}\Delta_{1}f(n_{1}, n_{2})$ . For $(n_{1}, n_{2})=(3,2)$ , we see

(5.13) $\Delta_{2}^{m}\Delta_{1}f(3,2)=\Delta_{2}^{m}f(3,2)-\Delta_{2}^{m}f(2,2)$

$=f(3,2)-mf(3,1)-f(2,2)=-\frac{m}{m+2}<0$ .

We observe

(5.14) $\Delta_{2}^{m}\Delta_{1}f(n_{1}, n_{2})\geq 0$ , $\forall(n_{1}, n_{2})\neq(3,2)$ .
To show this, let

$H_{j}=\Delta_{1}f(n_{1}, n_{2}-2j)-\frac{m-2j}{2j+1}\Delta_{1}f(n_{1}, n_{2}-2j-1)$ , $j\geq 0$ .

Then

(5.15) $\Delta_{2}^{m}\Delta_{1}f(n_{1}, n_{2})=\sum_{j=0}^{m}\left(\begin{array}{l}m\\j\end{array}\right)(-1)^{j}\Delta_{1}f(n_{1}, n_{2}-j)$

$=\sum_{j=0}^{[\langle m-1)/2]}\left(\begin{array}{l}m\\2j\end{array}\right)H_{j}+R^{*}$ ,

where

$R^{*}=\left\{\begin{array}{ll}\Delta_{1}f(n_{1}, n_{2}-m), & if m is even\\0, & if m is odd.\end{array}\right.$

By (5.7), for $(n_{1}, n_{2})\neq(3,2)$ ,

(5.16) $\Delta_{1}f(n_{1}, n_{2})\geq mf(n_{1}-1, n_{2})+(m+1)f(n_{1}, n_{2}-1)$

$\geq(m+1)f(n_{1}, n_{2}-1)$

$\geq(m+1)\Delta_{1}f(n_{1}, n_{2}-1)$ .
From this together with (5.15), we have (5.14) for $n_{1}\neq 3$ . When $n_{1}=3$ , we have $H_{j}\geq 0$

by (5.16) if $n_{2}-2j\neq 2$ . When $n_{1}=3$ and $n_{2}-2j=2$ , note that
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$\Delta_{1}f(3,2)=\frac{m(m+1)}{m+2}\Delta_{1}f(3,1)$ ,

$\frac{m-2j}{2j+1}\leq\frac{m(m+1)}{m+2}$ for $j\geq 1$ .

Altogether we have shown that $H_{j}\geq 0$ for $j\geq 0$ when $n_{1}=3$ and $n_{2}\neq 2$ , and thus we
have (5.14). Particularly, notioe that

(5.17) $\Delta_{2}^{m}\Delta_{1}f(1,2)=\Delta_{2}^{m}f(1,2)=f(1,2)>0$ .
On the other hand,

(5.18) $A_{2}^{m}\Delta_{1}f(n_{1}, n_{2})=0$ for $(n_{1}, n_{2})$ satisfying $f(n_{1}, n_{2})=0$ ,

and for $(n_{1}, n_{2})eD$ , by (5.5)

(5.19) $|\Delta_{2}^{m}\Delta_{1}f(n_{1}, n_{2})|\leq\sum_{j=0}^{m}\left(\begin{array}{l}m\\j\end{array}\right)f(n_{1}, n_{2}-$]) $+\sum_{j=0}^{m}\left(\begin{array}{l}m\\j\end{array}\right)f(n_{1}-1, n_{2}-j)$

$\leq 2\sum_{j=0}^{m}\left(\begin{array}{l}m\\j\end{array}\right)(2(m+1))^{n_{1}+n_{2}}$

$=2^{m+1}(2(m+1))^{n_{1}+n_{2}}$ .
Choose any $b=p^{-k_{1}}q^{-k_{2}}eC\backslash \{0,1\}$ . Then by (5.11), we have that, for any $1\leq l\leq m+1$ ,

$(1-T_{b})^{l}v=\sum_{\langle n_{1},n_{2})\epsilon Z^{2}}\Delta_{\langle k_{1}.k_{2})}^{l}f(n_{1}, n_{2})\delta_{p^{-n_{1}}q^{-n_{2}}}\geq 0$ .

Thus by Theorem 3.1,

$\mu\in\bigcap_{b\in C\backslash \{O.1\}}L_{m}(b, 1)$ .

On the other hand, it follows from (5.13) that

$(1-T_{q^{-1}})^{m}(1-T_{p^{-1}})v(\{p^{-3}q^{-2}\})=\Delta_{2}^{m}\Delta_{1}f(3,2)<0$ .
Thus by Lemma 4.1,

$\mu\not\in L_{m}(C, 1)$ .
This completes the proof of (i).

We next show (ii). For $t>0$ , define $\mu_{t}=\mu^{*t}$ , using the same $\mu$ . We can similarly
show that

$\mu_{t}\in\bigcap_{b\in C\backslash \{0,1\}}L_{m}(b, 1)\subset\bigcap_{b\in C\backslash \{0,1\}}\tilde{L}_{m}(b, 1)$ .

Choose the drift to be $0$ . Then
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$\hat{\mu}_{t}(z)=\exp\{t\int_{0}^{\infty}(e^{izx}-1)v(dx)\}$

with $v$ in (5.1). Let us show that, for any sufficiently small $t>0$

(5.20) $\mu_{t}\not\in\tilde{L}_{m}(C, 1)$ .

Suppose that this is not true. Then there is a sequenoe $t_{n}\downarrow 0$ such that $\mu_{t_{n}}e\tilde{L}_{m}(C, 1)$ .
Write $t=t_{n}$ for a while. Note that $q^{-1}eC$. Then, there exists $\rho_{t.m-1}\in\tilde{L}_{m-1}(C, 1)$ such that

(5.21) $\hat{\mu}_{t}(z)=\hat{\mu}_{t}(q^{-1}z)\hat{\rho}_{t,m-1}(z)$ .
Repeating this, we can find $p_{t.j-1}e\tilde{L}_{j-1}(C, 1),$ $1\leq j\leq m-1$ , such that

(5.22) $\hat{\rho}_{t,j}(z)=\hat{p}_{t,j}(q^{-1}z)\hat{\rho}_{t,j-1}(z)$ .
Now, using $p^{-1}eC$, we can find $\eta_{t}e\mathscr{P}(R^{d})$ such that

(5.23) $\hat{\rho}_{t,0}(z)=\hat{\rho}_{t,0}(p^{-1}z)\hat{\eta}_{t}(z)$

It follows from $(5.21)-(5.23)$ that

(5.24) $\hat{\eta}_{t}(z)=\exp\{t\int_{0}^{\infty}(e^{izx}-1)v_{O}(dx)\}$ ,

where

$v_{0}=\sum_{\langle n_{1},n_{2})\in Z^{2}}\Delta_{2}^{m}\Delta_{1}f(n_{1}, n_{2})\delta_{p^{-n_{1}}q^{-n_{2}}}$ .

If we put $c=p^{-3}q^{-2}$ and $\epsilon=\frac{m}{m+2}$, then, from (5.13), (5.14), (5.17), (5.18), and (5.19),
there exists a measure $v_{1}$ on $\{p^{-n_{1}}q^{-n_{2}} : (n_{1}, n_{2})\in D\}$ such that

(5.25) $v_{0}=-\epsilon\delta_{c}+v_{1}$ ,

the support of $v_{1}$ does not contain $c$ , and $\int_{0}^{\infty}xv_{1}(dx)<\infty$ . If we denote by $\xi_{t}$ an infinitely
divisible distribution on $[0, \infty$ ) with its characteristic function (5.24) with the replace-
$mentofv_{0}byv_{1}$ , then by (5.24) and (5.25),

$\eta_{t}=\xi_{t}*(\sum_{n=0}^{\infty}e^{\epsilon t}\frac{(-\epsilon t)^{n}}{n!}\delta_{cn})=e^{\epsilon t}\sum_{n=0}^{\infty}\frac{(\epsilon t)^{n}}{n!}(-1)^{n}\xi_{t}*\delta_{cn}$ .

If we choose $h\in(O, c)$ as small as $v_{1}([c, c+h])=0$ , we have

(5.26) $\eta_{t}([c, c+h])=e^{\epsilon t}\{\xi_{t}([c, c+h])-\epsilon t\xi_{t}([0, h])\}$ .

Now recall that $t=t_{n}$ and let $ n\rightarrow\infty$ . Then,

(5.27) $\frac{1}{t_{n}}\xi_{t_{\mathfrak{n}}}([c, c+h])\rightarrow v_{1}([c, c+h])=0$ ,
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(5.28) $\xi_{t_{n}}([0, h])\rightarrow 1$ .
Combining $(5.26)-(5.28)$ , we see that $\eta_{t_{n}}([c, c+h])<0$ for sufficiently large $n$ , which is
absurd. This completes the proof of the theorem.
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