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Abstract. This paper is concerned with Korovkin type approximation theorems. We characterize
BKW-operators on the Banach space of real valued continuous functions on the unit interval for the test
functions $\{1, t, t^{2}, t^{3}\}$ . It is also investigated when subtraction of composition operators are BKW-operators
for $\{1, t, t^{2}, t^{3}, t^{4}\}$ .

1. Introduction.

Let $I=[0,1]$ be the closed unit interval and let $C(I)$ be the Banach space of all
real valued continuous functions on $I$. For $f\in C(I)$ , let $\Vert f\Vert_{\infty}=\sup\{|f(t)|;t\in I\}$ . In
1953, Korovkin [5] proved a well known approximation theorem; if $\{T_{n}\}_{n}$ is a sequence
of positive operators on $C(I)$ such that $\Vert T_{n}t^{j}-t^{j}\Vert_{\infty}\rightarrow 0$ as $ n\rightarrow\infty$ for $j=0,1,2$ , then
$\{T_{n}\}_{n}$ converges strongly to the identity operator, see also $[6, 11]$ and the recent
monograph [1].

As a generalization of the Korovkin theorem, Takahasi [8, 9, 10] has been studying
Korovkin type approximation theorems for other operators. In his works (see also [2]),
a bounded linear operator $T$ on $C(I)$ is called a BKW-operator for the Chebyshev system
$S_{k}=\{1, t, \cdots, t^{k}\}$ if $\{T_{n}\}_{n}$ is a sequence of bounded linear operators on $C(I)$ such that
$\Vert T_{n}\Vert\rightarrow\Vert T\Vert$ and $\Vert T_{n}h-Th\Vert_{\infty}\rightarrow 0$ for each $h\in S_{k}$ , then $\Vert T_{n}g-Tg\Vert_{\infty}\rightarrow 0$ for every $g\in C(I)$ ,

that is, $\{T_{n}\}_{n}$ converges strongly to $T$. We denote by $BKW(C(I);S_{k})$ the set of
BKW-operators on $C(I)$ for the test functions $S_{k}$ . We note that if $T\in BKW(C(I);S_{k})$

$thenaT\in BKW(C(I);S_{k})foreverya\in R$ , whereR is the set of real numbers.
In [7], Micchelli gave a characterization of positive operators in $BKW(C(I);S_{k})$ ,

see also $[4, 8]$ . Non-positive BKW-operators are more difficult to describe. In [10],

Takahasi gives a characterization of $BKW(C(I);S_{1})$ . In [3], the second author and
Takahasi give a complete characterization of $BKW(C(I);S_{2})$ .

Let $S_{k}$ be the linear span of $S_{k}$ in $C(I)$ . By the Riesz representation theorem, the
dual space of $C(I)$ coincides with $M(I)$ the Banach space of bounded real Borel measures
on $I$ with the total variation norm. Since $M(I)$ is a dual space, we can consider the
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weak*-topology on $M(I)$ . We denote by $M_{1}(I)$ the set of $\mu\in M(I)$ with $\Vert\mu\Vert\leq 1$ . For $t\in I$,
let $\delta_{t}$ be the unit point mass at $t$ .

In [4], the second author and Takahasi prove the following theorem.

THEOREM A. Let $Tbe$ a norm one linear operator on $C(I)$ . Then $T\in BKW(C(I);S_{k})$

if and only $\iota fT$ has the form

$(TfXt)=\sum_{j=1}^{k+1}a_{j}(t)f(x_{j}(t))$ , $t\in I$ ,

where $\sum_{j=}^{k+:}|a_{j}(t)|=1,$ $\sum_{j=1}^{k+1}a_{j}(t)\delta_{x_{j}\langle t)}$ moves continuously in $M_{1}(I)$ with respect to the
weak*-topology, and

$(\alpha)$ for each $t\in I$, there exists a non-constant function $f_{t}\in\tilde{S}_{k}$ such that $\Vert f_{t}\Vert_{\infty}=1$ and
$\sum_{j=1}^{k+1}a_{j}(t)f_{t}(x_{j}(t))=1$ .

To describe $BKW(C(I);S_{k})$ completely, we need to give precise conditions on
$a_{1},$ $a_{2},$ $\cdots,$ $a_{k+1}$ and $x_{1},$ $x_{2},$ $\cdots,$ $x_{k+1}$ satisfying the following condition:

$(\beta)\sum_{j=}^{k+;}|a_{j}|=1$ and $\sum_{j=1}^{k+1}a_{j}f(x_{j})=1$ for some non-constant function $f$ in $\tilde{S}_{k}$ with
$\Vert f\Vert_{\infty}=1$ .

When $a_{j}>0$ for everyj, it is given a characterization of $x_{1},$ $x_{2},$ $\cdots,$ $x_{k+1}$ satisfying
condition $(\beta)$ in $[4, 7]$ .

In Section 2, we give a complete characterization of $BKW(C(I);S_{3})$ . For $k\geq 4$, the
most interesting problem is; for continuous functions $x_{i}(t)$ with $x_{i}(I)\subset I,$ $i=1,2$ , when
does the operator

$(T_{a}fXt)=f(x_{1}(t))-f(x_{2}(t))$ , $f\in C(I)$

belong to BKW$(C(I);S_{k})?InSection3$ , we answer this problem fork $=4$ . The proof is
fairly complicated. It seems difficult to give a complete answer for $k\geq 5$ .

2. BKW-operators for $S_{3}$ .
For $a\in R$ with $a\neq 0$ , let sgn $a=1$ if $a>0$ and sgn$a=-1$ if $a<0$ . In this section,

we give a complete characterization of operators in $BKW(C(I);S_{3})$ .
By Theorem $A,$ $T\in BKW(C(I);S_{3})$ and $\Vert T\Vert=1$ if and only if $T$ has the form as

(f) $(Tf)(t)=\sum_{j=1}^{k\langle t)}a_{j}(t)f(x_{j}(t))$ , $f\in C(I)$ ,

where
(a) $1\leq k(t)\leq 4,$ $t\in I$,
(b) $\sum_{j=1}^{k\langle t)}|a_{j}(t)|=1$ and $a_{j}(t)\neq 0$ for $1\leq j\leq k(t),$ $t\in I$,
(c) $\mu_{t}=\sum_{j=1}^{k\{t)}a_{j}(t)\delta_{x_{j}\langle t)},$ $t\in I$, moves weak*-continuously in $M_{1}(I)$ ,
(d) for each $t\in I$, there exists a non-constant function $f_{t}\in\tilde{S}_{3}$ such that $\Vert f_{t}\Vert_{\infty}=1$

and $\int_{I}f_{t}d\mu_{t}=1$ .
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To describe all operators in $BKW(C(I);S_{3})$ explicitly, we need to give precise
conditions on $\mu_{t}$ satisfying $(a)-(d)$ . Let

$f_{0}(t)=32t^{3}-48t^{2}+18t-1$ .

Then $\Vert f_{0}\Vert_{\infty}=1$ ,

(2.1) $f_{0}(0)=f_{0}(3/4)=-1$ and $f_{0}(1/4)=f_{0}(1)=1$ .

LEMMA 2.1. Let $\mu=\sum_{j=1}^{4}a_{j}\delta_{x_{j}}$ with $\sum_{j=1}^{4}|a_{j}|=1,$ $a_{j}\neq 0$ for every $1\leq j\leq 4$ , and
$0\leq x_{1}<x_{2}<x_{3}<x_{4}\leq 1$ . Then there exists a non-constant $f$ in $\tilde{S}_{3}$ such that $\Vert f\Vert_{\infty}=1$ and
$\int_{I}fd\mu=1$ ifandonly $\iota fsgna_{1}=sgna_{3}\neq sgna_{2}=sgna_{4}$ and $(x_{1}, x_{2}, x_{3}, x_{4})=(0,1/4,3/4,1)$ .

PROOF. Let $f\in\tilde{S}_{3}$ be non-constant and $\Vert f\Vert_{\infty}=1$ . Then $\{t\in I;|f(t)|=1\}$ contains
distinct four points if and only if $f(t)=\pm f_{0}(t)$ . By (2.1), we have our assertion. $\square $

Let

$D_{+-+}^{3}=\{(0, x, 3x);1/4\leq x\leq 1/3\}\cup\{(x, (x+2)/3,1);0\leq x\leq 1/4\}$ .

Then we have the following.

LEMMA 2.2. Let $\mu=\sum_{j=1}^{3}a_{j}\delta_{x_{j}}$ with $\sum_{j=1}^{3}|a_{j}|=1,$ $a_{j}\neq 0$ for every $1\leq j\leq 3$ , and
$0\leq x_{1}<x_{2}<x_{3}\leq 1$ . Then there exists a non-constant $f$ in $\tilde{S}_{3}$ such that $\Vert f\Vert_{\infty}=1$ and
$\int_{I}fd\mu=1$ if and only if one of the following conditions holds.

i) sgn $a_{1}=sgna_{3}\neq sgna_{2}$ and $(x_{1}, x_{2}, x_{3})\in D_{+-+}^{3}$ ,
ii) sgn $a_{1}=sgna_{2}\neq sgna_{3}$ and $(x_{1}, x_{2}, x_{3})=(0,3/4,1)$ ,
iii) sgn $a_{1}\neq sgna_{2}=sgna_{3}$ and $(x_{1}, x_{2}, x_{3})=(0,1/4,1)$ .

PROOF. Suppose that sgn $a_{1}=sgna_{3}\neq sgna_{2}$ . Then $f\in\tilde{S}_{3}$ satisfies $\Vert f\Vert_{\infty}=1$ and
$\int_{I}fd\mu=1$ if and only if

$f(t)=\pm f_{0}(at)$ or $f(t)=\pm f_{0}(a(t-1)+1)$ for some $1\leq a\leq 3/4$ .

By (2.1), we have condition i).
Suppose that sgn $a_{1}=sgna_{2}\neq sgna_{3}$ . Then $g\in\tilde{S}_{3}$ satisfies $\Vert g\Vert_{\infty}=1$ and $\int_{I}gd\mu=1$ if

and only if $g(t)=\pm f_{0}(t)$ and $(x_{1}, x_{2}, x_{3})=(0,3/4,1)$ . Hence we have condition ii).
In the same way, we can prove iii). $\square $

Let $D_{++}^{3}=\{(0, y);3/4\leq y\leq 1\}\cup\{(x, 1);0\leq x\leq 1/4\}$ and
$D_{+-}^{3}=\{(0, y);1/4\leq y\leq 1\}\cup\{(x, y)\in I^{2};y\geq 3x, 3y\geq x+2\}\cup\{(x, 1);0\leq x\leq 3/4\}$ .

Then we have the following.

LEMMA 2.3. Let $\mu=a_{1}\delta_{x_{1}}+a_{2}\delta_{x_{2}}$ with $|a_{1}|+|a_{2}|=1,$ $a_{j}\neq 0$ for $1\leq j\leq 2$ , and
$0\leq x_{1}<x_{2}\leq 1$ . Then there exists a non-constant $f$ in $\tilde{S}_{3}$ such that $\Vert f\Vert_{\infty}=1$ and $\int_{I}fd\mu=1$

$\iota f$ and only if one of the following conditions holds.
i) sgn $a_{1}=sgna_{2}$ and $(x_{1}, x_{2})\in D_{++}^{3}$ ,
ii) sgn $a_{1}\neq sgna_{2}$ and $(x_{1}, x_{2})\in D_{+-}^{3}$ .
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PROOF. We prove only the case that sgn $a_{1}\neq sgna_{2}$ and $0<x_{1}<x_{2}<1$ . In this case
by (2.1), a function $f\in\tilde{S}_{3}$ satisfies $\Vert f\Vert_{\infty}=1$ and $\int_{I}fd\mu=1$ if and only if

$f(t)=f_{0}(a(t-x_{1})+1/4)$ ,

(2.2) $\frac{1}{4x_{1}}\leq a$ , $\frac{1}{2(1-x_{1})}\leq a\leq\frac{3}{4(1-x_{1})}$ ,

(2.3) $a(x_{2}-x_{1})+1/4=3/4$ .

By (2.2) and (2.3), we have $x_{2}\geq 3x_{1}$ and $3x_{2}\geq x_{1}+2$ . $\square $

LEMMA 2.4. Let $\mu=a\delta_{x}with|a|=1$ and $0\leq x\leq 1$ . Then there exists a non-constant
$f$ in $\tilde{S}_{3}$ such that $\Vert f\Vert_{\infty}=1$ and $\int_{I}fd\mu=1$ .

Summing up these results, we have the following theorem.

THEOREM 2.1. Let $T$ be a bounded linear operator on $C(I)$ with $\Vert T\Vert=1$ . Then
$T\in BKW(C(I);S_{3})$ ifand only if Thas theform (f) with (a), (b), and (c), and thefollowing
conditions are satisfied; for $t\in I$ with $0\leq x_{1}(t)<\cdots<x_{k}(t)\leq 1$ ,

i) If $k(t)=4$ , then $sgna_{1}(t)=sgna_{3}(t)\neq sgna_{2}(t)=sgna_{4}(t)$ and $(x_{1}(t), x_{2}(t),$ $x_{3}(t)$ ,
$x_{4}(t))=(0,1/4,3/4,1)$ .

ii) If $k(t)=3$ , then one of the following conditions holds.
1) sgn $a_{1}(t)=sgna_{3}(t)\neq sgna_{2}(t)$ and $(x_{1}(t), x_{2}(t),$ $x_{3}(t))\in D_{+-+}^{3}$ ,
2) sgn $a_{1}(t)=sgna_{2}(t)\neq sgna_{3}(t)$ and $(x_{1}(t), x_{2}(t),$ $x_{3}(t))=(0,3/4,1)$ ,
3) sgn $a_{1}(t)\neq sgna_{2}(t)=sgna_{3}(t)$ and $(x_{1}(t), x_{2}(t),$ $x_{3}(t))=(0,1/4,1)$ .

iii) If $k(t)=2$ , then one of the following conditions holds.
4) sgn $a_{1}(t)=sgna_{2}(t)$ and $(x_{1}(t), x_{2}(t))\in D_{++}^{3}$ ,
5) sgn $a_{1}(t)\neq sgna_{2}(t)$ and $(x_{1}(t), x_{2}(t))\in D_{+-}^{3}$ .

Now we study a special type of operators. Let

(2.4) $(TfKt)=a_{1}(t)f(x_{1}(t))+a_{2}(t)f(x_{2}(t))$ , $f\in C(I)$ ,

where

(2.5) $a_{j}(t)$ and $x_{j}(t)$ are continuous functions with $x_{j}(I)\subset I$ for $j=1,2$ ,

(2.6) $|a_{1}(t)|+|a_{2}(t)|=1$ , $t\in I$ .

In this case, $a_{1}(t)\delta_{x_{1}\langle t)}+a_{2}(t)\delta_{x_{2}\langle t)},$ $0\leq t\leq 1$ , moves weak*-continuously in $M(I)$ . When
$a_{j}(t),$ $j=1,2$ , are constant functions and sgn $a_{1}(t)\neq sgna_{2}(t)$ , Takahasi [9, Theorem 4]
gave a sufficient condition for which $T\in BKW(C(I);S_{3})$ . For a subset $E$ of $I^{2}$ , let

$\hat{E}=\{(x, y);(y, x)\in E\}$ .

Then $E$ and $\hat{E}$ are symmetric with respect to the line $y=x$ .
Let $(x, y)\in I^{2}$ . Then by Theorem 2.1, $(x, y)\in D_{+-}^{3}\cup D_{+-}^{3}$ if and only if there exists

$f$ in $\tilde{S}_{3}$ with $\Vert f\Vert_{\infty}=1$ such that $|f(x)|=|f(y)|=1$ and sgnf$(x)\neq sgnf(y)$ . Also
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$(x, y)\in D_{++}^{3}\cup\hat{D}_{++}^{3}$ if and only if there exists $f$ in $\tilde{S}_{3}$ with $\Vert f\Vert_{\infty}=1$ such that
$|f(x)|=|f(y)|=1$ and sgn $f(x)=sgnf(y)$ . By this fact, we have the following corollary.

COROLLARY 2.1. Let $T$ be an operator satisfying (2.4), (2.5) and (2.6). Then
$T\in BKW(C(I);S_{3})$ and $\Vert T\Vert=1$ if and only if the following condition holds; for $t\in I$ with
$a_{1}(t)\neq 0$ and $a_{2}(t)\neq 0$ , it holds that

i) if sgn $a_{1}(t)=sgna_{2}(t)$ , then $x_{1}(t)=x_{2}(t)$ or $(x_{1}(t), x_{2}(t))\in D_{++}^{3}\cup D_{++}^{3}$ ,
ii) if sgn $a_{1}(t)\neq sgna_{2}(t)$ , then $(x_{1}(t), x_{2}(t))\in D_{+-}^{3}\cup\hat{D}_{+-}^{3}$ .

COROLLARY 2.2. Let $T$ be an operator satisfying (2.4), (2.5) and (2.6). Moreover,
suppose that $a_{1}(0)=1,$ $(x_{1}(0), x_{2}(0))\in D_{++}^{3}\cup D_{+-}^{3},$ $a_{2}(1)=-1$ , and $(x_{1}(1), x_{2}(1))\in\hat{D}_{++}^{3}\cup$

$\hat{D}_{+-}^{3}$ . If $T\in BKW(C(I);S_{3})$ and $\Vert T\Vert=1$ , then either $a_{1}(t)$ or $a_{2}(t)$ vanishes on some
non-empty open subset of $I$.

PROOF. By our assumptions, $(x_{1}(t), x_{2}(t)),$ $0\leq t\leq 1$ , is a continuous map and there
exists a non-empty open subinterval $J$ of $I$ such that

$\{(x_{1}(t), x_{2}(t));t\in J\}\cap(\{(x, x);0\leq x\leq 1\}\cup D_{++}^{3}\cup\hat{D}_{++}^{3}\cup D_{+-}^{3}\cup\hat{D}_{+-}^{3})=\emptyset$ .
By Corollary 2.1, we have that $a_{1}(t)a_{2}(t)=0$ on $J$. Since $a_{1}(t)$ and $a_{2}(t)$ are continuous,
we have our assertion. $\square $

3. BKW-operators for $S_{4}$ .
Let $I=[0,1]$ and $I_{0}=(0,1)$ . Let $x_{j}(t),j=1,2$ , be continuous functions on $I$ with

$x_{j}(I)\subset I$. For $f\in C(I)$ , let

$(T_{0}f)(t)=f(x_{1}(t))-f(x_{2}(t))$ , $t\in I$ .

In this section, we investigate the conditions on $x_{1}$ and $x_{2}$ for which $T_{O}\in BKW(C(I);S_{4})$ .
We note that by [4, 7, 8], the operator

$(Tf)(t)=f(x_{1}(t))+f(x_{2}(t))$ , $f\in C(I)$

belongs to $BKW(C(I);S_{4})$ .
Let

(3.1) $G=$ {$(x,$ $y)\in I^{2};x<y,$ $f(x)=1$ and $f(y)=-1$ for some $f\in\tilde{S}_{4},$ $\Vert f\Vert_{\infty}=1$ }.
To study whether $T_{0}\in BKW(C(I);S_{4})$ , as in Section 2 we need to describe the set $G$ .
The following is the description of $G$ .

THEOREM 3.1. $G$ is the union of the following seven subsets.
i) $\{(0, y)\in I^{2};(2-\sqrt{2})/4\leq y\leq 1\}$ ,
ii) $\{(x, 1)\in I^{2};0\leq x\leq(2+\sqrt{2})/4\}$ ,

iii) $\{(x, y)\in I_{0}^{2};y\geq\frac{2-\sqrt{2}}{2}(x-1)+1$ and $y\geq\frac{2+\sqrt{2}}{2}x\}$ ,

iv) {$(x,$ $y)\in I_{0}^{2};y\geq(2-\sqrt{2})(x-1)+1$ and $y\geq(2+\sqrt{2})x$},
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v) {$(x,$ $y)\in I_{0}^{2};y>\frac{1}{2}(x-1)+1$ and $y>3x$},
vi) { $(x,$ $y)\in I_{0}^{2};y>\frac{1}{3}(x-1)+1$ and $y>2x$},
vii) $\{(1/4,3/4)\}$ .
The proofowes to elementary calculation, but the situation is a little bit complicated.

First, we give two lemmas.

LEMMA 3.1. If $(x_{0}, y_{0})\in G$, then $(x_{O}, y)\in G$ for $y_{0}\leq y\leq 1$ , and $(x, y_{0})\in G$ for
$0\leq x\leq x_{0}$ .

PROOF. Since $(x_{0}, y_{0})\in G$, by (3.1) there exists $f\in\tilde{S}_{4}$ such that $\Vert f\Vert_{\infty}=1,f(x_{0})=1$ ,
and $f(y_{0})=-1$ . For $y_{0}\leq y\leq 1$ , let

$h(t)=\frac{y_{0}-x_{0}}{y-x_{0}}(t-x_{0})+x_{0}$ , $t\in I$ ,

$F(t)=f(h(t))$ , $t\in I$ .

Then $F\in\tilde{S}_{4},$ $F(x_{O})=f(x_{O})=1$ and $F(y)=f(y_{0})=-1$ . Since $0\leq h(O)\leq 1$ and $0\leq h(1)\leq 1$ ,
we have $\Vert F\Vert_{\infty}=1$ . Thus $(x_{0}, y)\in G$ . In the same way, we have the second assertion. $\square $

LEMMA 3.2. If $(x_{0}, y_{0})\in G$, then $(1-y_{0},1-x_{0})\in G$ .

PROOF. Since $(x_{0}, y_{0})\in G$, there exists $f\in\tilde{S}_{4}$ such that $\Vert f\Vert_{\infty}=1,$ $f(x_{0})=1$ , and
$f(y_{0})=-1$ . Let $F(t)=-f(1-t)$ . Then $F\in\tilde{S}_{4},$ $\Vert F\Vert_{\infty}=1,$ $F(1-y_{0})=-f(y_{0})=1$ , and
$F(1-x_{0})=-f(x_{0})=-1$ . $\square $

For a subset $E$ of $I^{2}$ , let $\tilde{E}=\{(x, y)\in I^{2};(1-y, 1-x)\in E\}$ . Then $E$ and $\tilde{E}$ are
symmetric with respect to the line $x+y=1$ . By Lemma 3.2, we have $G=\tilde{G}$ . We note
that the sets i) and ii), iii) and iv), v) and vi) in Theorem 3.1 are symmetric with respect
to the line $x+y=1$ , respectively.

PROOF OF THEOREM 3.1. The proof is long, so we devide into five steps.

STEP 1. In this step, we describe the set $G\cap\partial I^{2}$ . The following fact shows that
$G\cap\partial I^{2}$ is given by i) and ii) in Theorem 3.1.

FACT 1. $\{y\in I;(0, y)\in G\}=\{y\in I;(2-\sqrt{2})/4\leq y\leq 1\}$ and $\{x\in I;(x, 1)\in G\}=\{x\in$

$I;0\leq x\leq(2+\sqrt{2})/4\}$ .
PROOF. We shall prove that

(3.2) $\{y\in I;(0, y)\in G\}=\{y\in I;(2-\sqrt{2})/4\leq y\leq 1\}$ .
Since $G=\tilde{G}$, by (3.2) we get

$\{x\in I;(x, 1)\in G\}=\{x\in I;0\leq x\leq(2+\sqrt{2})/4\}$ .
Let

(3.3) $\alpha=\inf$ { $y\in I;f(O)=1,$ $f(y)=-1$ for some $f\in\tilde{S}_{4},$ $\Vert f\Vert_{\infty}=1$ }.
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By (3.1), to prove (3.2) it is sufficient to prove that “inf” in (3.3) is attained and

(3.4) $\alpha=(2-\sqrt{2})/4$ .

Let $\Gamma$ be the set of $f\in\tilde{S}_{4}$ such that $f(-1)=1,$ $f(O)=0$ , and $f^{\prime}(O)=0$ . For $ f\in\Gamma$ , let

(3.5) $ A_{f}=\max$ { $x;0\leq f(t)\leq 1$ on $[-1,$ $x]$ } ,

(3.6) $A=\sup\{A_{f};f\in\Gamma\}$ .

Then it is not difficult to see that $\alpha=1/(1+A)$ . Hence by (3.4), to prove (3.2) it is sufficient
to prove that $\sup$ in (3.6) is attained and

(3.7) $A=3+2\sqrt{2}$ .

By (3.5) and (3.6), it is clear that $A>1$ . In the rest, we shall calculate the value of $A$ .
Our strategy is to find smaller subsets of $\Gamma$ still satisfying (3.6).

Let $\Gamma_{1}$ be the set of $ f\in\Gamma$ such that $A_{f}>1$ . Then we have

(3.8) $A=\sup\{A_{f};f\in\Gamma_{1}\}$ .

Let $f\in\Gamma_{1}$ . By the definition of $\Gamma$ , we can write as
(3.9) $f(t)=t^{2}h_{f}(t)$ ,

(3.10) $h_{f}(t)=a_{2}t^{2}+a_{1}t+a_{0}$ , $h_{J}(-1)=1$ .
By (3.5),

(3.11) $h_{f}(t)\geq 0$ on $[-1, A_{f}]$ .
Also by (3.5),

(3.12) $f(A_{f})=0$ or 1.

Let $\Gamma_{2}$ be the set of $g\in\Gamma_{1}$ such that $g(A_{g})=1$ . When $f\in\Gamma_{1}$ and $f(A_{f})=0$ , we
shall prove the existence of $G_{f}\in\Gamma_{2}$ such that

(3.13) $A_{f}<A_{G_{f}}$ .

Since $f(A_{f})=0$ and $A_{f}>1$ , by (3.5) and (3.9),

(3.14) $h_{f}(A_{f})=0$ and $h_{f}(A_{f}+\epsilon)<0$

for every $\epsilon>0$ sufficiently closed to $0$ . Put

(3.15) $g_{f}(t)=(\frac{t-A_{f}}{1+A_{f}})^{2}$ and $G_{f}(t)=t^{2}g_{f}(t)$ .

Then by (3. 10) and (3. 14), $h_{f}(t)\geq g_{f}(t)$ on $[-1, A_{f}]$ . Hence by (3.9) and (3. 15),
$0\leq G_{f}(t)\leq f(t)\leq 1$ on $[-1, A_{f}]$ . Since $G_{f}(A_{f})=0$ and $G_{f}(t)\geq 0$ for every $x$, we get (3.13).

By (3.13) and (3.15), $G_{f}(A_{G_{f}})\neq 0$ . Henoe by (3.12), $G_{f}(A_{G_{f}})=1$ , so that $G_{f}\in\Gamma_{2}$ .
Therefore by (3.8) and (3.13), we have
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(3.16) $A=\sup\{A_{g};g\in\Gamma_{2}\}$ .
Now let $\Gamma_{3}$ be the set of $f(t)=t^{2}h_{f}(t)\in\Gamma_{2}$ such that $h_{f}(t_{0})=0$ for some-l $<t_{0}<A_{f}$ .

We shall prove that

(3.17) $A=\sup\{A_{g};g\in\Gamma_{3}\}$ .
To prove this, let $f\in\Gamma_{2}$ such that $h_{f}(t)\neq 0$ for every $-1\leq t\leq A_{f}$ . Then by (3.11),
$h_{f}(t)=a_{2}t^{2}+a_{1}t+a_{0}>0$ on $[-1, A_{f}]$ . Since $f\in\Gamma_{1},$ $A_{J}>1$ . Since $f\in\Gamma_{2},$ $f(A_{f})=1$ , so
that $0<h_{f}(A_{f})<1$ . Hence it is not difficult to find a function $\psi(t)=b_{2}t^{2}+b_{1}t+b_{0}$ such
that $\psi(-1)=1,0\leq\psi(t)<h_{f}(t)$ on $(-1, A_{f}$ ], and $\psi(t_{O})=0$ for some $t_{0},0<t_{0}<A_{J}$ .
Put $\Psi(t)=t^{2}\psi(t)$ . Then $0\leq\Psi(t)\leq 1$ on $[-1, A_{f}]$ and $0<\Psi(A_{f})<1$ . Hence $A_{\Psi}>A_{f}$ .
Since $\Psi(A_{\Psi})\neq 0$ , by (3.12) $\Psi(A_{\Psi})=1$ . Therefore $\Psi\in\Gamma_{3}$ , and by (3.16) we have (3.17).

At the last stage, let $g\in\Gamma_{3}$ . Then $g(A_{g})=1$ and $h_{g}(\sigma_{1})=0$ for some $\sigma_{1},0<\sigma_{1}<A_{g}$ .
Then

(3.18) $g(t)=t^{2}(\frac{t-\sigma_{1}}{1+\sigma_{1}})^{2}$

It holds that $0\leq g(t)\leq 1$ on $[0, \sigma_{1}]$ . Here suppose that

(3.19) $0\leq g(t)<1$ on $[0, \sigma_{1}]$ .
For $\sigma>\sigma_{1}$ , let

(3.20) $G(t)=t^{2}(\frac{t-\sigma}{1+\sigma})^{2}$

By (3.18) and (3.19), we may assume that

(3.21) $0\leq G(t)\leq 1$ on $[0, \sigma]$ ,

(3.22) $G(y)=1$ for some $y,$ $ 0<y<\sigma$ .

Since $\sigma_{1}<\sigma$ ,

$(\frac{t-\sigma}{1+\sigma})^{2}<(\frac{t-\sigma_{1}}{1+\sigma_{1}})^{2}$ on $[\sigma, \infty$).

Hence by (3.18) and (3.20), we have that

(3.23) $A_{G}>A_{g}$ and $G\in\Gamma_{3}$ .
Here we note that $\sigma$ satisfying (3.21) and (3.22) is unique. By calculation, we have

$\sigma=2+\sqrt{2}$ and

(3.24) $G(t)=(17-12\sqrt{2})t^{2}(t-2-2\sqrt{2})^{2}$

By (3.17) and (3.23), we have $A=A_{G}$ . Hence by (3.24), we obtain (3.7). This completes
the proof of Fact 1. $\square $
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STEP 2. Now we shall study the domain $G\cap I_{0}^{2}$ . Let $0<x_{0}<y_{0}<1$ . Then by (3.1),
$(x_{O}, y_{0})\in G\cap I_{O}^{2}$ if and only if there exists $h\in\tilde{S}_{4}$ such that $\Vert h\Vert_{\infty}=1,$ $h(x_{O})=1$ and
$h(y_{0})=-1$ .

Let

$G_{0}=$ { $(x,$ $y)\in I_{0}^{2};x<y,$ $h(x)=1,$ $h(y)=-1$ for some $h\in\tilde{S}_{4}\backslash \tilde{S}_{3},$ $\Vert h\Vert_{\infty}=1$ } ,

$G_{1}=$ { $(x,$ $y)\in I_{0}^{2};x<y,$ $h(x)=1,$ $h(y)=-1$ for some $h\in\tilde{S}_{3},$ $\Vert h\Vert_{\infty}=1$ }.
Then in the same way as the proof of Lemma 3.2,

(3.25) $G_{0}=\tilde{G}_{0}$ ,

$G_{1}=\tilde{G}_{1}$ , and

(3.26) $G\cap I_{0}^{2}=G_{0}\cup G_{1}$ .

By Lemma 2.3, we have

(3.27) $G_{1}=\{(x, y)\in I_{0}^{2};y\geq 3x, 3y\geq x+2\}$ .

Hence to complete our proof, we need to determine the domain $G_{0}$ .
Let $f_{\zeta}(t)=t^{2}(t+1)(t-\zeta),$ $ 1\leq\zeta<\infty$ . Then every $h\in\tilde{S}_{4}\backslash \tilde{S}_{3}$ has the following form

(3.28) $h(t)=cf_{\zeta}(at+b)+d$ , $a,$ $b,$ $c,$ $d\in R$ , $a\neq 0$ , $c\neq 0$ , $ 1\leq\zeta<\infty$ .
Let $H=$ { $h\in\tilde{S}_{4}\backslash \tilde{S}_{3};h$ has the form (3.28) and $\Vert h\Vert_{\infty}=1$ }. Then $(x_{0}, y_{0})\in G_{0}$ if and only
if $h(x_{O})=1$ and $h(y_{0})=-1$ for some $h\in H$. Let

$H_{O}=$ {$h\in H;h$ has the form (3.28) with $a>0$} ,

$\Omega=$ { $(x,$ $y);0<x<y<1,$ $h(x)=1,$ $h(y)=$ –for some $h\in H_{0}$ }.

Then $\Omega\subset G_{O}$ and we have the following.

FACT 2. $G_{0}=\Omega\cup\tilde{\Omega}$ .
PROOF. By (3.25), $G_{0}=\tilde{G}_{0}$ . Since $\Omega\subset G_{0},$ $\Omega\cup\tilde{\Omega}\subset G_{0}$ . To prove the converse

inclusion, let $(x_{O}, y_{0})\in G_{0}$ . Suppose that $h(x_{O})=1$ and $h(y_{0})=-1$ for some $h\in H$. Let
$h(t)=cf_{\zeta}(at+b)+d$. When $a>0$ , we have $(x_{0}, y_{0})\in\Omega$ .

Suppose that $a<0$ . Let $h_{1}(t)=-h(1-t)=-cf_{\zeta}(-at+a+b)-d$. Then $h_{1}\in H_{0}$ ,
$h_{1}(1-y_{0})=1$ and $h_{1}(1-x_{0})=-1$ . Hence $(1-y_{0},1-x_{0})\in\Omega$ . Therefore $(x_{0}, y_{0})\in\tilde{\Omega}$ . $\square $

STEP 3. By Fact 2, to describe $G_{0}$ we need to describe $\Omega$ . For each $\zeta$ with $ 1\leq\zeta<\infty$ ,

let

(3.29) $H_{\zeta}=\{h;h=cf_{\zeta}(at+b)+d, \Vert h\Vert_{\infty}=1, a>0, b, c, d\in R, c\neq 0\}$ ,

(3.30) $\Omega_{\zeta}=$ { $(x,$ $y);0<x<y<1,$ $h(x)=1,$ $h(y)=-1$ for some $h\in H_{\zeta}$ }.
In this step, we study $\Omega_{\zeta}$ . By the definitions, $H_{0}=\bigcup_{\zeta\geq 1}H_{\zeta}$ ,
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(3.31) $\Omega=\bigcup_{\zeta\geq 1}\Omega_{\zeta}$
,

and $\Omega_{\zeta}$ has the same property as $G$ in Lemma 3.1. In the rest of this step, we fix $\zeta$ .
When $(x_{0}, y)\in\Omega_{\zeta}$ for some $y$ , there exists $y_{0}$ such that $(x_{0}, y_{0})\in\Omega_{\zeta}$ and $(x_{0}, y^{\prime})\not\in\Omega_{\zeta}fo\iota$

every $y^{\prime}<y_{0}$ . Thus to describe $\Omega_{\zeta}$ , it is sufficient to describe points $(x_{0}, y_{0})\in\Omega_{\zeta}$ such
that $(x_{0}, y)\not\in\Omega$ for $y<y_{0}$ .

Recall that $f_{\zeta}(t)=t^{2}(t+1Kt-\zeta)$ . Hence there exist $A=A(\zeta)$ and $B=B(\zeta)$ such thal
$f_{\zeta}^{\prime}(A)=f_{\zeta}^{\prime}(B)=0,$ $-1<A<0$ , and $ 0<B<\zeta$ . Then $(A, f_{\zeta}(A))$ and $(B, f_{\zeta}(B))$ are local
minimal points in the graph of $f_{\zeta}$, and $0>f_{\zeta}(A)\geq f_{\zeta}(B)$ . Also there exists $C=C(\zeta)$ such
that $0<C\leq B$ and $f_{\zeta}(A)=f_{\zeta}(C)$ . We note that $A(\zeta),$ $B(\zeta)$ , and $C(\zeta)$ are continuous functions
in $\zeta,$ $ 1\leq\zeta<\infty$ .

We study $\Omega_{\zeta}$ mainly for $ 1<\zeta<\infty$ . In this case,

(3.32) $C<B$ and $f_{\zeta}(C)>f_{\zeta}(B)$ .

Let $(x_{0}, y_{0})\in\Omega_{\zeta}$ such that $(x_{0}, y)\not\in\Omega_{\zeta}$ for every $y<y_{0}$ . By (3.30), there exists $h\in H_{\zeta}$ such
that

(3.33) $h(x_{0})=1$ and $h(y_{0})=-1$ .

Then we have

(3.34) $|h(0)|=1$ or $|h(1)|=1$ .

To prove (3.34), suppose not. Then $|h(0)|<1$ and $|h(1)|<1$ . For $\alpha>0$ , let

$g_{\alpha}(t)=h(\alpha(t-x_{0})+x_{0})$ , $t\in I$ .

Then there exists $\alpha_{O}>1$ such that $\Vert g_{\alpha_{O}}\Vert_{\infty}=1$ . Since $h\in H_{\zeta}$ , by (3.29) $g_{\alpha}\in H_{\zeta}$ . We have
$g_{\alpha_{O}}(x_{0})=h(x_{O})=1$ ,

$x_{0}<\frac{y_{0}-x_{0}}{\alpha_{0}}+x_{0}<y_{0}$ and $g_{\alpha_{O}}(\frac{y_{0}-x_{0}}{\alpha_{0}}+x_{0})=h(y_{0})=-1$ .

This contradicts that $(x_{O}, y)\not\in\Omega_{\zeta}$ for every $y<y_{0}$ . Hence we obtain (3.34).

Since $h\in H_{\zeta},$ $h$ has the following form

(3.35) $h(t)=cf_{\zeta}(at+b)+d$ , $a>0$ , $b,$ $c,$ $d\in R$ , $c\neq 0$ , $\Vert h\Vert_{\infty}=1$ .

When $ 1<\zeta<\infty$ , by (3.32), (3.33), (3.34), (3.35) and the graph of $f_{\zeta}$, the following $foul$

cases occur. Cases 1, 2, 3 and 4 correspond to cases $h(O)=1,$ $h(1)=1,$ $h(O)=-1,$ $anc$

$h(1)=-1$ , respectively.
Case 1. $h(t)=-2f_{\zeta}(at+b)/f_{\zeta}(B)+1$ ,

$ax_{0}+b=0$ , $ay_{0}+b=B$ , $b=-1$ , $ B<a+b\leq\zeta$ .

Case 2. $h(t)=-2f_{\zeta}(at+b)/flB)+1$ ,
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$ax_{0}+b=0$ , $ay_{0}+b=B$ , $-1\leq b<0$ , $ a+b=\zeta$ .

Case 3. $h(t)=2f_{\zeta}(at+b)/f_{\zeta}(A)-1$ ,

$ax_{0}+b=A$ , $ay_{0}+b=0$ , $b=-1$ , $0<a+b\leq C$ .

Case 4. $h(t)=2f_{\zeta}(at+b)/f_{\zeta}(A)-1$ ,

$ax_{0}+b=A$ , $ay_{0}+b=0$ , $-1\leq b<A$ , $a+b=C$ .
Here we give some remarks when $\zeta=1$ . In this case, $C$ is replaced by 1 in Cases 3

and 4. And $(x_{0}, y_{0})$ satisfies the conditions in Cases 1 and 2 if and only if $(1-y_{0},1-x_{0})$

satisfies the conditions in Cases 4 and 3 with $C=1$ , respectively. Since $G_{O}=\tilde{G}_{0}$ , when
$\zeta=1$ it is sufficient to consider only Cases 1 and 2. Hence we study Cases 1 and 2 for
$\zeta\geq 1$ , and Cases 3 and 4 for $\zeta>1$ .

The set of points $(x_{0}, y_{0})$ which satisfy the condition of each case coincides with
the line segment in $I_{0}^{2}$ jointing the following two points in $I^{2}$ , respectively.

Case 1. ($\frac{1}{\zeta+1}$ , $\frac{B+1}{\zeta+1}$) and $(\frac{1}{B+1}$, $1)$ .

Case 2. $(0,$ $\frac{B}{\zeta})$ and $(\frac{1}{\zeta+1}$ , $\frac{B+1}{\zeta+1})$ .

Case 3. $(\frac{A+1}{C+1}\frac{1}{C+1})$ and $(A+1,1)$ .

Case 4. $(0,$ $\frac{-A}{C-A})$ and $(\frac{A+1}{C+1},$ $\frac{1}{C+1})$ .

To describe $\Omega_{\zeta}$ more explicitly, let $p_{\zeta}(t)$ and $q_{\zeta}(t)$ be the functions representing the
joint line segments obtained by Cases 1 and 2, and Cases 3 and 4, respectively. Then

(3.36) $p_{\zeta}(t)=\left\{\begin{array}{ll}\frac{\zeta-B}{\zeta}(t-1)+1, & if 0<t\leq\frac{1}{\zeta+1}\\(B+1)t, & if \frac{1}{\zeta+1}\leq t<\frac{1}{B+1}\end{array}\right.$

and $(\frac{1}{\zeta+1},$ $\frac{B+1}{\zeta+1})$ is its jointing point, and

(3.37) $q_{\zeta}(t)=\left\{\begin{array}{ll}\frac{C}{C-A}(t-1)+1, & if 0<t\leq\frac{A+1}{C+1}\\\frac{1}{A+1}t, & if \frac{A+1}{C+1}\leq t<A+1\end{array}\right.$
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and $(\frac{A+1}{C+1},$ $\frac{1}{C+1})$ is its jointing point. Let

(3.38) $V_{\zeta}=\{(x, y)\in I_{0}^{2};p_{\zeta}(x)\leq y, 0<x<1/(B+1)\}$ for $\zeta\geq 1$ ,

(3.39) $W_{\zeta}=\{(x, y)\in I_{0}^{2};q_{\zeta}(x)\leq y, 0<x<A+1\}$ for $\zeta>1$ .

Then by our argument, we obtain

(3.40) $\Omega_{\zeta}=V_{\zeta}uW_{\zeta}$ for $\zeta>1$ ,

(3.41) $\Omega_{1}=V_{1}\cup\tilde{V}_{1}$ .

STEP 4. In this step, we shall prove that

(3.42) $V_{1}=\bigcup_{\zeta\geq 1}V_{\zeta}$ .

Here we note that

(3.43) $p_{1}(t)=\left\{\begin{array}{ll}\frac{2-\sqrt{2}}{2}(t-1)+1, & if 0<t\leq 1/2,\\\frac{2+\sqrt{2}}{2}t, & if 1/2\leq t<2-\sqrt{2} ,\end{array}\right.$

(3.44) $V_{1}=\{(x, y)\in I_{0}^{2};p_{1}(x)\leq y, 0<x<2-\sqrt{2}\}$ .

By elementary calculation, we have

$A(\zeta)=\frac{3\zeta-3-\sqrt{9\zeta^{2}+14\zeta+9}}{8}$ ,

(3.45) $B(\zeta)=\frac{3\zeta-3+\sqrt{9\zeta^{2}+14\zeta+9}}{8}$ .

Hence $A(\zeta)$ and $B(\zeta)$ are increasing functions in $ 1\leq\zeta<\infty$ , and

(3.46) $A(1)=-1/\sqrt{2}$ ,

(3.47) $B(1)=1/\sqrt{2}$ ,

$\lim_{\zeta\rightarrow\infty}A(\zeta)=-2/3$ ,

$\lim_{\zeta\rightarrow\infty}B(\zeta)=\infty$
.

Since $B(\zeta)$ is increasing function, by (3.47) we have $1/(B+1)\leq 2-\sqrt{2}$ for $\zeta\geq 1$ . By
(3.45), we can also prove that

$B/\zeta\geq 1/\sqrt{2}$ for $\zeta\geq 1$ .
Hence by (3.36), (3.38), (3.43) and (3.44), we get (3.42).

By (3.26), (3.31), (3.40), (3.41), (3.42) and Fact 2, we obtain the sets iii) and iv)
in Theorem 3.1. The sets iii) and iv) coincide with $V_{1}$ and $\tilde{V}_{1}$ , respectively.
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STEP 5. In this step, we study $W_{\zeta},$ $ 1<\zeta<\infty$ and complete the proof of our theorem.
Let $q_{\infty}$ be the limit function of $q_{\zeta}$ as $\zeta\rightarrow\infty$ . To write $q_{\infty}$ explicitly, we need the value
of $\lim_{\zeta\rightarrow\infty}C(\zeta)$ . By elementary calculation, we have

(3.48) $C(\zeta)=\ovalbox{\tt\small REJECT}_{2}\zeta-1-2A-\sqrt{(2A+1-\zeta)^{2}-4(3A^{2}+2(1-\zeta)A-\zeta)}$ .

By (3.46), we get $\lim_{\zeta\rightarrow\infty}C(\zeta)=2/3$ . Hence

(3.49) $q_{\infty}(t)=\left\{\begin{array}{ll}(t-1)/2+1 , & if 0<t\leq 1/5\\3t, & if 1/5\leq t<1/3.\end{array}\right.$

Let

(3.50) $W_{\infty}=\{(x, y)\in I_{0}^{2};q_{\infty}(x)<y , 0<x<1/3\}$ .

We note that the boundary of $W_{\infty}$ is not contained in $W_{\infty}$ . We shall prove that

(3.51) $W_{\infty}=\bigcup_{\zeta>1}W_{\zeta}$ .

Let $\zeta>1$ . Since the vertices of $W_{\zeta}$ converge to the vertices of $W_{\infty}$ , it is sufficient to prove

(3.52) $W_{\infty}\supset W_{\zeta}$ .
By (3.37), (3.39), (3.49), (3.50) and $A+1<1/3$ , to prove (3.52) it is sufficient to show

$\frac{1}{2}(\frac{A+1}{C+1}-1)+1<\frac{1}{C+1}$ .

This inequality is the same as $A+C<0$ . By (3.48), this is equivalent to

(3.53) $2A^{2}+(1-\zeta)A-\zeta<0$ .

By (3.46), $-1/\sqrt{2}<A(\zeta)<-2/3$ . Hence to prove (3.53) we need to show that

$2(-1/\sqrt{}\overline{2})^{2}+(1-\zeta)(-1/\sqrt{2})-\zeta<0$ and $-\zeta<0$ .

Since $\zeta>1$ , the above holds. Threfore we get (3.51).
As the final step, we have

$G\cap I_{0}^{2}=G_{1}\cup G_{0}$ by (3.26)

$=G_{1}u\Omega u\tilde{\Omega}$ by Fact 2

$=G_{1}u(U(\Omega_{\zeta}\cup\tilde{\Omega}_{\zeta}))$ by (3.31)

$=G_{1}\cup(V_{1}\cup\tilde{V}_{1})\cup(W_{\infty}\cup\tilde{W}_{\infty})$ by (3.40), (3.41), (3.42) and (3.51).

The sets v) and vi) coincide with $W_{\infty}$ and $\tilde{W}_{\infty}$ , respectively. Now by (3.27), it is easy
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to see that $G_{1}\backslash (V_{1}\cup\tilde{V}_{1}\cup W_{\infty}\cup W_{\infty})=\{(1/4,3/4)\}$ . This completes the proof of
Theorem 3.1. $\square $

By Theorems A and 3.1, and the definition of $G$, we have the following theorem.

THEOREM 3.2. Let $x_{j},j=1,2$ , be continuous functions on I with $x_{j}(I)\subset I$. For
$f\in C(I)$ , let

$(T_{a}fXt)=f(x_{1}(t))-f(x_{2}(t))$ .
Then $T_{O}\in BKW(C(I);S_{4})$ if and only if one of the following conditions holds.

i) $(x_{1}(t), x_{2}(t))\in G$ for every $t\in I$ ,
ii) $(x_{2}(t), x_{1}(t))\in G$ for every $t\in I$ .

THEOREM 3.3. Let $a_{j}(t)$ and $x_{j}(t),$ $j=1,2$ , are continuous functions on I such that
$|a_{1}(t)|+|a_{2}(t)|=1$ for every $t\in I$ and $x_{j}(I)\subset I$. For $f\in C(I)$, let

$(Tf)(t)=a_{1}(t)f(x_{1}(t))+a_{2}(t)f(x_{2}(t))$ .

Then $T\in BKW(C(I);S_{4})$ if and only if the following condition holds; if $a_{1}(t)a_{2}(t)\neq 0$ and
sgn $a_{1}(t)\neq sgna_{2}(t)$ , then either $(x_{1}(t), x_{2}(t))$ or $(x_{2}(t), x_{1}(t))$ is contained in $G$ .

PROOF. By Theorem $A,$ $T\in BKW(C(I);S_{4})$ if and only if for each $t\in I$ there exists
a non-constant $f_{t}\in\tilde{S}_{4}$ such that

(3.54) $\Vert f_{t}\Vert_{\infty}=1$ and $a_{1}(t)f_{t}(x_{1}(t))+a_{2}(t)f_{t}(x_{2}(t))=1$ .

If $a_{1}(t)a_{2}(t)=0$, it is not difficult to see the existenoe of $f_{t}\in\tilde{S}_{4}$ satisfying (3.54). If
$a_{1}(t)a_{2}(t)\neq 0$ and sgn $a_{1}(t)=sgna_{2}(t)$ , by $[4, 7]$ we can find $f_{t}\in\tilde{S}_{4}$ satisfying (3.54). When
$a_{1}(t)a_{2}(t)\neq 0$ and sgn $a_{1}(t)\neq sgna_{2}(t)$, Theorem 3.1 implies that either $(x_{1}(t), x_{2}(t))$ or
$(x_{2}(t), x_{1}(t))$ is contained in $G$ if and only if there exists $f_{t}\in\tilde{S}_{4}$ satisfying (3.54). $\square $
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