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1. Introduction.

Let N be a positive integer and let X,(N) be the modular curve over Q associated
to the modular group I'o(N). As a defining equation of Xy(N), we have the modular
equation of level N, which is written in the following form:

Fy(sjn)=0, FxS, T)eZ[S, T],

where j=(z) is the modular invariant, jy=jy(z) =j(Nz), and z is the natural coordinate
on # ={ze C|Im(z)>0}. This equation has many useful properties, but its degree and
coefficients are too large to be applied to practical calculations on Xy(N). In the case
of a hyperelliptic modular curve, its more manageable defining equation, which we call
the normal form of the hyperelliptic curve, has been given by N. Murabayashi ([7])
and M. Shimura ([11]). In particular, for a hyperelliptic curve of the type Xy(N), T.
Hibino and N. Murabayashi ([4]) found a certain relation between the modular equation
of level N and its normal form except for N=40, 48. The relation gives a formula
expressing j in terms of the functions x, y on Xy(N) which satisfy the normal form
yi=f(x), f(T)eQLT].

In this paper, we deal with the remaining cases to complete our task. To be specific,
for the defining equations y2=x%+8x%—2x*+8x%2+1, y2=x8+14x*+1 for N=40,
48, respectively, we give formulae expressing j in terms of these x, y (Theorems 4.1, 4.2).

2. Basic idea for expressing j.

In the following, we sketch our idea ([4]) which is based on the computation of
the Fourier coeflicients of some modular forms (cf. [3], [5], [9], [12]). Let Aut(X,(N))
be the group of automorphisms of X,(N) over C. For a positive integer d#1 dividing
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N, let w, be the Atkin-Lehner involution on X,(N) whereas we assume that w, means
the identity morphism over X,(N). From now on we assume that X,(N) is hyperelliptic
with genus g.

Let S,(I'o(IV)) be the vector space over C of cusp forms of weight 2 for I'o(N). Let

(%) denote the point of X,(N) represented by /—1c0. If (%) is not a Weierstrass

point, one can choose a basis &,, - -, h, of S,(I'o(N)) with the following Fourier
expansions:

hi@2)=g°+s8* Vgt 4 ... 4sigip ...
h(2)=q°""+s9q°+ - +sPq'+ -,

h2)=q+sPg*+ - - +sPq'+ - -,

where g=e?>*V~1* and the coefficients s’ are rational numbers. We put x=h,(z)/

h,(z)=q '+ ---. Then x gives a covering map of degree two from Xy(N) to the pro-

4_& _ _47@*Dy ... Then x and y satisfy
hy(2) dq

an equation of the type as above, which is viewed as a defining equation of X, (N).

Observing the Fourier coefficients of x and y, we can recursively determine the coefficients

of f(x).

Denote the function field of X (N) defined over Q by Q(Xy(N)). Let w} be the
automorphism of Q(X,(N)) induced by w,;. From the action of w; on S,(I'¢(N)), we
explicitly describe the action of wj on the generators x and y of Q(X,(N)). Then, in
the cases N =40, 48, we obtain the following result:

jective line (cf. [11]). Now we put y=

PROPOSITION 2.1. A defining equation of X,(N) and the action of w} on x and y
are given in the table below:

N S(x) d, (wix, wty)
1 -1 4
40 | x®+8x°—2x*+8x%+1| 5, (——, —%>; 8,(-" , ——2 )
x X x+1 (x+1*
1 y x—1 4y
48 8 4 14x*+1 3,(——, —-); 16,(— ,— )
x x x  x* x+1 (x+1*

When X,(N) is hyperelliptic with N square-free, except for N=37, we recall the
basic idea of [4] for expressing j in terms of x, y. For a positive integer M for which
wy, is a hyperelliptic involution, ie. wix=x and wiy= —y, we put jy,,=wjj. Then
j+ju and (j—ju)/y are wii-invariant. Therefore they are rational functions of x,
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determined explicitly by observing the pole divisors and the values at the cusps of x,
¥, j, and j,,, and also by comparing the Fourier expansions. Calculation of the values

of x is as follows. For any cusp P on X,(N), excluding (%) and w)y, ((%)), let us denote

by w the Atkin-Lehner involution which satisfies P=w ((%)) Since the pole divisors

of x are (x), = <%)+ W ((%)), the value of x(P) is calculated by x(P) =x<w<(-(17>>)=

w*x <(%)), where the function w*x is obtained as a rational function of x through

the action of the Atkin-Lehner involution on S,(I"o(N)).

But this method cannot be applied to the cases N =37, 40 or 48, because it requires
that the hyperelliptic involution should be of Atkin-Lehner type, which is not the case
for these three cases.

For each level N for which X,(X) is hyperelliptic, A. Ogg produced a method to
check whether its hyperelliptic involution is of Atkin-Lehner type ([8]) and proved:

Lemma 2.1 (A. Ogg). The hyperelliptic involutions of X(40), X,(48) are defined by
=10 1 —6 1 ‘
(—120 10 >’ ( 48 6)’ respectively.

3. The cases N =40 and 48.

In this section, we discuss the cases N=40, 48. In any of these cases, Aut(Xy(N))
is not generated by the Atkin-Lehner involutions.
For a positive divisor d of N with 1 <d<N and for an integer i prime to N, let

(-3) denote the point of X,(NV) which is represented by g Then <%> is defined over
Q(¢,), where n=gcd(d, N/d) and {,, is a primitive n-th root of unity. Reducing i modulo

n, we have ¢(n) Galois-conjugate cusps associated to d. Moreover denote by (%) and
(—é—) the points of Xy(N) which are represented by 0 and ./— 100, respectively.

3.1. The case N=40. In case N=40, Aut(X,40)) is generated by the
Atkin-Lehner involutions ws, wg, and the automorphism v which is induced from the
+
1

matrix ((1) ) (see [1] and [6]). The hyperelliptic involution S, defined by the matrix /

( _112% 110 ), is factored into vwgvw,,. In the above notation, the cusps of X, (40) are

0 1 1 1 1 1) (1 1 .
<T>’ (7>, (T)’ (—g—), (?>, (—15)’ (E) and <-(~)—). It is easy to see how the generators
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el =4

(3 G)]G)
= | () ()
&) G)
()| 6) | Go)

Let x and y be the functions of X(40) defined in Proposition 2.1. It is easy to see

that v*x=—x and v*y=y. The pole d.ivisors‘ of x, y are (x)w=(%)+(%),

(o =4{(%)+(%)}, respectively. Thus the values of x at the cusps are determined in

the same way as in the square-free case:

LemMma 3.1. (3>

X 1 -1 0 0 -1

o
8

On the other hand, the pole divisors of j and S*;j are

o2)oo( o) o)) (342
e Ao ()
sl ( ol A A

Observing the pole divisors and the values of x, y, j, and S*j at the cusps, it is easy to
see that we can take polynomials F, G over Q which satisfy the following:

2F(x) j—S% _ 2G(x)
(x_ 1)40(x + 1)10x5 ’ y (X— 1)40(x+ 1)10x5 4

J+ %=
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60 ) 56 .
F(T)=)Y aT' , G(T)= ) bT',
i=0 i

i=0
degF=60 , degG=56.
Therefore, _
_ F0)+G(x)y
(x— D*O(x+1)10%5
Observing the action of w¥, we see
_ Fs(x)+ Gs(x)y
(x__ 1)10(x+ 1)40x5 ’

5

60 )
Fy(T)= ‘“:Z,oaso-i(—T)' >

56 ]
GS(T)= ';o b56—i(_ Ty .

Finally, using the Fourier expansions of x, y, j and js, we can determine the
coefficients of F and G. Note that, in determining the coefficients a;, b;, the use of the
Fourier expansion of j5 is more effective than the use of those of S*;j since the coefficients
of F are just a rearrangement of those of Fs up to sign in reverse order and since the
same goes for the coefficients b; of the polynomials G and Gs.

3.2. The case N=48. In case N=48, Aut(X,48)) is generated by the
Atkin-Lehner involutions w;, w, ¢, and the automorphism v which is induced from the

1

matrix
(4

?) (see [1]‘ and [6]). The hyperelliptic involution S, defined by the matrix

-6 1Y\ . . : : : .
( 48 6)’ is factored into v?w,cv*w,q. We note that v is not an involution, but so is

2 : 0 1 1 3 1 1 1 1
v*. In the notation as above, the cusps are (T)’ (7>, (T)’ (T)’ (§), (ﬁ) (T)’ (€>,

(1—12), (%), <21—4) and <%) Let x and y be the modular functions of X,(48) defined in

Proposition 2.1. It is easy to see that v?*x= —x and v?**y=y. The pole divisors of x, y

are (x),, =(%)+(%), (e =4{<%>+(%>}. Thus the values of x at the cusps, except

for <%>, (%), (1—12) and <T75)’ are determined in the same way as in the square-free case:

LemMmaA 3.2. (%)
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It is hard to see the action of v* on X, y. Since we cannot obtain (vw,g)*x as a

rational function in x, the value x ((%)) is not determined, though (%>= UW,g ((%))

12 12
determine the values of x at these four cusps by our method. However, we can obtain

a few relations among the values as follows. The values x((%)) and x((%)), X

The cases (%), (—1-—) and (i> are in a similar situation to this. Thus we cannot

12

(7)) =(55) ant w(5))= (G ) e see mae () ==((Ge))=x(+(() -
whx ((_4‘.)) = —1/x ((%)) Then the value x ((%)) satisfies the equation x ((%))2 +1=0.
s e ()3 o < () ()2 (3)-
- x((%)) ie x((—i—)) - x((%)) Similarly we obtain x((%)) +1=0and x((%)) -
—x((%)) On the other hand, the pole divisors of j and j+S*; are |
(o = 48(%) + 12(%) + 16(%) + 3(%) + 3(-3-) + 4(%)
w5+ () () e+ (o) (5):
s -of ) (DA (o)
(@) GEh{E)h{Ge)-Go}

Observing the pole divisors and the values at the cusps of x, y, j and S*j, it is easy to
see that we can take polynomials F, G over Q which satisfy the following:

((L)) and x ((1—72», which are in Q({,), are conjugate over Q, respectively. Since

. , 2F(x)

+S%j= ,
I D x+ )2+ 1)°x
J—S% _ 2G(x)

y o =1 (x+ 1)+ 1)3x3
76 72
FT)= 2, aT' . G(D)= 3, bT',

degF=76 , degG=T72.



MODULAR INVARIANTS AND DEFINING EQUATIONS 285

Therefore,

_ F(x)+ G(x)y
/= (c—1)*8(x + 1)15(x2 +1)3x3

Observing the action of w¥,

_ F3(x)+ G3(x)y _ & .
T (e D)*Bx— 1)1 +1)2x> F(1)= :Z'o 416 =T,

J3

72
Gs(T)= _;obn—i(“T)i .

In the same way as in §3.1, by using the Fourier expansions of x, y, j and j;, we can
determine the coefficients of F and G.

4. Relations for Fricke’s cases.

Displaying our results in §3 requires so much space. Instead, we give relations
between our data and Fricke’s work.

4.1. The case N = 40. We define as follows:

t2+10t+5)3
pS(t)::( ) ’
t
(2t + 5)?
="
P1ol?) 112
t?—13—s
P2olt, S)=——“r*—~

LemMmA 4.1 (Fricke). We have the following sequence of covering maps between
modular curves:

Xo(20) — Xo(10) — Xo(5) — Xo(1)
(T20)020) M T10 FH— T5 +H— ],
where Q(X,(1))=Q(j), Q(Xo(5)=Q(rs), Q(X(10))=Q(z o), and Q(X,(20))=Q( 0, 620)

which (t,,, 0,0) Satisfy the equation 6,02 =T,0* — 127,0> +287,0% —327,0+ 16. Moreover,
the following relations hold:

j=p5(1'-5) s
Ts=P10(T10) »

T10=P20(T20, F20) -
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PROPOSITION 4.1. Writing defining equations of X(20), X,(40) as o?=1t*—
127> 4+ 2872 — 327+ 16, y?>=x%+8x®—2x*+8x2+1, respectively, we have a covering
map @4 from Xy(40) to X(20) as @40(x, y)=(z, 6), where

x*—4x3+10x2—4x+1—y
T=
20x—1)°x
o=(x8—4x7 +4x%—20x5 +22x* —20x3 +4x2 —4x+1
— (2 + 1)(x2 —4x + 1)y)/(2(x — 1)*x?) .

b

PrOOF. In the same way as in §3.1, observing the Fourier expansions of 7, g, x
and y, we obtain the relations. O

THEOREM 4.1. Writing a defining equation of X,40) as y?>=x848x%—2x*+
8x2+ 1, we have a covering map from X(40) to Xo(1) as follows:

Jj= —64(3x>* 4+ 580x23 + 3132x22 4 3580x2! + 30278x2° — 36180x1?
+129100x18 —261740x'7 + 674765x16 — 1008280x15 + 134335214
—1319400x13 4+ 1405908x'2 — 1319400x' ! + 1343352x1° — 1008280x°
+674765x® —261740x7 + 129100x° — 36180x° + 30278 x* + 3580x3
+3132x2 + 580x + 3+ 2(x2° + 300x'° + 1470x!8 + 1100x*7 + 7405x16
—15120x"° +38760x* —46160x!3 + 82450x'%2 — 103960x! + 133044x1°
—103960x° + 82450x8 —46160x” + 38760x°® — 15120x5 + 7405x*
+1100x3 + 1470x? + 300x + 1)y)3/((x — 1)*°(3x* + 2x2 + 3 —2y)3(x* + 2x3
—2x2+2x+1—p)3(x*—10x>+14x2—10x + 1+ y)) .

ProoF. By Lemma 4.1 and Proposition 4.1, we have the relation j=psop, o

P20°@a0(x, y). Eliminating y?, we obtain the formula. O
4.2. The case N=48. We define as follows:
27(¢ + 1)(9t + 1)3
pay=21H DO
t
12t +9)?
po(t) =2t
27(t+4)
t(t+6
P12(t)= (t+6) )
2
t2—11—s
P2t 8)=——r

2
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LemMmaA 4.2 (Fricke). We have the following sequence of covering maps between
modular curves:

Xo24) — X(12) — Xo(6) — X,(3) — Xo(1)
(T24:024) F— T4y +— T¢ +— 13 +— j,
where Q(Xo(1))=Q(j), Q(Xo(3)=Q(r3), Q(Xo(6)=Qlte), Q(Xo(12))=Q(r,,), and
Q(Xo(24)=Q 144, G54) Which (t,4, 0,4) satisfy the equation ,,°=1,,*—221,,>—
481,,—23. Moreover, the following relations hold:
J=p3(13),
T3 =Pé(176) >
T6=P12(T12) »
T12=P24(T24, 024) -

PROPOSITION 4.2. Writing defining equations of X,(24), X(48) as 6% =14 —227% —
481 —23, y*=x8%+14x*+1, respectively, we have a covering map @,g from Xy(48) to
Xo(24) as @45(x, y)=(z, 6), where

x*—4x*+10x2—4x+1—y

2(x—1)*x
s=(x®—4x7 +4x5% —4x> —10x* —4x3 +4x>—4x + 1
—(x*+ 1)(x2—4x+ D)p)/(2(x — 1)*x?) .

Proor. Similarly with §3.1, observing the Fourier expansions of 7, g, x and y, we
obtain the relations. ‘ O

=

b

THEOREM 4.2. Writing a defining equation of X, 0(48) as y*=x8+14x*+ 1, we have
a covering map from Xy(48) to Xy(1) as follows:

Jj=—16(x®+12x7 —36x5+84x> — 58x* + 84x> —36x%+ 12x
+1—2(x*+6x2 4 1)y)3(x2* + 348x23 —972x2% + 5028 x>*
—11070x2° 4+ 44148x1° —94620x'8 + 256908x17 —415761x1¢
+ 874968x15 —1216152x14+1964328x13—1765732x!?
+1964328x!1 —1216152x!° + 874968x° —415761x3 +256908x"
—94620x5 +44148x° —11070x* 4+ 5028 x> —972x2 4+ 348x + 1
—2(x*+6x%+1)(x*®+168x15 —456x1% +1272x13 —1124x12
+4392x'1 —7800x1° 4 18744x° — 14010x® + 18744x7 — 7800x°
4 4392x5 — 1124x* + 1272x3 — 456x% + 168x + 1)y)*/((x — 1)*8(x* + 6x
+1=2y)*(x* —2x3 4+ 6x2 —2x + 1 —y)3(2x(x2 + 1) — y)3(2(x*
—3x3+6x2—3x+1)—y)(x*—6x3+6x2—6x+1+y)).
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Proor. By Lemma 4.2 and Proposition 4.2, we have the relation j=p;opgop,,°
D24°P45(x, ¥). Eliminating y?, we obtain the formula. O
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