Formulae for Relating the Modular Invariants and Defining Equations of $X_0(40)$ and $X_0(48)$

Takeshi HIBINO

Waseda University
(Communicated by T. Suzuki)

1. Introduction.

Let N be a positive integer and let $X_0(N)$ be the modular curve over **Q** associated to the modular group $\Gamma_0(N)$. As a defining equation of $X_0(N)$, we have the modular equation of level N, which is written in the following form:

$$F_N(j, j_N) = 0$$
, $F_N(S, T) \in \mathbb{Z}[S, T]$,

where j=j(z) is the modular invariant, $j_N=j_N(z)=j(Nz)$, and z is the natural coordinate on $\mathcal{H}=\{z\in\mathbb{C}\,|\,Im(z)>0\}$. This equation has many useful properties, but its degree and coefficients are too large to be applied to practical calculations on $X_0(N)$. In the case of a hyperelliptic modular curve, its more manageable defining equation, which we call the normal form of the hyperelliptic curve, has been given by N. Murabayashi ([7]) and M. Shimura ([11]). In particular, for a hyperelliptic curve of the type $X_0(N)$, T. Hibino and N. Murabayashi ([4]) found a certain relation between the modular equation of level N and its normal form except for N=40, 48. The relation gives a formula expressing j in terms of the functions x, y on $X_0(N)$ which satisfy the normal form $y^2=f(x)$, $f(T)\in\mathbb{Q}[T]$.

In this paper, we deal with the remaining cases to complete our task. To be specific, for the defining equations $y^2 = x^8 + 8x^6 - 2x^4 + 8x^2 + 1$, $y^2 = x^8 + 14x^4 + 1$ for N = 40, 48, respectively, we give formulae expressing j in terms of these x, y (Theorems 4.1, 4.2).

2. Basic idea for expressing j.

In the following, we sketch our idea ([4]) which is based on the computation of the Fourier coefficients of some modular forms (cf. [3], [5], [9], [12]). Let $Aut(X_0(N))$ be the group of automorphisms of $X_0(N)$ over \mathbb{C} . For a positive integer $d \neq 1$ dividing

N, let w_d be the Atkin-Lehner involution on $X_0(N)$ whereas we assume that w_1 means the identity morphism over $X_0(N)$. From now on we assume that $X_0(N)$ is hyperelliptic with genus g.

Let $S_2(\Gamma_0(N))$ be the vector space over \mathbb{C} of cusp forms of weight 2 for $\Gamma_0(N)$. Let $\left(\frac{1}{0}\right)$ denote the point of $X_0(N)$ represented by $\sqrt{-1}\infty$. If $\left(\frac{1}{0}\right)$ is not a Weierstrass point, one can choose a basis h_1, \dots, h_g of $S_2(\Gamma_0(N))$ with the following Fourier expansions:

$$h_{1}(z) = q^{g} + s_{1}^{(g+1)}q^{g+1} + \dots + s_{1}^{(i)}q^{i} + \dots ,$$

$$h_{2}(z) = q^{g-1} + s_{2}^{(g)}q^{g} + \dots + s_{2}^{(i)}q^{i} + \dots ,$$

$$\vdots$$

$$h_{q}(z) = q + s_{q}^{(2)}q^{2} + \dots + s_{q}^{(i)}q^{i} + \dots ,$$

where $q = e^{2\pi\sqrt{-1}z}$ and the coefficients $s_k^{(i)}$ are rational numbers. We put $x = h_2(z)/h_1(z) = q^{-1} + \cdots$. Then x gives a covering map of degree two from $X_0(N)$ to the projective line (cf. [11]). Now we put $y = \frac{q}{h_1(z)} \frac{dx}{dq} = -q^{-(g+1)} + \cdots$. Then x and y satisfy an equation of the type as above, which is viewed as a defining equation of $X_0(N)$. Observing the Fourier coefficients of x and y, we can recursively determine the coefficients of f(x).

Denote the function field of $X_0(N)$ defined over \mathbb{Q} by $\mathbb{Q}(X_0(N))$. Let w_d^* be the automorphism of $\mathbb{Q}(X_0(N))$ induced by w_d . From the action of w_d on $S_2(\Gamma_0(N))$, we explicitly describe the action of w_d^* on the generators x and y of $\mathbb{Q}(X_0(N))$. Then, in the cases N=40, 48, we obtain the following result:

PROPOSITION 2.1. A defining equation of $X_0(N)$ and the action of w_d^* on x and y are given in the table below:

N	f(x)	$d, (w_d^*x, w_d^*y)$				
40	$x^8 + 8x^6 - 2x^4 + 8x^2 + 1$	$5, \left(-\frac{1}{x}, -\frac{y}{x^4}\right); 8, \left(-\frac{x-1}{x+1}, -\frac{4y}{(x+1)^4}\right)$				
48	$x^8 + 14x^4 + 1$	$3, \left(-\frac{1}{x}, -\frac{y}{x^4}\right); 16, \left(-\frac{x-1}{x+1}, -\frac{4y}{(x+1)^4}\right)$				

When $X_0(N)$ is hyperelliptic with N square-free, except for N=37, we recall the basic idea of [4] for expressing j in terms of x, y. For a positive integer M for which w_M is a hyperelliptic involution, i.e. $w_M^*x = x$ and $w_M^*y = -y$, we put $j_M = w_M^*j$. Then $j+j_M$ and $(j-j_M)/y$ are w_M^* -invariant. Therefore they are rational functions of x,

determined explicitly by observing the pole divisors and the values at the cusps of x, y, j, and j_M , and also by comparing the Fourier expansions. Calculation of the values of x is as follows. For any cusp P on $X_0(N)$, excluding $\left(\frac{1}{0}\right)$ and $w_M\left(\left(\frac{1}{0}\right)\right)$, let us denote by w the Atkin-Lehner involution which satisfies $P=w\left(\left(\frac{1}{0}\right)\right)$. Since the pole divisors of x are $(x)_\infty = \left(\frac{1}{0}\right) + w_M\left(\left(\frac{1}{0}\right)\right)$, the value of x(P) is calculated by $x(P) = x\left(w\left(\left(\frac{1}{0}\right)\right)\right) = w*x\left(\left(\frac{1}{0}\right)\right)$, where the function w*x is obtained as a rational function of x through the action of the Atkin-Lehner involution on $S_2(\Gamma_0(N))$.

But this method cannot be applied to the cases N=37, 40 or 48, because it requires that the hyperelliptic involution should be of Atkin-Lehner type, which is not the case for these three cases.

For each level N for which $X_0(N)$ is hyperelliptic, A. Ogg produced a method to check whether its hyperelliptic involution is of Atkin-Lehner type ([8]) and proved:

LEMMA 2.1 (A. Ogg). The hyperelliptic involutions of $X_0(40)$, $X_0(48)$ are defined by $\begin{pmatrix} -10 & 1 \\ -120 & 10 \end{pmatrix}$, $\begin{pmatrix} -6 & 1 \\ -48 & 6 \end{pmatrix}$, respectively.

3. The cases N=40 and 48.

In this section, we discuss the cases N=40, 48. In any of these cases, $Aut(X_0(N))$ is not generated by the Atkin-Lehner involutions.

For a positive divisor d of N with 1 < d < N and for an integer i prime to N, let $\left(\frac{i}{d}\right)$ denote the point of $X_0(N)$ which is represented by $\frac{i}{d}$. Then $\left(\frac{i}{d}\right)$ is defined over $\mathbf{Q}(\zeta_n)$, where $n = \gcd(d, N/d)$ and ζ_n is a primitive n-th root of unity. Reducing i modulo n, we have $\varphi(n)$ Galois-conjugate cusps associated to d. Moreover denote by $\left(\frac{0}{1}\right)$ and $\left(\frac{1}{0}\right)$ the points of $X_0(N)$ which are represented by 0 and $\sqrt{-1}\infty$, respectively.

3.1. The case N=40. In case N=40, $\operatorname{Aut}(X_0(40))$ is generated by the Atkin-Lehner involutions w_5 , w_8 , and the automorphism v which is induced from the matrix $\begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$ (see [1] and [6]). The hyperelliptic involution S, defined by the matrix $\begin{pmatrix} -10 & 1 \\ -120 & 10 \end{pmatrix}$, is factored into vw_8vw_{40} . In the above notation, the cusps of X_0 (40) are $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} \frac{1}{2} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{4} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{8} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{5} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{10} \end{pmatrix}$, $\begin{pmatrix} \frac{1}{20} \end{pmatrix}$ and $\begin{pmatrix} \frac{1}{0} \end{pmatrix}$. It is easy to see how the generators

act on the cusps. These actions are listed in the table below, e.g. $w_5\left(\left(\frac{0}{1}\right)\right) = \left(\frac{1}{5}\right)$:

	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$
w ₅	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$
w ₈	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{0}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{5}\right)$
v	$\left(\frac{1}{2}\right)$	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$

Let x and y be the functions of $X_0(40)$ defined in Proposition 2.1. It is easy to see that $v^*x = -x$ and $v^*y = y$. The pole divisors of x, y are $(x)_{\infty} = \left(\frac{1}{0}\right) + \left(\frac{1}{4}\right)$, $(y)_{\infty} = 4\left\{\left(\frac{1}{0}\right) + \left(\frac{1}{4}\right)\right\}$, respectively. Thus the values of x at the cusps are determined in the same way as in the square-free case:

Lемма 3.1.		$\left(\frac{0}{1}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$
	x	1	-1	∞	0	-1	1	0	∞

On the other hand, the pole divisors of j and S*j are

$$(j)_{\infty} = 40\left(\frac{0}{1}\right) + 10\left(\frac{1}{2}\right) + 5\left(\frac{1}{4}\right) + 5\left(\frac{1}{8}\right) + 8\left(\frac{1}{5}\right) + 2\left(\frac{1}{10}\right) + \left(\frac{1}{20}\right) + \left(\frac{1}{0}\right),$$

$$(S*j)_{\infty} = 40\left(\frac{1}{10}\right) + 10\left(\frac{1}{5}\right) + 5\left(\frac{1}{0}\right) + 5\left(\frac{1}{20}\right) + 8\left(\frac{1}{2}\right) + 2\left(\frac{0}{1}\right) + \left(\frac{1}{8}\right) + \left(\frac{1}{4}\right),$$

$$(j \pm S*j)_{\infty} = 40\left\{\left(\frac{0}{1}\right) + \left(\frac{1}{10}\right)\right\} + 10\left\{\left(\frac{1}{2}\right) + \left(\frac{1}{5}\right)\right\} + 5\left\{\left(\frac{1}{0}\right) + \left(\frac{1}{4}\right)\right\} + 5\left\{\left(\frac{1}{20}\right) + \left(\frac{1}{8}\right)\right\}.$$

Observing the pole divisors and the values of x, y, j, and S*j at the cusps, it is easy to see that we can take polynomials F, G over \mathbf{Q} which satisfy the following:

$$j+S*j=\frac{2F(x)}{(x-1)^{40}(x+1)^{10}x^5}$$
 , $\frac{j-S*j}{y}=\frac{2G(x)}{(x-1)^{40}(x+1)^{10}x^5}$,

$$F(T) = \sum_{i=0}^{60} a_i T^i \quad , \quad G(T) = \sum_{i=0}^{56} b_i T^i \, ,$$
$$\deg F = 60 \quad , \quad \deg G = 56 \, .$$

Therefore,

$$j = \frac{F(x) + G(x)y}{(x-1)^{40}(x+1)^{10}x^5}.$$

Observing the action of w_5^* , we see

$$j_5 = \frac{F_5(x) + G_5(x)y}{(x-1)^{10}(x+1)^{40}x^5}, \quad F_5(T) = -\sum_{i=0}^{60} a_{60-i}(-T)^i,$$

$$G_5(T) = \sum_{i=0}^{56} b_{56-i}(-T)^i.$$

Finally, using the Fourier expansions of x, y, j and j_5 , we can determine the coefficients of F and G. Note that, in determining the coefficients a_i , b_i , the use of the Fourier expansion of j_5 is more effective than the use of those of S^*j since the coefficients of F are just a rearrangement of those of F_5 up to sign in reverse order and since the same goes for the coefficients b_i of the polynomials G and G_5 .

3.2. The case N=48. In case N=48, $\operatorname{Aut}(X_0(48))$ is generated by the Atkin-Lehner involutions w_3 , w_{16} , and the automorphism v which is induced from the matrix $\begin{pmatrix} 1 & \frac{1}{4} \\ 0 & 1 \end{pmatrix}$ (see [1] and [6]). The hyperelliptic involution S, defined by the matrix $\begin{pmatrix} -6 & 1 \\ -48 & 6 \end{pmatrix}$, is factored into $v^2w_{16}v^2w_{48}$. We note that v is not an involution, but so is v^2 . In the notation as above, the cusps are $\left(\frac{0}{1}\right)$, $\left(\frac{1}{2}\right)$, $\left(\frac{1}{4}\right)$, $\left(\frac{3}{4}\right)$, $\left(\frac{1}{8}\right)$, $\left(\frac{1}{16}\right)$, $\left(\frac{1}{3}\right)$, $\left(\frac{1}{6}\right)$, $\left(\frac{1}{12}\right)$, $\left(\frac{7}{12}\right)$, $\left(\frac{1}{24}\right)$ and $\left(\frac{1}{0}\right)$. Let x and y be the modular functions of $X_0(48)$ defined in Proposition 2.1. It is easy to see that $v^{2*}x = -x$ and $v^{2*}y = y$. The pole divisors of x, y are $(x)_{\infty} = \left(\frac{1}{0}\right) + \left(\frac{1}{8}\right)$, $(y)_{\infty} = 4\left\{\left(\frac{1}{0}\right) + \left(\frac{1}{8}\right)\right\}$. Thus the values of x at the cusps, except for $\left(\frac{1}{4}\right)$, $\left(\frac{3}{4}\right)$, $\left(\frac{1}{12}\right)$ and $\left(\frac{7}{12}\right)$, are determined in the same way as in the square-free case:

It is hard to see the action of v^* on x, y. Since we cannot obtain $(vw_{48})^*x$ as a rational function in x, the value $x\left(\left(\frac{1}{4}\right)\right)$ is not determined, though $\left(\frac{1}{4}\right)=vw_{48}\left(\left(\frac{1}{0}\right)\right)$. The cases $\left(\frac{3}{4}\right)$, $\left(\frac{1}{12}\right)$ and $\left(\frac{7}{12}\right)$ are in a similar situation to this. Thus we cannot determine the values of x at these four cusps by our method. However, we can obtain a few relations among the values as follows. The values $x\left(\left(\frac{1}{4}\right)\right)$ and $x\left(\left(\frac{1}{3}\right)\right)$, $x\left(\left(\frac{1}{12}\right)\right)$ and $x\left(\left(\frac{7}{12}\right)\right)$, which are in $\mathbf{Q}(\zeta_4)$, are conjugate over \mathbf{Q} , respectively. Since $S\left(\left(\frac{1}{4}\right)\right)=\left(\frac{1}{12}\right)$ and $w_3\left(\left(\frac{1}{4}\right)\right)=\left(\frac{1}{12}\right)$, we see that $x\left(\left(\frac{1}{4}\right)\right)=x\left(\left(\frac{1}{12}\right)\right)=x\left(w_3\left(\left(\frac{1}{4}\right)\right)=w_3^*x\left(\left(\frac{1}{4}\right)\right)=-1/x\left(\left(\frac{1}{4}\right)\right)$. Then the value $x\left(\left(\frac{1}{4}\right)\right)$ satisfies the equation $x\left(\left(\frac{1}{4}\right)\right)=v^2*x\left(\left(\frac{3}{4}\right)\right)=-x\left(\left(\frac{3}{4}\right)\right)$, i.e. $x\left(\left(\frac{1}{4}\right)\right)=-x\left(\left(\frac{3}{4}\right)\right)$. Similarly we obtain $x\left(\left(\frac{1}{12}\right)\right)^2+1=0$ and $x\left(\left(\frac{1}{12}\right)\right)=-x\left(\left(\frac{7}{12}\right)\right)$. On the other hand, the pole divisors of f and f are f and f and

$$(j)_{\infty} = 48\left(\frac{0}{1}\right) + 12\left(\frac{1}{2}\right) + 16\left(\frac{1}{3}\right) + 3\left(\frac{1}{4}\right) + 3\left(\frac{3}{4}\right) + 4\left(\frac{1}{6}\right)$$

$$+ 3\left(\frac{1}{8}\right) + \left(\frac{1}{12}\right) + \left(\frac{7}{12}\right) + 3\left(\frac{1}{16}\right) + \left(\frac{1}{24}\right) + \left(\frac{1}{0}\right),$$

$$(j \pm S^*j)_{\infty} = 48\left\{\left(\frac{0}{1}\right) + \left(\frac{1}{6}\right)\right\} + 16\left\{\left(\frac{1}{2}\right) + \left(\frac{1}{3}\right)\right\} + 3\left\{\left(\frac{1}{4}\right) + \left(\frac{1}{12}\right)\right\}$$

$$+ 3\left\{\left(\frac{3}{4}\right) + \left(\frac{7}{12}\right)\right\} + 3\left\{\left(\frac{1}{0}\right) + \left(\frac{1}{8}\right)\right\} + 3\left\{\left(\frac{1}{16}\right) + \left(\frac{1}{24}\right)\right\}.$$

Observing the pole divisors and the values at the cusps of x, y, j and S*j, it is easy to see that we can take polynomials F, G over Q which satisfy the following:

$$j+S*j = \frac{2F(x)}{(x-1)^{48}(x+1)^{16}(x^2+1)^3x^3},$$

$$\frac{j-S*j}{y} = \frac{2G(x)}{(x-1)^{48}(x+1)^{16}(x^2+1)^3x^3},$$

$$F(T) = \sum_{i=0}^{76} a_i T^i, G(T) = \sum_{i=0}^{72} b_i T^i,$$

$$\deg F = 76, \deg G = 72.$$

Therefore,

$$j = \frac{F(x) + G(x)y}{(x-1)^{48}(x+1)^{16}(x^2+1)^3x^3}.$$

Observing the action of w_3^* ,

$$j_3 = \frac{F_3(x) + G_3(x)y}{(x+1)^{48}(x-1)^{16}(x^2+1)^3x^3}, \qquad F_3(T) = -\sum_{i=0}^{76} a_{76-i}(-T)^i,$$
$$G_3(T) = \sum_{i=0}^{72} b_{72-i}(-T)^i.$$

In the same way as in §3.1, by using the Fourier expansions of x, y, j and j_3 , we can determine the coefficients of F and G.

4. Relations for Fricke's cases.

Displaying our results in §3 requires so much space. Instead, we give relations between our data and Fricke's work.

4.1. The case N=40. We define as follows:

$$p_5(t) = \frac{(t^2 + 10t + 5)^3}{t},$$

$$p_{10}(t) = \frac{t(2t + 5)^2}{t + 2},$$

$$p_{20}(t, s) = \frac{t^2 - 13 - s}{4}.$$

LEMMA 4.1 (Fricke). We have the following sequence of covering maps between modular curves:

$$X_0(20) \longrightarrow X_0(10) \longrightarrow X_0(5) \longrightarrow X_0(1)$$

 $(\tau_{20}, \sigma_{20}) \longmapsto \tau_{10} \longmapsto \tau_5 \longmapsto j$,

where $\mathbf{Q}(X_0(1)) = \mathbf{Q}(j)$, $\mathbf{Q}(X_0(5)) = \mathbf{Q}(\tau_5)$, $\mathbf{Q}(X_0(10)) = \mathbf{Q}(\tau_{10})$, and $\mathbf{Q}(X_0(20)) = \mathbf{Q}(\tau_{20}, \sigma_{20})$ which (τ_{20}, σ_{20}) satisfy the equation $\sigma_{20}^2 = \tau_{20}^4 - 12\tau_{20}^3 + 28\tau_{20}^2 - 32\tau_{20} + 16$. Moreover, the following relations hold:

$$j = p_5(\tau_5)$$
,
 $\tau_5 = p_{10}(\tau_{10})$,
 $\tau_{10} = p_{20}(\tau_{20}, \sigma_{20})$.

PROPOSITION 4.1. Writing defining equations of $X_0(20)$, $X_0(40)$ as $\sigma^2 = \tau^4 - 12\tau^3 + 28\tau^2 - 32\tau + 16$, $y^2 = x^8 + 8x^6 - 2x^4 + 8x^2 + 1$, respectively, we have a covering map φ_{40} from $X_0(40)$ to $X_0(20)$ as $\varphi_{40}(x, y) = (\tau, \sigma)$, where

$$\tau = \frac{x^4 - 4x^3 + 10x^2 - 4x + 1 - y}{2(x - 1)^2 x},$$

$$\sigma = (x^8 - 4x^7 + 4x^6 - 20x^5 + 22x^4 - 20x^3 + 4x^2 - 4x + 1) - (x^2 + 1)(x^2 - 4x + 1)y)/(2(x - 1)^4 x^2).$$

PROOF. In the same way as in §3.1, observing the Fourier expansions of τ , σ , x and y, we obtain the relations.

THEOREM 4.1. Writing a defining equation of $X_0(40)$ as $y^2 = x^8 + 8x^6 - 2x^4 + 8x^2 + 1$, we have a covering map from $X_0(40)$ to $X_0(1)$ as follows:

$$j = -64(3x^{24} + 580x^{23} + 3132x^{22} + 3580x^{21} + 30278x^{20} - 36180x^{19}$$

$$+ 129100x^{18} - 261740x^{17} + 674765x^{16} - 1008280x^{15} + 1343352x^{14}$$

$$- 1319400x^{13} + 1405908x^{12} - 1319400x^{11} + 1343352x^{10} - 1008280x^{9}$$

$$+ 674765x^{8} - 261740x^{7} + 129100x^{6} - 36180x^{5} + 30278x^{4} + 3580x^{3}$$

$$+ 3132x^{2} + 580x + 3 + 2(x^{20} + 300x^{19} + 1470x^{18} + 1100x^{17} + 7405x^{16}$$

$$- 15120x^{15} + 38760x^{14} - 46160x^{13} + 82450x^{12} - 103960x^{11} + 133044x^{10}$$

$$- 103960x^{9} + 82450x^{8} - 46160x^{7} + 38760x^{6} - 15120x^{5} + 7405x^{4}$$

$$+ 1100x^{3} + 1470x^{2} + 300x + 1)y)^{3}/((x - 1)^{40}(3x^{4} + 2x^{2} + 3 - 2y)^{2}(x^{4} + 2x^{3} - 2x^{2} + 2x + 1 - y)^{5}(x^{4} - 10x^{3} + 14x^{2} - 10x + 1 + y)).$$

PROOF. By Lemma 4.1 and Proposition 4.1, we have the relation $j=p_5 \circ p_{10} \circ p_{20} \circ \varphi_{40}(x, y)$. Eliminating y^2 , we obtain the formula.

4.2. The case N = 48. We define as follows:

$$p_3(t) = \frac{27(t+1)(9t+1)^3}{t},$$

$$p_6(t) = \frac{t(2t+9)^2}{27(t+4)},$$

$$p_{12}(t) = \frac{t(t+6)}{2},$$

$$p_{24}(t,s) = \frac{t^2 - 11 - s}{2}.$$

LEMMA 4.2 (Fricke). We have the following sequence of covering maps between modular curves:

$$X_0(24) \longrightarrow X_0(12) \longrightarrow X_0(6) \longrightarrow X_0(3) \longrightarrow X_0(1)$$

 $(\tau_{24}, \sigma_{24}) \longmapsto \tau_{12} \longmapsto \tau_6 \longmapsto \tau_3 \longmapsto j,$

where $\mathbf{Q}(X_0(1)) = \mathbf{Q}(j)$, $\mathbf{Q}(X_0(3)) = \mathbf{Q}(\tau_3)$, $\mathbf{Q}(X_0(6)) = \mathbf{Q}(\tau_6)$, $\mathbf{Q}(X_0(12)) = \mathbf{Q}(\tau_{12})$, and $\mathbf{Q}(X_0(24)) = \mathbf{Q}(\tau_{24}, \sigma_{24})$ which (τ_{24}, σ_{24}) satisfy the equation $\sigma_{24}^2 = \tau_{24}^4 - 22\tau_{24}^2 - 48\tau_{24} - 23$. Moreover, the following relations hold:

$$j = p_3(\tau_3)$$
,
 $\tau_3 = p_6(\tau_6)$,
 $\tau_6 = p_{12}(\tau_{12})$,
 $\tau_{12} = p_{24}(\tau_{24}, \sigma_{24})$.

PROPOSITION 4.2. Writing defining equations of $X_0(24)$, $X_0(48)$ as $\sigma^2 = \tau^4 - 22\tau^2 - 48\tau - 23$, $y^2 = x^8 + 14x^4 + 1$, respectively, we have a covering map ϕ_{48} from $X_0(48)$ to $X_0(24)$ as $\phi_{48}(x, y) = (\tau, \sigma)$, where

$$t = \frac{x^4 - 4x^3 + 10x^2 - 4x + 1 - y}{2(x - 1)^2 x},$$

$$s = (x^8 - 4x^7 + 4x^6 - 4x^5 - 10x^4 - 4x^3 + 4x^2 - 4x + 1)$$

$$-(x^2 + 1)(x^2 - 4x + 1)y)/(2(x - 1)^4 x^2).$$

PROOF. Similarly with §3.1, observing the Fourier expansions of τ , σ , x and y, we obtain the relations.

THEOREM 4.2. Writing a defining equation of $X_0(48)$ as $y^2 = x^8 + 14x^4 + 1$, we have a covering map from $X_0(48)$ to $X_0(1)$ as follows:

$$j = -16(x^8 + 12x^7 - 36x^6 + 84x^5 - 58x^4 + 84x^3 - 36x^2 + 12x + 1 - 2(x^4 + 6x^2 + 1)y)^3(x^{24} + 348x^{23} - 972x^{22} + 5028x^{21} - 11070x^{20} + 44148x^{19} - 94620x^{18} + 256908x^{17} - 415761x^{16} + 874968x^{15} - 1216152x^{14} + 1964328x^{13} - 1765732x^{12} + 1964328x^{11} - 1216152x^{10} + 874968x^9 - 415761x^8 + 256908x^7 - 94620x^6 + 44148x^5 - 11070x^4 + 5028x^3 - 972x^2 + 348x + 1 - 2(x^4 + 6x^2 + 1)(x^{16} + 168x^{15} - 456x^{14} + 1272x^{13} - 1124x^{12} + 4392x^{11} - 7800x^{10} + 18744x^9 - 14010x^8 + 18744x^7 - 7800x^6 + 4392x^5 - 1124x^4 + 1272x^3 - 456x^2 + 168x + 1)y)^3/((x - 1)^{48}(x^4 + 6x^2 + 1)^4(x^4 - 2x^3 + 6x^2 - 2x + 1 - y)^3(2x(x^2 + 1) - y)^3(2(x^4 - 3x^3 + 6x^2 - 3x + 1) - y)(x^4 - 6x^3 + 6x^2 - 6x + 1 + y)).$$

PROOF. By Lemma 4.2 and Proposition 4.2, we have the relation $j = p_3 \circ p_6 \circ p_{12} \circ p_{24} \circ \varphi_{48}(x, y)$. Eliminating y^2 , we obtain the formula.

ACKNOWLEDGMENT. I would like to thank Professors Y. Hasegawa and F. Momose for their patience in explaining some facts about the group of automorphisms of $X_0(N)$ over C.

References

- [1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_0(m)$, Math. Ann. 185 (1970), 134–160.
- [2] R. FRICKE, Die Elliptischen Funktionen und ihre Anwendungen, Teubner (1922).
- [3] K. Hashimoto, On Brandt matrices of Eichler orders, Memoirs of the School of Sci. and Engn. Waseda Univ. (1995), 143–165.
- [4] T. Hibino and N. Murabayashi, Modular equations of hyperelliptic $X_0(N)$ and an application, Acta Arith. 82 (1997), 279–291.
- [5] H. HIJIKATA, Explicit formula of the traces of Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan 26 (1974), 56-82.
- [6] M. A. Kenku and F. Momose, Automorphism groups of the modular curve $X_0(N)$, Compositio Math. 65 (1988), 51–80.
- [7] N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), 405-418.
- [8] A. OGG, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462.
- [9] A. Pizer, An algorithm for computing modular forms on $\Gamma_0(N)$, J. Algebra 64 (1980), 340–390.
- [10] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami/Princeton Univ. Press (1971).
- [11] M. Shimura, Defining equations of modular curves $X_0(N)$, Tokyo J. Math. 18 (1995), 443–456.
- [12] M. Yamauchi, On the traces of Hecke operators for a normalizer of $\Gamma_0(N)$, J. Math. Kyoto Univ. 13 (1973), 403-411.

Present Address:

Advanced Research Institute for Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169–8555 Japan.