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Abstract. Let (M = G/K, g, J ) be a Kähler C-space with two isotropy summands. We classify all such
spaces. Thus, by using previous work of O. Ikawa, we obtain a large class of examples where the differential
equation ∇ẋ ẋ = kJ ẋ of the motion of a charged particle under the electromagnetic field kJ can be explicitly solved.
In particular, geodesics curves in these spaces can also be described.

1. Introduction

Let (M, g) be a Riemannian manifold, F a closed 2-form, and X a vector field on M .
We denote by ιX : Λp(M) → Λp−1(M) the interior product operator induced by X, and by
L : T M → T ∗M the Legendre transformation defined by u �→ L(u), L(u)(v) = g(u, v) (v ∈
T M). A curve x(t) in M is called the motion of a charged particle under the electromagnetic
field F if it satisfies the differential equation

∇ẋ ẋ = −L−1(ιẋF ) ,

where ∇ is the Levi-Civita connection of M . This equation has its origin in general relativity
([Mi-Th-Wh]). When F = 0 then x(t) is a geodesic in M . If M is a Kähler manifold with
complex structure J there is a natural choice of an electromagnetic field F , namely a scalar

multiple of the Kähler form ω, defined by ω(X, Y ) = g(X, JY ). Since −L−1(ιXω) = JX, a
curve x(t) is the motion of a charged particle under the electromagnetic field κω if and only
if

(1.1) ∇ẋ ẋ = kJ ẋ .

In a series of papers ([Ik1], [Ik2], [Ik3], [Ik4]) O. Ikawa studied the above equation for
various homogeneous spaces. One of the questions he studied was the existence of periodic
solutions of (1.1). He gave an affirmative answer for certain homogeneous semi-Riemannian
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manifolds, Sasakian manifolds, and Hermitian symmetric spaces. Note that it is a result of S.
Kobayashi ([O’N]) that a geodesic in a homogeneous Riemannian manifold is simple.

Also, in [Ik3] Ikawa gave explicit solutions for (1.1) in the case that M is a Hermit-
ian symmetric space (thus extending results of T. Adachi, S. Maeda, and S. Udagawa in
[Ad-Ma-Ud]), and a Kähler C-space with certain conditions, one of which is that the sec-
ond Betti number of M is b2(M) = 1. In the present work we give a complete classification
of the Kähler C-spaces M = G/K considered in [Ik3], and for which equation (1.1) can be
solved explicitly. This includes cases where G is either a classical or an exceptional simple
Lie group.

Further, by combining our results with previous work of R. Dohira ([Doh]) it is possible
to give a complete description of geodesic curves in such spaces. For an appropriate choice
of the G-invariant metric on M = G/K these geodesic curves are homogeneous, and their
complete classification was given in the recent work [A-A] of D.V. Alekseevsky and the first
author.

In particular we show:

THEOREM A. Let M = G/K be a Kähler C-space for which the isotropy representa-
tion decomposes into two non-equivalent irreducible submodules. Then M is locally isomor-
phic to one of the spaces presented on Table 1.

TABLE 1. The Kähler C-spaces with m = m1 ⊕ m2.

G G/K

B� = SO(2� + 1) SO(2� + 1)/U(i) × SO(2(� − i) + 1) (� > 0, i �= 1)

C� = Sp(�) Sp(�)/U(i) × Sp(� − i) (� > 0, i �= �)

D� = SO(2�) SO(2�)/U(i) × SO(2(� − i)) (� > 0, i �= 1, i �= �)

G2 G2/U(2) (U(2) is represented by the short root of G2)
F4 F4/SO(7) × U(1)

F4/Sp(3) × U(1)

E6 E6/SU(6) × U(1)

E6/SU(2) × SU(5) × U(1)

E7 E7/SU(7) × U(1)

E7/SU(2) × SO(10) × U(1)

E7/SO(12) × U(1)

E8 E8/E7 × U(1)

E8/SO(14) × U(1)

THEOREM B. For the Kähler C-spaces presented in Theorem A, the equation of mo-
tion of a charged particle under the electromagnetic field is given in Theorem 1 below. In
particular, geodesic curves on these spaces are explicity described by Theorem 2.

2. Motion of charged particles and geodesic curves in Riemannian homogeneous
spaces

We will review some of the results in [Ik3] and [Doh]. Let (M = G/K, g) be a Rie-
mannian homogeneous space, where G is a connected Lie group and K a compact subgroup
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of G. We denote by g and k the Lie algebras of G and K respectively. Since K is compact
there exists an Ad(K)-invariant subspace m of g such that g = k ⊕ m. It is known that the
tangent space ToM of M at the origin o = eK of M can be identified with m. The G-invariant
metric g corresponds to an Ad(K)-invariant inner product 〈, 〉 on m. We assume that the
following conditions are satisfied:

There exist Ad(K)-invariant subspaces m1 and m2 of m such that
(1) m = m1 ⊕ m2,
(2) [m1,m1] ⊂ k ⊕ m2, [m2,m2] ⊂ k, [m1,m2] ⊂ m1, [k,mi] ⊂ mi (i = 1, 2),
(3) There exists a non-zero constant c ∈ R such that

〈[X,Y ]m2, Z〉 + c〈X, [Z, Y ]〉 = 0

for all X,Y ∈ m1, Z ∈ m2 (here Xi denotes the mi-component of X ∈ g), and
(4) For W ∈ Z(k), the center of k, we define an endomorphism I : m → m by

I (X) = [W,X1] + 1

c
[W,X2] .

Since Ad(k)I = I Ad(k) for all k ∈ K , the endomorphism I can be extended to a G-invariant
(1, 1) tensor I . Then we have that g(IX, Y ) + g(X, IY ) = 0 for all X,Y ∈ X (M). We
denote a homogeneous space satisfying conditions (1) − (4) by (G/K, g,m1 ⊕ m2, J, c).

Let k be a constant. A curve x(t) is called the motion of a charged particle under the
electromagnetic field kI if it satisfies the differential equation

(2.2) ∇ẋ ẋ = kI ẋ .

Note that if k = 0 then x(t) is a geodesic.

THEOREM 1 [[Ik3]]. Let (G/K, g,m1 ⊕ m2, J, c) be a Riemannian homogeneous
space as defined above. Let x(t) be the motion of a charged particle defined by (2.2) un-
der the electromagnetic field kI with initial condition x(0) = o and ẋ(0) = X1 + X2

(X1 ∈ m1,X2 ∈ m2). Then x(t) is given by

x(t) = exp t (X1 + cX2 + kW) exp t (1 − c)

(
X2 + k

c
W

)
· o .

If x(t) intersects itself, then it is simply closed.

In the case where k = 0 the above theorem reduces to the following:

THEOREM 2 [[Doh]]. Let (G/K, g,m1⊕m2, c) be a Riemannian homogeneous space
as defined above. Then any geodesic γ (t) in G/K with γ (0) = o and γ̇ (0) = X1 + X2 is
given by

γ (t) = exp t (X1 + cX2) exp t (1 − c)X2 · o .

Note that if c = 1, that is g is the standard metric on G/K , then γ (t) = exp t (X1+X2)·o
is a homogeneous geodesic in G/K . These have been studied extensively by several authors
(see the references in [A-A]).
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3. Description of Kähler C-spaces

A C-space is a compact and simply connected complex homogeneous space (cf. [Wan]).
By a Kähler C-space we mean a C-space M which admits a Kähler metric g and a complex
structure J , such that the group Aut(M, J, g) of holomorphic isometries acts transitively on
M . Hermitian symmetric spaces of compact type are typical examples of such a space. Kähler
C-spaces are called also generalized flag manifolds. In this section we recall the construction
of Kähler C-spaces. For more details we refer to [B-H], [It] and [Tak].

Let G be a compact and connected semisimple Lie group. We denote by g the corre-

sponding Lie algebra and by gC its complexification. We chose a maximal torus T in G, and

let h be the Lie algebra of T . The complexification hC is a Cartan subalgebra of gC. We denote

by R ⊂ (hC)∗ the root system of gC relative to hC and we take the root space decomposition

gC = hC ⊕
∑
α∈R

gC
α .

Here, gC
α = CEα are the 1-dimensional root spaces whose elements Eα satisfy the equation

ad(H)Eα = α(H)Eα , (H ∈ hC) .

Let Π = {α1, . . . , α�} (dim hC = �) be a fundamental system of R. We fix a lexicographic

ordering on (hC)∗ and we denote by R+ the set of positive roots. It is well known that

for any α ∈ R we can choose root vectors Eα ∈ gC
α such that B(Eα,E−α) = −1 and

[Eα,E−α] = −Hα, where Hα ∈ hC is determined by the equation B(H,Hα) = α(H), for

all H ∈ hC. By using the last equation we obtain a natural isomorphism between hC and the

dual space (hC)∗. The normalized root vectors Eα also satisfy the relation

[Eα,Eβ ] =
{
Nα,βEα+β, if α, β, α + β ∈ R

0, if α, β ∈ R,α + β /∈ R

where 0 �= Nα,β = N−α,−β ∈ R (α, β ∈ R). Then we obtain (cf. [Hel])

g = h ⊕
∑

α∈R+
(RAα + RBα) ,

where Aα = Eα + E−α, Bα = √−1(Eα − E−α), α ∈ R+. The complex conjugation

τ on gC with respect to the compact real form g satisfies the relations τ (Eα) = E−α and
τ (E−α) = Eα .

We assume that G is simple. Let ΠK be a subset of Π and put

ΠM = Π\ΠK = {αi1 , . . . , αim } , (1 ≤ i1 ≤ · · · ≤ im ≤ �) .

We set

(3.3) RK = R ∩ 〈ΠK 〉 , R+
K = R+ ∩ 〈ΠK〉 , R+

M = R+\R+
K ,
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where by 〈ΠK〉 we denote the set of roots generated by ΠK . Then

p = hC ⊕
∑

α∈RK

gC
α ⊕

∑
α∈R+

M

gC
α

is a parabolic subgroup of gC (cf. [Al1]). The set k = p∩g is a real subalgebra of g determined
as follows

k = h ⊕
∑

α∈R+
K

(RAα + RBα) .

Let GC be a simply connected complex simple Lie group whose Lie algebra is gC and P

be the parabolic subgroup of GC generated by p. We know that the complex homogeneous

manifold GC/P is compact and simply connected, and that G acts transitively on it. Note
that K = G ∩ P is a connected closed subgroup of G which corresponds to k. The canonical

embedding G → GC gives a diffeomorphism of a compact homogeneous space M = G/K to

a simply connected complex homogeneous space GC/P , and M admits a G-invariant Kähler
metric (cf. [Bo]). Therefore, M = G/K is a Kähler C-space. By a result of A. Borel and F.
Hirzebruch [B-H] the second Betti number of M is b2(M) = m = |ΠM |.

We define a linear subspace m of g as follows:

m =
∑

α∈R+
M

(RAα + RBα) .

Then with respect to the Killing form B we obtain the orthogonal decomposition g = k ⊕ m.
This is a reductive decomposition of M , i.e. [k,m] ⊂ m. We naturally identify m with
the tangent space ToM of M on the identity coset o = eK , and the isotropy representation
χ : K → Aut(m) of K with the restriction of the adjoint representation of K on m, i.e.

χ(K) = AdK
∣∣
m

. We define a complex structure J on m by

JAα = Bα , JBα = −Aα (α ∈ R+
M) .

This gives a G-invariant complex structure on M = G/K and coincides with the canonical

structure induced from the complex homogeneous space GC/P .
Next, we assume that ΠM = {αi : l ≤ i ≤ l}. For n ∈ N, we set

R+(αi , n) =
{
α =

�∑
i=1

mjαj ∈ R+ : mi = n

}
,

and define an Ad(K)-invariant subspace mn of g by

mn =
∑

α∈R+(αi ,n)

(RAα + RBα) .
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Then (cf. [Ik3])

(3.4) m =
∑
n≥1

mn , R+
M =

⋃
n≥1

R+(αi , n) .

Note that mn are non-equivalent to each other. We set m0 = k. Then for n,m ≥ 0 the
following are true:

[k,mn] ⊂ mn , [mn,mm] ⊂ mn+n + m|n−m| , [mn,mn] ⊂ k ⊕ m2n .

According to [Bo] the metric defined by

g
( ∑

n≥1

Xn,
∑
m≥1

Ym

)
= k

∑
n≥1

n(−B(Xn, Yn)) , (Xn ∈ mn, Ym ∈ mm)

is a G-invariant Kähler metric on M .
We are interested in Kähler C-spaces with two isotropy summands. By (3.4) it is suffi-

cient to set R+(αi , n) = 0 for n ≥ 3. Then m = m1 ⊕ m2 and the Kähler metric is given
by

g(X1 + X2, Y1 + Y2) = −kB(X1, Y1) − 2kB(X2, Y2) , (Xi, Yi ∈ mi , i = 1, 2) .

Note that Hermitian symmetric spaces do not belong to this class of spaces since they are
irreducible. (cf. [It]).

In the following we denote by kC, mC and mC
n the complexifications of k, m and mn

respectively. These are complex linear subspaces of gC and we have that

kC = hC ⊕
∑

α∈R+
K

(CEα + CE−α) , mC =
∑

α∈R+
M

(CEα + CE−α) .

We extend the G-invariant complex structure J , without any change of notation, to mC

by complex linearity. For the tangent space mC we obtain the direct sum mC = m+ ⊕ m−,
where the subspaces m+ = ∑

α∈R+
M

CEα and m− = ∑
α∈R+

M
CE−α are the eigenspaces of J

corresponding to the eigenvalues
√−1 and −√−1 respectively. This induces the following

decomposition

mC
n = m+n ⊕ m−n ,

where m+n = ∑
α∈R+(αi ,n) CEα and m−n = ∑

α∈R+(αi ,n) CE−α = τ (m+n). Since

ad(kC)m±n ⊂ m±n the representation (ad(kC),m±) decomposes into a direct sum of irre-
ducible submodules m±n.

Kähler C-spaces can been classified by using the notion of painted Dynkin diagrams.
We will describe this briefly following [Al2], [A-A] and [B-F-R]. Let M = G/K be a Kähler
C-space and Let Π = {α1, . . . , α�} be a simple root system of R, and ΠK = {α1, . . . , αk} be
a basis of the root system RK . The pair (Π,ΠK) can be represented graphically by a painted
Dynkin diagram.
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DEFINITION 1. Let Γ = Γ (Π) be the Dynkin diagram of the simple root system Π .
By painting nodes of Γ corresponding to Π \ ΠK in black, we obtain the painted Dynkin
diagram of M = G/K . In this diagram the system ΠK is determined as the subdiagram of
white roots.

The painted Dynkin diagram determines the reductive decomposition gC = kC ⊕ mC,

and hence the space G/K completely. In particular for the complex Lie algebra kC we obtain
the decomposition

kC = z ⊕ k′C = u(1) ⊕ · · · ⊕ u(1) ⊕ k′C

with l − k copies of u(1). Here k′C is the semisimple part of kC which is generated by

ΠK = {α1, . . . , αk}, and z is the center of kC which is generated by the remaining l − k nodes
of Γ (Π) which have been painted black. Note that if all nodes of Γ (Π) have been painted
black this gives the space G/T , where T is a maximal torus in G.

We recall that two G-manifolds M = G/K and M ′ = G/K ′ are called isomorphic if
there exists an automorphism α ∈ Aut(G) such that α(K) = K ′.

PROPOSITION 1 [A12]. Different painted connected Dynkin diagrams Γ and Γ1

(except for the case of D�) define equivalent Kähler C spaces G/K and G/K ′, if the sub-
diagrams Γ ′ and Γ ′

1 of white roots corresponding to ΠK and ΠK ′ are isomorphic.

If G is a simple Lie group, Proposition 1 can be used to list all Kähler C-spaces G/K , (up
to isomorphism). For the classical Lie groups there are four families and 101 non-isomorphic
spaces corresponding to the exceptional Lie groups (cf. [A-A], [B-F-R]). In the exceptional
case we can read all these spaces as follows. We denote by G(α1, . . . , αk) (k ≤ �) the Kähler
C-space M = G/K with ΠK = {α1, . . . , αk} For example, F4(α2, α3, α4) corresponds to the
Kähler C-space F4/SO(7) × U(1).

4. Decomposition of the isotropy representation into irreducible submodules

In this article we treat Kähler C-spaces which satisfy the relation

(4.5) m = m1 ⊕ m2 .

In order to classify these spaces we use an important invariant of a Kähler C-space, namely
the system of t-roots Rt.

Let M = G/K be a Kähler C-space and let RK and RM defined by (3.3). We call the
elements of RM = R\RK the complementary roots of M .

We define the set t = z ∩ ih, where z is the center of kC and h is the real ad-diagonal

subalgebra h = hC ∩ ik. The space t is the real form of the center z, and the complex reductive

subalgebra kC can be expressed as

kC = z ⊕ k′C = tC ⊕ k′C ,
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where k′C is the semisimple part of kC. Let h∗ and t∗ be the dual spaces of h and t respectively.
We consider the restriction map

κ : h∗ → t∗ , α �→ α
∣∣
t

and set Rt = κ(RM). Note that κ(RK) = 0.

DEFINITION 2. The elements of Rt are called t-roots.

A fundamental result about t-roots is that they correspond to irreducible submodules of
the complexified isotropy representation of G/K . Next, we will consider the complexification

mC as a complex kC-module.

PROPOSITION 2 [A-P]. There exists a 1 − 1 correspondence between t-roots and ir-

reducible ad(kC)-invariant submodules mξ of mC. This correspondence is given by

Rt � ξ ↔ mξ =
∑

κ(α)=ξ

CEα .

Therefore, we obtain the following decomposition

(4.6) mC =
∑
ξ∈Rt

mξ .

By using Proposition 2 it is possible to obtain a complete description of the isotropy
representation of K in the Kähler C-space M . In particular in [Al2], D. Alekseevsky found
all irreducible submodules of the isotropy representation of all generalized flag manifolds
G/K , where G is a classical simple Lie group.

We mention that the submodules mξ (ξ ∈ Rt) are not equivalent. Indeed, if they were

equivalent as kC-modules, then they would have been equivalent as hC-modules, but this is

impossible because the roots of gC with respect to hC are distinct and the roots spaces are
1-dimensional.

The complex conjugation τ of gC with respect to g interchanges the spaces mξ and m−ξ .

Due to this, a decomposition of the real ad(k)-module m = (mC)τ into irreducible submodules
is given by

(4.7) m =
∑

ξ∈R+
t

(mξ ⊕ m−ξ )
τ .

Here nτ denotes the set of fixed points of τ of a vector subspace n ⊂ gC.
A useful way to find the t-roots of a Kähler C-space M = G/K is as follows. Let Π and

ΠK be bases of the root systems R and RK respectively, given by

(4.8) Π = {φ1, . . . , φk, α1, . . . , αm} , ΠK = {φ1, . . . , φk} , (� = k + m) .

We denote by Λ1, . . . ,Λm the fundamental weights corresponding to the simple roots

(4.9) ΠM = Π/ΠK = {α1, . . . , αm} ,
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i.e. the linear forms defined by the equations

2(Λj , αi)

(αi, αi )
= δij , (Λj , φi) = 0 .

The fundamental weights Λi (i = 1, . . . ,m) form a basis of the space t∗ (isomorphic to t via
the Killing form). Also, a basis of t∗ is given by {ᾱi = κ(αi) : αI ∈ ΠM = Π/ΠK}. Thus,
the t-root κ(α) = α| t = ᾱ associated to a complementary root α ∈ RM is given by

(4.10) ᾱ = k1ᾱ1 + · · · + kmᾱm .

If α is a positive (resp. negative) complementary root, then all the coefficients ki are non
negative (resp. non positive).

Recall that any root system R with a basis Π = {α1, . . . , α�} contains a unique root

µ = ∑�
i=1 miαi such that for any root α = ∑�

i=1 ciαi in R we have ci ≤ mi (i = 1, . . . , �).
The root µ is called the highest root in R and the coefficients mi ∈ Z are called heights (also
known as Dynkin marks of simple roots). We define the function

Mrk : Π → N , αi �→ Mrk(αi) = mi ,

which maps each simple root αi ∈ Π to its height mi . Next we will use the description for
the root systems of the classical and exceptional Lie algebras from the encyclopedia [G-O-V].
The expression of the highest root µ in terms of the simple roots is given in the following
table.

TABLE 2. The highest root µ in terms of simple roots.

Highest root µ

A� α1 + · · · + α�

B� α1 + 2α2 + · · · + 2α�

C� 2α1 + 2α2 + · · · + 2α�−1 + α�

D� α1 + 2α2 + · · · + 2α�−2 + α�−1 + α�

G2 3α1 + 2α2
F4 2α1 + 4α2 + 3α3 + 2α4
E6 α1 + 2α2 + 3α3 + 2α4 + α5 + 2α6
E7 α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + 2α7
E8 2α1 + 3α2 + 4α3 + 5α4 + 6α5 + 4α6 + 2α7 + 3α8

Let M = G/K be a Kähler C-space and let Π,ΠK and ΠM be defined by (4.8) and

(4.9) respectively. By restricting a complementary root α ∈ R+
M to t by using (4.10) we

obtain 0 ≤ ki ≤ mi , where Mrk(αi) = mi (1 ≤ i ≤ m). We will use this remark and
Proposition 2 to obtain the following:

PROPOSITION 3. Let M = G/K be a Kähler C-space with two isotropy summands.
Then the set of positive t-roots has the form R+

t = {ξ, 2ξ}, where 0 �= ξ ∈ t∗.

PROOF. By assumption we have |R+
t | = 2. If ΠM = {αi} (i = 1, . . . ,m) with

Mrk(αi) = mi , then t∗ = Rᾱi and any positive t-root has the form ᾱ = kiᾱi with
1 ≤ ki ≤ mi . Thus R+

t = {kiᾱi : 1 ≤ ki ≤ mi} and |R+
t | = mi . It follows



496 ANDREAS ARVANITOYEORGOS AND IOANNIS CHRYSIKOS

that R+
t = {ᾱi , 2ᾱi}, where Mrk(αi) = 2. If ΠM = {αi, αj } with Mrk(αi) = mi and

Mrk(αj ) = mj , then t∗ = spanR{ᾱi , ᾱj } and by using (4.10) it follows that ᾱ = kiᾱi + kj ᾱj ,

for any α ∈ R+
M . However 0 ≤ ki ≤ mi and 0 ≤ kj ≤ mj where ki, kj cannot be simul-

taneously zero. By using Table 2 it should be |R+
t | ≥ 3 and this cannot happen by assump-

tion. �

PROPOSITION 4. Let G be a simple Lie group. Then there is a one-to-one correspon-
dence between painted Dynkin diagrams with ΠM = {αi} and Mrk(αi) = 2, and Kähler
C-spaces M = G/K with two isotropy summands.

PROOF. The case of A� is excluded because we cannot obtain a painted Dynkin diagram
satisfying the above hypotheses. For the rest of the simple Lie groups we will examine each
case separately. For such a procedure we need to describe the set of complementary roots. Let

{ei, πj } be an orthogonal basis of R�, where i = 1, . . . , � − m and j = 1, . . . ,m. Then

R = {±µei,±ei ± ej : i < j } ∪ {±ei ± πj : 1 ≤ i ≤ � − m, 1 ≤ j ≤ m} ∪ {±πi ± πj ,

± µπj : i < j } ,

RK = {±(ei − ej ) : 1 ≤ i < j ≤ � − m} ∪ {±πi ± πj ,±µπj : 1 ≤ i < j ≤ m} ,

where µ = 1 in the case of the B� = so(2� + 1, C), µ = 2 for C� = sp(�, C) and µ is absent
for D� = so(2�, C).

CASE OF B� . Assume that the painted Dynkin diagram satisfies the above hypotheses.
The simple root αi can be any of α2, . . . , α�, thus ΠM = {αi : 2 ≤ i ≤ �}. It determines
the Kähler C-space M = G/K = SO(2� + 1)/U(i) × SO(2(� − i) + 1), (2 ≤ i ≤ �). We
choose the set of positive roots

R+ = {ei, ei ± ej : 1 ≤ i < j ≤ � − m} ∪ {ei ± πj : 1 ≤ i ≤ � − m, 1 ≤ j ≤ m}
∪ {πi ± πj , πj : 1 ≤ i < j ≤ m} .

and R+
K = {ei − ej , πi ± πj , πj : i < j }. Then the positive complementary roots are given

by

R+
M = R+\R+

K = {ei, ei + ej : i < j } ∪ {ei ± πj : 1 ≤ i ≤ � − m, 1 ≤ j ≤ m} .

We have t = Rᾱi (1 < i ≤ �) and κ(α) = kiᾱi for any α ∈ R+
M with 1 ≤ ki ≤ 2. In particular,

recalling that κ(RK) = 0 we obtain ei

∣∣
t

= (ei ± πj )
∣∣
t

= ᾱi and (ei + ej )
∣∣
t

= 2ᾱi . Thus

R+
t = {ᾱi , 2ᾱi : 2 ≤ i ≤ �}. By using relation (4.6) we obtain the direct sum decomposition

mC = m−2ᾱi ⊕ m−ᾱi ⊕ mᾱi ⊕ m2ᾱi .

According to (4.7) this induces the real decomposition (4.5), where the irreducible submodule
m1 and m2 are such that

mC
1 = m−ᾱi ⊕ mᾱi , mC

2 = m−2ᾱi ⊕ m2ᾱi .
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CASE OF C� . The simple root αi can be any of α1, . . . , α�−1. This determines the flag
manifold M = G/K = Sp(�)/U(i) × Sp(� − i). We choose

R+ ={2ei, ei ± ej : i < j }∪{ei ± πj : 1 ≤ i ≤ � − m, 1 ≤ j ≤ m}∪{πi±πj, 2πj : i <j } ,

and let R+
K = {ei − ej , πi ± πj , 2πj : i < j }. We conclude that

R+
M = {2ei, ei + ej : 1 ≤ i < j ≤ � − m} ∪ {ei ± πj : 1 ≤ i ≤ � − m, 1 ≤ j ≤ m} .

We have t = Rᾱi (1 ≤ i ≤ � − 1) and κ(α) = kiᾱi where 1 ≤ ki ≤ 2. We obtain
ei ± πj

∣∣
t

= ᾱi and (ei + ej )
∣∣
t

= 2ei

∣∣
t

= 2ᾱi . Thus R+
t = {ᾱi , 2ᾱi : 1 ≤ i ≤ � − 1}. By

Proposition 2 and by a similar analysis in the case of B� we obtain (4.5).

CASE OF D� . The possible root αi ∈ Π with Mrk(αi) = 2 is one of α2, . . . , α�−2.
This choice determines the flag manifold M = G/K = SO(2�)/U(i) × SO(2(� − i)). We
set

R+ = {ei ± ej : 1 ≤ i < j ≤ � − m} ∪ {ei ± πj : 1 ≤ i ≤ � − m, 1 ≤ j ≤ m}
∪ {πi ± πj : 1 ≤ i < j ≤ m} ,

and let R+
K = {ei − ej , πi ± πj : i < j }. Then

R+
M = {ei + ej : 1 ≤ i < j ≤ � − m} ∪ {ei ± πj : 1 ≤ i ≤ � − m, 1 ≤ j ≤ m} .

We have t = Rᾱi (2 ≤ i ≤ � − 2). For any α ∈ R+
M it holds κ(α) = kiᾱi with 1 ≤ ki ≤ 2. In

particular we obtain (ei ± πj )
∣∣
t
= ᾱi and (ei + ej )

∣∣
t
= 2ᾱi . Thus R+

t = {ᾱi , 2ᾱi : 2 ≤ i ≤
� − 2}. By a similar analysis with B� we conclude (4.5).

Next we proceed to the exceptional groups. We present only the case of the groups G2

and F4 and for the other exceptional groups we refer to [A-A].

CASE OF G2. We fix an ordering so that the set of positive roots is

R+ = {−e2,−e3, e2 − e3,−(e2 + e3),−(e2 + 2e3),−(2e2 + e3)} .

A basis of R is Π = {α1 = −e2, α2 = e2 − e3} and according Table 2 the maximal root is
µ = −(e2 + 2e3) = 3α1 + 2α2. The expression of any positive root in terms of simple roots
is given by

− (2e2 + e3) = 3α1 + α2, −(e2 + 2e3) = 3α1 + 2α2, e2 − e3 = α2 ,

− (e2 + e3) = 2α1 + α2, −e2 = α1, −e3 = α1 + α2 .

The root system of G2 contains long and short roots whose relation is given by the Dynkin
diagram of G2. In particular the roots of G2 are expressed by using vectors ei, (1 ≤ i ≤ 3)

such that

(4.11)
3∑

i=1

ei = 0 , (ei, ej ) =




2

3
, i = j ,

−1

3
, i �= j .
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By using (4.11) we find that (α1, α1) = 2
3 while (α2, α2) = 2, so (α2, α2) = 3(α1, α1). The

Kähler C-space with two isotropy summands is determined by G2(α1) and corresponds to the
space G2/U(2) where U(2) represented by the short root α1. We obtain ΠM = {α2} with
Mrk(α2) = 2 and t = Rᾱ2. Any positive t-root is expressed by κ(α) = k2ᾱ2 (α ∈ R+

M ) with

1 ≤ k2 ≤ 2. Thus, R+
t = {ᾱ2, 2ᾱ2} and by Proposition 2, the isotropy representation of M

decomposes into a direct sum of two real irreducible submodules m1,m2.

CASE OF F4. We fix the set of positive roots to be

R+ =
{
e1, e2, e3, e4, ei ± ej (i < j),

1

2
(e1 ± e2 ± e3 ± e4)

}
.

A system of simple roots is the set Π = {α1 = 1
2 (e1 − e2 − e3 − e4), α2 = e4, α3 =

e3 − e4, α4 = e2 − e3}. By Table 2 the maximal root is given by µ = e1 + e2 = 2α1 + 4α2 +
3α3 + 2α4. Any positive root α ∈ R can be expressed as α = k1α1 + k2α2 + k3α3 + k4α4,
with |k1| ≤ 2, |k2| ≤ 4, |k3| ≤ 3, |k4| ≤ 2 (cf. [A-A]).

(1) F4(α2, α3, α4): This determines the Kähler C-space F4/SO(7) × U(1). We have

ΠM = {α1} and t = Rᾱ1. Any positive t-root is given by κ(α) = k1ᾱ1 (α ∈ R+
M) where

1 ≤ k1 ≤ 2. Therefore R+
t = {ᾱ1, 2ᾱ1} and by Proposition 2 we conclude that m = m1 ⊕m2.

(2) F4(α1, α2, α3): This corresponds to the Kähler C-space F4/Sp(3) × U(1). We
have ΠM = {α4} and t = Rᾱ4. Any positive t-root can be expressed as κ(α) = k4ᾱ4

with 1 ≤ k4 ≤ 2. I Thus R+
t = {ᾱ4, 2ᾱ4}, or equivalently m = m1 ⊕ m2. By similar

arguments applying to the rest of the exceptional Lie groups, we conclude that the assumption
of ΠM = {αi} with Mrk(αi) = 2 implies that the corresponding Kähler C-space has two
positive roots or equivalently two isotropy summands. These spaces appear in Table 2 and are
the following:

E8(α2, α3, α4, α5, α6, α7, α8), E8(α1, α2, α3, α4, α5, α6, α8), E7(α1, α2, α3, α4, α5, α6) ,

E7(α1, α3, α4, α5, α6, α7), E7(α1, α2, α3, α4, α5, α7), E6(α1, α2, α3, α4, α5) ,

E6(α1, α3, α4, α5, α6) .

For the converse, we need to use some of the results of [Al-Me-To]. Let M = G/K be
a Kähler C-space which satisfies (4.5). By Proposition 3 we have Rt = {±ξ,±2ξ} and this
defines a depth-two gradation

gC = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2, [gi , gj ] ⊂ gi+j ,

of the complex Lie algebra gC, given by g0 = kC and gi = miξ , (i = ±1,±2). According to

Proposition 2, the kC-modules gi = miξ are irreducible.
In [Al-Me-To] it was shown that such gradations with irreducible g0-module g−1 cor-

respond to a subset ΠM = {αi} of a simple root system Π of R with Mrk(αi) = 2. This
completes the proof. �
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As a consequence we obtain Theorem A stated in the introduction.
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