
TOKYO J. MATH.
VOL. 22, No. 2, 1999

Extremal Elliptic Fibrations and
Singular $K3$ Surfaces

Khac-Viet NGUYEN

Hanoi Institute of Mathematics
(Communicated by K. Miyake)

In memory of Professor N. Sasakura

1. Introduction.

Let $f:X\rightarrow P^{1}$ be a relatively minimal elliptic fibration having a section (so-called
Jacobian fibration) over an algebraically closed field $k$ of characteristic $p\geq 0$ . It is well
known that for such a non-trivial fibration in $characteristic\neq 2,3$ the number $s$ of singular
fibres is at least 2, and if $f$ is non-isotrivial, then $s$ is at least 3. In characteristic zero
a complete list of non-trivial fibrations over $P^{1}$ with three or fewer singular fibres
together with Kodaira fibre types was given by U. Schmickler-Hirzebruch ([Sc-H]).
Her method used the monodromy actions around critical points \‘a la Kodaira. It tumed
out that such a surface is either a rational, or a $K3$ surface. The case of $K3$ surfaces is
of interest because of several reasons. In [N1] we discussed a different approach which,
as the reader can see easily, is applicable for a similar problem of classifying such
fibrations in positive characteristics. A priori up to the action of the absolute Frobenius
the classification in characteristic $p\neq 2,3$ should be the same as in characteristic zero.
In fact an essentially new idea is to involve the Kodaira-Spencer class, especially the
so-called characteristic $p$ function field analogue of Szpiro’s conjecture, and the
well-known theory of Ogg-Shafarevich (cf. [N2]). In this note we first recover the list
of [Sc-H] by means of the approach mentioned above (Theorem 2.10 and the first part
of theorem 3.4). Next a question arising here is to determine fo which $p$ the Weierstrass
equation of a $K3$ surface in the given classification defines a supersingular, and hence
(a priori modulo Artin’s conjecture) unirational, $K3$ surface. To this end it is natural
to use the works [P-S] and [In-S] since in characteristic zero $K3$ surfaces with three
singular fibres are singular in the sense of [P-S] and [In-S] (the second part of Theorem
3.4). In a sense the note may be thought as a prelude to a complete classification of
elliptic pencils with three or fewer singular fibres in positive characteristics (at least,
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$\neq 2,3)$ . We remark that the classification problem in characteristics two or three is very
difficult because of the presence of wild’ ramification. In these characteristics by means
of the methods here one can in fact treat extremal elliptic pencils with non-zero
Kodaira-Spencer class (cf. [N4]). It should be noted that the idea involving the
characteristic $p$ function field analogue of Szpiro’s conjecture and the theory of
Ogg-Shafarevich allows us to classify also elliptic fibrations over an elliptic base with
one singular fibre in characteristic $p\neq 2,3$ . The main result in this case, generalizing
Stiller’s classification over the complex numbers, says that up to the action of the
Frobenius morphism (and up to isomorphism) there are exactly two such fibrations
(see [N3]).

ACKNOWLEDGEMENT. I am grateful to Professors V. A. Iskovskikh, A. N. Parshin,
T. Shioda, H. Esnault and E. Viehweg for encouragement and inspiring discussions. 1
would like also to thank the referre for several improvements.

2. Rational elliptic surfaces with three or fewer singular fibres.

We are based generically on [K], [Shl] and [Is-S]. In what follows we shall use
Kodaira’s notation assuming the known N\’eron-Kodaira classification of singular fibres
for elliptic fibrations (see, for example, [K], [Is-S]). Let $f$ : $X\rightarrow C$ be a relatively minimal
elliptic fibration having a section (so-called Jacobian) over an algebraically closed field
$k$ . Throughout the note we shall assume that char$(k)=0$ , although most of facts about
elliptic surfaces we derive in this paragraph remains valid in $characteristics\neq 2,3$ . It is
well known that then $X$ is birationally isomorphic to a surface in $P^{2}\times C$ given by an
equation in the Weierstrass form

(2.1) $ y^{2}=x^{3}+\alpha x+\beta$ $(\alpha, \beta\in k(C))$

It is easy to see that (2.1) has a singular fibre over $t\in C$ if and only if $\Delta(t)=0$, where
$\Delta=4\alpha^{3}+27\beta^{2}$ is the discriminant of (2.1).

DEFINITION 2.2. We say that the fibration $f$ : $X\rightarrow C$ has potentially good reduction
(in the terminology $ofJ$ . Tate and J.-P. Serre) at $t\in CifX_{t}:=f^{-1}(t)$ becomes non-singulaI
after a suitable base change.

Define thej-invariant of (2.1) as the function $ j=4\alpha^{3}/\Delta$ and let $v_{t}(a)$ denote the ordeI
of vanishing at $t$ of $a\in K(C)$ . From the classification of singular fibres it is easy to see
that the family (2.1) has a potentially good reduction at $t\in C$ if and only if $v_{t}(j)\geq 0$

Let $r$ denote the (Mordell-Weil) rank of the generic fibre over $k(C)$ and p-the Picard
number of $X$. We have the following well-known formula ([Shl], [T]).

(2.3) $\rho=2+\sum_{t\in C}(n_{t}-1)+r$

where $n_{t}$ denotes the number of components of $X_{t}$ .
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Shioda’s formula ([Shl]). For a non-trivial Jacobian fibration $f:X\rightarrow C$

(2.4) $r+b_{2}-\rho=4g(C)-4+2s-s_{1}$

where as usually $b_{2}$ denotes the second Betti number of $X$, s-the number ofsingularfibres
and $s_{1}$ is the number of semi-stable singular fibres.

It should be noted that formula (2.4) may be thought in a different context and a
more general situation (cf. [N4]). Now assume $C\simeq P^{1}$ , then (2.1) becomes

$y^{2}=x^{3}+\alpha(t)x+\beta(t)$ , $t\in P^{1}$ ,

where $\alpha(t)$ and $\beta(t)$ are the polynomials of degrees $4d$ and $6d$ respectively. In this case
the surface $X$ has the following invariants: $\chi(\mathcal{O}_{X})=d,$ $p_{g}=d-1$ and $K_{X}\sim(d-2)F$, where
$K_{X}$ and $F$ denote the canonical class and fibre class of $X$.

From formula (2.4) one sees easily that $s$ is at least 2 for a non-trivial fibration
$f:X\rightarrow P^{1}$ . Moreover if $s=2$ then $f$ is isotrivial. In fact from (2.3), (2.4) and Kodaira’s
formula ( $[K$ , Theorem 12.2]) it follows that $X$has potentially good reduction everywhere.
Then the standard arguments ([Is-S], 10.1, example 4) show that $f$ is isotrivial. We
remark that this fact remains true in characteristics $>3$ (cf. [N2]). Also as an immediate
consequence of (2.4) if $s=3$ then $X$ is either a rational surface with $r\leq 2$ or a $K3$ surface.
In the second case $s_{1}=0$ and $f$ is extremal in the sense of ([M-P]), i.e., $ h^{1.1}=\rho$ and
$r=0$ , in particular, $X$ is a singular $K3$ surface in the sense of [P-S] and [In-S].

2.5. We review some facts from the theory of Mordell-Weil lattices essentially
due to Shioda we shall need in what follows. As noted in the Introduction with regard
to the positive characteristic case one should bear in mind that the theory works in any
characteristic (see [Sh2]). Let $S$ denote the (Mordell-Weil) group of sections with a
natural bilinear pairing $\langle$ , $\rangle$ . Assume that $\sigma_{0}$ is a section (as zero section) which defines
the group structure on each smooth fibre. We derive the following facts (cf. [Sh 1-2],
[C-Z]).

1) For a section $\sigma$ we have the following relation between $\langle\sigma, \sigma\rangle$ and the
intersection number $\sigma.\sigma_{0}$

(2.6) $\langle\sigma, \sigma\rangle=2+2\sigma.\sigma_{0}-$ ($correction$ terms) $\circ$

where the correction terms are given in Table 8.16 of [Sh2], or Table 1.19of [C-Z], $e.g.$ , as

$\sum_{0\leq k_{i}<n_{i}.i=1}^{s}k_{i}(n_{i}-k_{i})/n_{i}$

for semi-stable case with configuration $(I_{n_{1}}, \cdots, I_{n_{s}})$ .
2) Putting $N=l.c.m.(exponents$ of the groups of components of multiplicity one

of singular fibres), $e.g$. $N=l.c.m.(n_{i})$ in the semi-stable case, we have $N\langle\sigma, \sigma\rangle\in Z$ .
3) Letting $m_{t}$ be the number of components of multiplicity one in $X_{t}$ we have

(2.7) $(^{\#}S_{tor})^{2}|\prod m_{t}$
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and for a basis $\{\sigma_{1}, \cdots, \sigma_{r}\}$ of $S$ modulo torsion

(2.8) $\det\langle\sigma_{i}, \sigma_{j}\rangle=(\$ S_{tor})^{2}/\prod m_{t}.|\det NS(X)|$

It should be noted that in positive characteristic we also have (2.7) under the
assumption of unimodularity of $NS(X)$ ([Sh2]). Besides, we shall use the following
well-known fact from the general theory (ofN\’eron-Ogg-Shafarevich) cited, $e.g$. in [Shl],
[C-Z].

4) If $X_{t}$ is not of type $I_{n}$ then there exists an natural injection

(2.9) $S_{tor}\subset\rightarrow G_{t}$

into the group $G_{t}$ of components of multiplicity one.
In the theorem below we list the Kodaira fibre types of non-trivial rational $e$lliptic

fibrations $f$ : $X\rightarrow P^{1}$ having three singular fibres with a description of the corresponding
Mordell-Weil group. We remark that configurations of singular fibre types motivate in
part notations of the corresponding surfaces. For the other notations, see the proof of
Theorem 3.4.

THEOREM 2.10 $(k=C)$ . We have the following possibilities for the case when $X$ is
a rational surface with $s=3$ .

A) $r=0$ ($6$ cases-in the notation of [M-P]):
1) $S_{tor}\simeq Z/4$ : $X_{141}(I_{1}^{*}, I_{4}, I_{1})$,
2) $S_{1or}\simeq(Z/2)^{\oplus 2}$ : $X_{222}(I_{2}^{*}, I_{2}, I_{2})$ ,
3) $S_{tor}\simeq Z/3$ : $X_{431}(IV^{*}, I_{3}, I_{1})$,
4) $S_{tor}\simeq Z/2$ : $X_{411}(I_{4}^{*}, I_{1}, I_{1}),$ $X_{321}(III^{*}, I_{2}, I_{1})$,
5) $S_{tor}\simeq\{0\}$ : $X_{211}(\Pi^{*}, I_{1}, I_{1})$ ,

B) $r=1$ ( $8$ cases): In all the cases $\sigma.\sigma_{0}=0$ , where $\sigma$ is a generator of $S$ modulo
torsion. In each case the value $\langle\sigma, \sigma\rangle$ can be computed by (2.8).

1) $S_{tor}\simeq Z/2$ : $X_{321}^{2}(I_{2}^{*}, III, I_{1}),$ $X_{321}^{3}(I_{1}^{*}, III, I_{2})$,
2) $S_{tor}\simeq\{0\}$ : $X_{211}^{1}(I_{1}^{*}, IV, I_{1}),$ $X_{341}^{1}(III^{*}, \Pi, I_{1}),$ $X_{341}^{2}(IV^{*}, III, I_{1})$,

$X_{431}^{2}(I_{3}^{*}, \Pi, I_{1}),$ $X_{431}^{3}(I_{1}^{*}, I_{3}, II),$ $X_{442}^{1}(IV^{*}, I_{2}, II)$ ,
C) $r=2$ ( $6$ cases):

1) $S_{1or}\simeq Z/3$ : $X_{444}(IV, IV, IV)$,
2) $S_{tor}\simeq Z/2$ : $X_{33}^{1}(I_{0}^{*}, III, III)$,
3) $S_{\iota or}\simeq\{0\}$ : $X_{341}^{3}(I_{1}^{*}, III, II),$ $X_{442}^{2}(I_{2}^{*}, \Pi, II),$ $X_{11}^{1}(0XI_{0}^{*}, IV, II)$ ,

$X_{444}^{1}(IV^{*}, \Pi, II)$ .
Moreover the surfaces with prescribedfibre types above exist and they are in fact unique.

PROOF. We outline a proof using the theory of Mordell-Weil lattices quoted in
2.5 above and the theory of elliptic modular surfaces with level $(n, m)$ structure ([C-P]),
which is also applicable for the classification purpose in positive characteristics $\neq 2,3$ .
First remark that for the local Euler numbers one has
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(2.11) $\sum_{t}e(X_{t})=12$

A) All the facts about $S_{tor}$ are as a direct consequence of (2.8) and (2.9) except
for $X_{141}$ : $S_{tor}\simeq Z/4$ which can be followed from the theory of elliptic modular surfaces
with level $(n, m)$ structure (cf. [C-P], [C]). Further as in [M-P] we are left with the
following cases: $(I_{9}, \Pi, I_{1}),$ $(I_{8}, I_{2}, II),$ $(I_{5}, I_{5}, \Pi),$ $(I_{0}^{*}, I_{3}, I_{3}),$ $(I_{6}, I_{3}, III),$ $(I_{6}, IV, I_{2})$ ,
$(I_{8}, III, I_{1})$ .

The first 3 cases are ruled out since we must have $S_{tor}\simeq\{0\}$ by (2.9) which contradicts
(2.8). Similarly for the next three any torsion has order 2 (resp. 3 for $(I_{6},$ $IV,$ $I_{2})$) and
at the same time ${}^{t}S_{tor}=6$ which is impossible. The last case $(I_{8}, III, I_{1})$ is almost obvious
since $S_{tor}\subseteq Z/2$ by (2.9) which contradicts (2.8). Thus we are done.

B) In this case we have exactly one semi-stable fibre by Shioda’s formula (2.4).

Together with (2.11), it leaves us 11 possibilities 8 ofwhich are actually realized. Further
(2.9) shows that we have trivial torsion except for the first two cases. Three eliminated
possibilities are of types:

1) $(I_{2}^{*}, I_{2}, II)$ : with the notation above one has $N=2,$ $\prod n_{t}=8$ . On the other hand
$S_{tor}\simeq\{0\}$ by (2.9) so that $\langle\sigma, \sigma\rangle=1/8$ (by (2.8)) which is not possible in view of2), 2.5.

2) $(I_{0}^{*}, IV, I_{2})$ and $(I_{0}^{*}, I_{3}, III)$ : in both the cases $N=6,$ $\prod n_{t}=24$ and $S_{tor}\subseteq Z/2$

by (2.9). So either $\langle\sigma, \sigma\rangle=1/24$ , i.e., $N\langle\sigma, \sigma\rangle\not\in Z$ which is again a contradiction, or
(2.6) implies

$1/6=\langle\sigma, \sigma\rangle=2+2\sigma.\sigma_{0}-*-*2/3-*1/2$ ,

$where*is0$ or 1, which has no solution.
C) This case is much simpler because we have no semi-stable fibre so that we

have exactly 6 possibilities all of which are realized with trivial torsion except for $(3IV)$

(resp. (I’, III, III)): the arguments here are similar. First by (2.9) one has $S_{tor}\subseteq Z/3$

(resp. $S_{tor}\subseteq Z/2$). If $S_{tor}\simeq\{0\}$ then $det\langle, \rangle=1/27$ (resp. 1/16). On the other hand $N=3$

(resp. 2) hence using 2), 2.5 we obtain the desired assertion.

REMARK 2.12. We have four isotrivial cases $X_{444}^{1},$ $X_{33}^{1},$ $X_{444}$ and $X_{11}^{1}(0)$ which
can be easily obtained from $X_{22}(\Pi^{*}, \Pi),$ $X_{33}(III^{*}, III),$ $X_{44}(IV^{*}, IV)$ and $X_{11}(j)(I_{0}^{*}, I_{0}^{*})$

(j-invariant $=0$ or 1) in [M-P] respectively. In fact as an immediate consequense one
can easily infer that together with them the following configurations: $X_{11}(j)(I_{0}^{*}, I_{0}^{*})j\in k$;
$j=0:(I_{0}^{*}, 3\Pi),$ $(2IV, 2\Pi),$ $(IV, 4\Pi),$ $(6\Pi);j=1:(4III)$ are exhaustive all isotrivial rational
fibrations.

3. Elliptic $K3$ surfaces with three singular fibres.

3.1. We recall some basic facts on singular $K3$ surfaces from [P-S] and [In-S].
For an algebraic $K3$ surface $X$ let us denote by $N_{X}$ the sublattice of $H_{2}(X, Z)$ consisting
of algebraic cycles (the N\’eron-Severi lattice) and $T_{X}:=N_{X}^{\perp}$–the lattice of transcendental
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cycles (the orthogonal complement of $N_{X}$ in $H_{2}(X,$ $Z)$). Let $p_{X}$ be the period on $T_{X}$ , i.e.
the linear functional on $T_{X}$ defined up to constants by

(3.2) $p_{X}(\gamma):=\int_{\gamma}\omega_{X}$ $(\gamma\in T_{X})$

where $\omega_{X}$ is a non-vanishing holomorphic 2-form on $X$. If $X$ is singular, i.e. the Picard
number is 20 $(=h^{1,1})$ -maximal possible, then the lattice $T_{X}$ has a natural orientation,
namely a basis $\{x_{1}, x_{2}\}$ of $T_{X}$ is called oriented if the imaginary part $3(p_{X}(x_{1})/p_{X}(x_{2}))$

is positive. For an oriented basis $\{x_{1}, x_{2}\}$ we define

(3.3) $Q_{X}:=\left\{\begin{array}{lll}x_{1}^{2} & x_{1} & x_{2}\\x_{1}\cdot x_{2} & x_{2}^{2} & \end{array}\right\}$

and let

$\mathscr{Q};=\{Q=\left\{\begin{array}{ll}2a & b\\b & 2c\end{array}\right\}(a, b, c\in Z, a, c>0, b^{2}-4ac<0)\}$

be the set of $2\times 2$ positive-definite even integral matrices. We write $Q_{1}\sim Q_{2}$ if and only
if $ Q_{1}={}^{t}\delta Q_{2}\delta$ for some $\delta\in SL_{2}(Z)$ and denote by $\{Q\}$ the equivalence class of $Q$ . Note
that $\{Q_{X}\}$ is uniquely determined by $X$. The main fact in the theory of singular $K3$

surfaces is that the map $X\mapsto\{Q_{X}\}$ establishes a 1-1 correspondence from the set of
singular $K3$ surfaces onto $\mathscr{Q}/SL_{2}(Z)$ . The injectivity of this correspondence is essentially
due to [P-S] (cf. [In-S]). The surjectivity follows from the corresponding result on
singular abelian surfaces and an explicit construction of certain double coverings of
Kummer surfaces coming from products of isogenous elliptic curves with $co$mplex
multiplications (see [In-S]).

In the following theorem we give a full account of Kodaira fibre types of elliptic
$K3$ surfaces $f:X\rightarrow P^{1}$ with three singular fibres and show that there is an explicit
correspondence between these $K3$ surfaces and rational elliptic surfaces with three
singular fibres described in Theorem 2.10 that explains our notations of the complete
classification.

THEOREM 3.4 $(k=C)$ . In the notation above elliptic $K3$ surfaces with $s=3$ are of
the following types

A) $S_{tor}\simeq Z/2\oplus Z/2$ : $X_{222}^{*}(3I_{2}^{*})$ , $Q_{X}=\left\{\begin{array}{ll}2 & 0\\0 & 2\end{array}\right\}$ ;

B) $S_{tor}\simeq Z/3$ : $X_{444}.(3IV^{*})$ , $Q_{X}=\left\{\begin{array}{ll}2 & 1\\1 & 2\end{array}\right\}$ :
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C) $S_{tor}\simeq Z/2$ : 1) $X_{411}(I_{4}^{*}, 2I_{1}^{*})$ , $Q_{X}=\left\{\begin{array}{ll}4 & 0\\0 & 4\end{array}\right\}$ :

2) $X_{33}(2III^{*}, I_{0}^{*})$ , $Q_{X}=\left\{\begin{array}{ll}2 & 0\\0 & 2\end{array}\right\}$ ;

3) $X_{321}^{*}(III^{*}, I_{2}^{*}, I_{1}^{*})$ , $Q_{X}=\left\{\begin{array}{ll}4 & 0\\0 & 2\end{array}\right\}$ :

D) $S_{tor}\simeq\{0\}$ : 1) $X_{211}^{*}(\Pi^{*}, 2I_{1}^{*})$ , $Q_{X}=\left\{\begin{array}{ll}4 & 0\\0 & 4\end{array}\right\}$ :

2) $X_{341^{*}}(III^{*}, IV, I_{1}^{*})$ , $detQ_{X}=24$ ;

3) $X_{431}^{*}(I_{3}^{*}, IV^{*}, I_{1}^{*})$ , det $Q_{X}=48$ ;

4) $X_{442^{*}}(2IV^{*}, I_{2}^{*})$ , $Q_{X}=\left\{\begin{array}{ll}6 & 0\\0 & 6\end{array}\right\}$ :

5) $X_{444}^{*}(2\Pi^{*}, IV)$ , $Q_{X}=\left\{\begin{array}{ll}2 & 1\\1 & 2\end{array}\right\}$ :

6) $X_{11}^{*}(0)(\Pi^{*}, IV^{*}, I_{0}^{*})$ , $Q_{X}=\left\{\begin{array}{ll}2 & 1\\1 & 2\end{array}\right\}$ .

Moreover there is a correspondence between rational surfaces with $s=3$ and their
corresponding $K3$ surfaces which justifies our notation (see the proofbelow). In par.ticular,
these surfaces are unique. Furthermore:

$-X_{222}^{*},$ $X_{33}$ are isomorphic; $X_{211}^{*},$ $X_{411}^{*}$ are isomorphic and together with $X_{442}$. their
Weierstrass equations define supersingular $K3$ surfaces in $characteristicsp\equiv-1$ (mod4);

$-X_{444}^{*},$ $X_{11}^{*}(0),$ $X_{444}$. are isomorphic and together with $X_{431}^{*}$ their Weierstrass
equations define $supersi\eta gularK3$ surfaces in characteristics $p\equiv-1$ (mod3);

–the Weierstrass equation of $X_{321}$ defines a supersingular $K3$ surface in
characteristics $p\equiv 5,7$ (mod 8);

–the Weierstrass equation of $X_{341^{*}}$ defines a supersingular $K3$ surface in charac-
teristics $p\equiv 7,11,13,17$ (mod24).

PROOF. Indeed all such $K3$ surfaces are extremal with no semi-stable fibre. So
that it is easy to verify that they can be obtained from rational surfaces in Theorem
2.10 via suitable twist transforms, i.e., of the form: $\alpha\rightarrow t^{2}\alpha,$ $\beta\rightarrow t^{3}\beta,$ $e.g.$ , for a bad fibre
over $t=0$ preserving the minimality of (2.1). Explicitly it looks as in the following scheme.

1) $X_{211},$ $X_{211}^{1}\rightarrow X_{211}^{*}$ ; who $se$ defining equation thu $s$ is given as
$y^{2}=x^{3}-3(t^{2}-1)^{2}x+2t(t^{2}-1)^{3}$ ;

2) $X_{411},$ $X_{141}\rightarrow X_{411}^{*}$ : $y^{2}=x^{3}-3(t^{2}-4)^{2}(t^{2}-3)x+t(t^{2}-4)^{3}(2t^{2}-9)$ ;
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3) $X_{341}^{1},$ $X_{341}^{2},$ $X_{341}^{3}\rightarrow X_{341^{*}}:$ $y^{2}=x^{3}-3t^{3}(t-1)^{2}x+2t^{5}(t-1)^{3}$ ;

4) $X_{321},$ $X_{321}^{2},$ $X_{321}^{3}\rightarrow X_{321}^{*}$ :
$y^{2}=x^{3}-t(t-3)^{2}(4t-3)^{2}x+(t-1)(t-3)^{3}(4t-3)^{3}$ ;

5) $X_{431},$ $X_{431}^{2},$ $X_{431}^{3}\rightarrow X_{431}^{*}$ :
$y^{2}=x^{3}-3t^{2}(t-1)^{2}(8t-9)x+2t^{3}(t-1)^{3}(8t^{2}-36t+27)$ ;

6) $X_{442}^{1},$ $X_{442}^{2}\rightarrow X_{442^{*}}:$ $y^{2}=x^{3}-3(t^{2}-1)^{3}x+2(t^{2}-1)^{4}t$ ;

7) $X_{222}\rightarrow X_{222}^{*}$ :
$y^{2}=x^{3}-3t(t-1)^{2}(t^{2}+t+1)^{2}x-(t-1)^{3}(t^{3}+\iota Xt^{2}+t+1)^{3}$ ;

8) $X_{444}\rightarrow X_{444}^{*}$ : $y^{2}=x^{3}+t^{5}(t-1)^{2}$ ;

9) $X_{11}^{1}(0)\rightarrow X_{11}(0)$ : $y^{2}=x^{3}+t^{3}(t-1)^{4}$ ;

10) $X_{33}^{1}\rightarrow X_{33}$ : $y^{2}=x^{3}+t^{3}(t-1)^{3}x$ ;

11) $X_{444}^{1}\rightarrow X_{444^{*}}:$ $y^{2}=x^{3}+t^{4}(t-1)^{4}$

Thus in this $se$nse two rational configurations with $s=3$ are called dual if and only
if they are corresponding to one $K3$ surface in the scheme above. So that there is another
way to determine defining Weierstrass equations for the rational surfaces in Theorem
2.10 beginning with the Weierstrass equations of corresponding $K3$ surfaces via inverse
twist transforms. For illustration we write down the defining Weierstrass equations for
four isotrivial cases $X_{444},$ $X_{11}^{1}(0),$ $X_{33}^{1},$ $X_{444}^{1}$ corresponding to $X_{444}^{*},$ $X_{11}^{*}(0),$ $X_{33}^{*},$ $X_{444^{*}}$ ,
$re$spectively: $y^{2}=x^{3}+t^{2}(t-1)^{2}(X_{444});y^{2}=x^{3}+t^{3}(t-1)(X_{11}^{1}(0));y^{2}=x^{3}+t(t-1)x(X_{33}^{1})$ ;
$y^{2}=x^{3}+t(t-1)(X_{444}^{1})$ .

Next for determining det $Q_{X}$ and $Q_{X}$ we use (2.8), (2.9) (sinoe $r=0$ in all the cases)
and [In-S]. We just indicate briefly the arguments for each case below.

1) This follow $s$ from Theorem 1 of [In-S].
2) In case 2) using explicitly the correspondenoe above and defining equations

we see the following obvious sections (in homogeneous coordinates):

$[0,1,0]$ ; $[(t^{2}-4)(t^{2}-2t), 0,1]$ ,

so that $|S_{tor}|=2$ . Further one can exhibit as in the proof of Theorem 1 of [In-S]. So
$Q_{X}$ has the desired form.

3) As for 3) $|S_{tor}|=1$ because of (2.9). Presumably in this case $Q_{X}=\left\{\begin{array}{l}60\\04\end{array}\right\}$ .

4) The fact that $|S_{tor}|=2$ is because of (2.8) and exhibiting the following sections:
$[0,1,0]$ , $[(t-3)(4t-3)t^{-4},0,1]$ .

It remains to use a known table of positive-definite even integral binary quadratic
forms of small discriminants.
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5) The torsion subgroup is trivial by (2.9). Presumably $Q_{X}=\left\{\begin{array}{l}84\\48\end{array}\right\}$ in this case.

6) This case follows from 7) below since $X_{222}^{*}$ may be exhibited suitably as a
triple covering of $X_{442^{*}}$ .

7) Obviously $S_{tor}\simeq Z/2\oplus Z/2$ by showing four sections explicitly:

$[0,1,0]$ , $[(1-t^{3})(1+t), 0,1]$ , $[(1-t^{3})(\rho t+\rho^{2}), 0,1]$ , $[(1-t^{3}X\rho^{2}t+\rho), 0,1]$ ,

where $\rho^{2}+\rho+1=0$ .
For the remaining cases we refer to Lemma 5.2 of [In-S] and standard arguments

using $(2.8)-(2.9)$ . The only case with non-trivial torsion subgroup $(S_{tor}\simeq Z/3)$ is $X_{444^{*}}$ .
Here the three sections are

$[0,1,0]$ , $[\pm t^{2}(t-1)^{2},0,1]$ .

Further since every elliptic curve with complex multiplications is defined over
some number field, so it remains to use the well-known $re$sult of Deuring on elliptic
curves with complex multiplications and standard facts about the Picard number of a
Kummer surface to complete the proof of Theorem 3.4.
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