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Abstract. For a compact Hausdorff space X, C(X) denotes the ring of all complex-valued continuous func-
tions on X. We say that C(X) is algebraically closed if every monic algebraic equation with C(X)-coefficients
has a root in C(X). Modifying the construction of [2], we show that, for each m = 1, 2, . . . ,∞, there exists an
m-dimensional compact Hausdorff space X(m) such that C(X(m)) is algebraically closed.

1. Introduction and Main Theorem

For a compact Hausdorff space X, C(X) denotes the ring of all complex-valued con-
tinuous functions on X. We say that C(X) is algebraically closed if every monic algebraic
equation with C(X)-coefficients has a root in C(X). Also, for a positive integer n, we say that
C(X) is n-th root closed if, for each f ∈ C(X), the equation zn−f = 0 with respect to z has
a root in C(X). Clearly the algebraic closedness implies the n-th root closedness for each n.

A topological characterization of the first-countable compact Hausdorff space X such
that C(X) is algebraically closed has been obtained by Countryman, Jr. [3] and Miura-
Niijima [9] (see also [7] for a generalization). In particular, such spaces must be at most
one-dimensional. On the other hand, there exist higher dimensional compact Hausdorff spaces
X such that C(X) is n-th root closed for each n ([2, Theorem 6.2, Corollary 6.3]). In this note
we modify the construction of [2] to prove the following theorem.

MAIN THEOREM. For each m = 1, 2, . . . ,∞, there exists an m-dimensional compact
Hausdorff space X(m) such that C(X(m)) is algebraically closed.

As in [2], our construction is based on the Cole construction and the transfer homomor-
phisms [1, Corollary 14.6]. In what follows, familiarity with the paper [2] is assumed.
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2. Proof of Main Theorem

We start with a preliminary consideration, following [4] and [5]. Let Pn be the set of all
monic polynomial of degree n with complex coefficients. Each element p(z) of Pn has the
form

p(z) = zn +
0∑

i=n−1

aiz
i

where ai ∈ C for each i. Throughout, z refers to the variable of polynomials. The correspon-
dence

(a0, . . . , an−1)←→ p(z)

yields a bijection

Φ : Cn→ Pn .

We define a map πn : Cn→ Cn as follows. For each i = 1, . . . , n, let σi be the i-th ele-
mentary symmetric function of n-variables: e.g. σ1(x1, . . . , xn) = ∑

i xi, σ2(x1, . . . , xn) =
1
2

∑
i �=j xixj , etc. For a point α = (α1, . . . , αn), let

πn(α) = ((−1)iσi(α1, . . . , αn))
n
i=1

Notice that Φ(πn(α)) =∏n
i=1(z− αi).

Let D(α) be the discriminant of the polynomial Φ(πn(α)). By Fundamental Theorem
of Algebra and Rouché’s Theorem, the map πn is an n-fold branched covering map, branched
over the variety {D = 0}.

The symmetric group Σn of degree n naturally acts on Cn as the permutation of coordi-
nates:

σ · (α1, . . . , αn) = (ασ(1), . . . , ασ(n)) , σ ∈ Σn , (α1, . . . , αn) ∈ Cn .

Clearly πn ◦ σ = πn for each σ ∈ Σn.
For a compact Hausdorff space X and a continuous map a = (a0, . . . , an−1) : X→ Cn,

let Pa(z) = zn +∑0
i=n−1 aiz

i ∈ C(X)[z]. Examining the identification given by Φ : Cn →
Pn, we see that the following two statements are equivalent.

(A) There exist continuous functions ρ1, . . . , ρn ∈ C(X) such that Pa(z) =∏n
i=1(z−

ρi).
(B) There exists a continuous map ρ : X→ Cn such that πn ◦ ρ = a.
The above equivalence translates the algebraic closedness of C(X) to the existence of a

lift of an arbitrary map X→ Cn with respect to πn(n ≥ 1).
Next we recall the Cole construction on the basis of [2] (cf. [10, Chapter 3, p.194-197]).

For a compact Hausdorff space X, the set of all continuous maps X → Cn is denoted by
Map(X, Cn). For a subset S of Map(X, Cn) and an integer n ≥ 2, let R(X; n, S) be the space
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defined by

R(X; n, S) = {(x, (za)a∈S) ∈ X × (Cn)S | a(x) = za for each a ∈ S}
and let πS

X;n : R(X; n, S)→ X be the projection given by πS
X;n(x, (za)a∈S) = x. The space

R(X; n, S) and the map πS
X;n form the pull-back diagram:

R(X; n, S)
∆a∈Sa−−−→ (Cn)S

πS
X;n

�
�(πn)S

X
∆a∈Sa−−−→ (Cn)S

where ∆a∈Sa : X → (Cn)S denotes the map defined by (∆a∈Sa)(x) = (a(x))a∈S. In
particular, we see

(C) for each element a : X → Cn of S, there exists a map a : R(X; n, S)→ Cn such

that a ◦ πS
X;n = πn ◦ a.

For simplicity, the space R(X; n, Map(X, Cn)) and the projection π
Map(X,Cn)

X;n are de-

noted by R(X; n) and πX;n : R(X; n)→ X respectively.

When S is a finite subset, then the S-fold product action of symmetric group (Σn)
S on

(Cn)S naturally induces an action on R(X; n, S) given by:

(σa)a∈S · (x, (za)a∈S)= (x, (σa · za)a∈S) ,

(σa)a∈S ∈ (Σn)
S, (x, (za)a∈S) ∈ R(X; n, S) .

The same proof as the one of [2, Proposition 3.5] works to prove the following.

PROPOSITION 2.1. For each integer n > 1, the projection πX;n : R(X; n) → X in-

duces a monomorphism (πX;n)∗ : Ȟ ∗(X;Q)→ Ȟ ∗(R(n;X);Q) of the Čech cohomologies
of rational coefficients.

PROOF OF MAIN THEOREM. First we prove the theorem for 1 ≤ m <∞.
Starting with X0 = Sm, the m-dimensional sphere, we construct, by a transfinite induc-

tion, an inverse spectrum S of length ω1, the first uncountable ordinal.
The ordinal ω1 is represented as a countable disjoint union ∪∞n=2Λn of uncountable sets

Λn. For α < ω1 with α ∈ Λn, let Xα+1 = R(Xα; n) and let pα+1
α = πXα,n : Xα+1 → Xα.

When β < ω1 is a limit ordinal, let Xβ = lim←{Xα, p
γ
α ; α < γ < β}. For each α < β, let

p
β
α : Xβ → Xα be the limit projection.

Let S be the resulting inverse spectrum and let X(m) = lim←− S. For each α < ω1,
let pα : X(m) → Xα be the limit projection. As in the proof of [2, Theorem 6.2], we can
make use of Proposition 2.1 to prove that dim X(m) = m. In order to show that C(X(m))

is algebraically closed, we take an arbitrary integer n ≥ 1 and choose an arbitrary monic

polynomial P(z) = zn +∑0
i=n−1 fiz

i of degree n in C(X(m))[z], where fi ∈ C(X(m)) for
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each i = 0, . . . , n − 1. For notational simplicity, let P(x, z) = zn +∑0
i=n−1 fi(x)zi ∈ C[z]

for each x ∈ X(m). Now let a = (a0, . . . , an−1) : X(m) → Cn be the map satisfying
Φ(a(x)) = P(x, z) for each x ∈ X(m). It is easy to see that a is actually continuous.
Since X(m) is the limit of an inverse spectrum of uncountable length (and since Cn is second
countable), there exists an ordinal α < ω1 with α ∈ Λn and a map aα : Xα → Cn such that
a = aα ◦ pα .

By the definition of Xα+1 = R(Xα; n) and (C), there exists a map ρα : Xα → Cn such
that πn ◦ρα = aα ◦pα+1

α . Then the map ρ := ρα ◦pα = (ρ1, . . . , ρn) : X(m)→ Cn satisfies

πn ◦ ρ = πn ◦ ρα ◦ pα = aα ◦ pα = a .

In view of the equivalence of (A) and (B), this means that the polynomial P(x, z) satisfies

P(x, z) = Φ(a(x)) =
n∏

i=1

(z− ρi(x))

for each x ∈ X(m). In other words, P(z) admits a factorization P(z) = ∏n
i=1(z − ρi).

Therefore C(X(m)) is algebraically closed.
In order to obtain an infinite dimensional space X(∞), we take the topological

sum
⊕∞

m=1 X(m) and let X(∞) = β(
⊕∞

m=1 X(m)), the Stone-Čech compactification of⊕∞
m=1 X(m). It is easy to see that X(∞) is the desired space.

This completes the proof.

REMARK 2.2. If a compact Hausdorff space X has the n-th root closed C(X), then the

first Čech cohomology Ȟ1(X;Z) is n-divisible. Hence if C(X) is algebraically closed, then

Ȟ1(X;Z) must be divisible. For the relationship between the divisibility of Ȟ1(X;Z) and
the approximate n-th root closedness of C(X), see [2, section 4]. Gorin and Lin constructed

a 2-dimensional compact metric space X such that Ȟ1(X;Z) is divisible, while there exists
an algebraic equation of degree 4 with C(X)-coefficients which has no root in C(X) ([4,
Theorem 3.4]). This suggests the following conjecture.

CONJECTURE. There exists a compact Hausdorff space Y such that C(Y ) is n-th root
closed for each n ≥ 2, but not algebraically closed.
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