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Abstract. We define the binormal indicatrix and focal developable of a nonlightlike curve in Minkowski 3-
space. We establish the relationships between singularities of these subjects and geometric invariants of curves under
the action of Lorentzian group.

1. Introduction.

There are several articles concerning ‘generic differential geometry’ in the Euclidean
space [1-5, 7, 9, 12, etc.]. The main tools in these articles are the distance-squared functions
and the height functions on submanifolds. In this paper we introduce the notion of Lorentzian
height functions and Lorentzian distance-squared functions on timelike curves or spacelike
curves in Minkowski 3-space. We also define the notion of binormal indicatrices and focal
developables of timelike curves or spacelike curves in Minkowski 3-space, and establish the
relationships between singularities of these subjects and geometric invariants of the curve
under the action of Lorentzian group as applications of standard techniques of singularity
theory for the above functions. For the basic notions in Lorentzian geometry, see [11].

LetR3 = {(x1, x2, x3) | x1, X2, x3 € R} be a 3-dimensional vector space, x = (x1, x2, X3)
andy = (y1, y2, ¥3) be two vectors in R3, the pseudo scalar product of x and y is defined by
(x,y) = —x1y1+x2y2+x3y3. (R3, (,)) is called a 3-dimensional pseudo Euclidean space, or
Minkowski 3-space. We denote R? as (R3, (,)). Forany x = (x1, x2,x3),y = (¥1, Y2, y3) €
R3, the pseudo vector product of x and y is defined by

—€] ey e3
XAy=|x1 x2 x3|=(—=(x2y3 —x3y2),X3¥1 — X1y3,X1Y2 — X2)1) -
N 2 y3

Moreover, x in R;> is called a spacelike vector, a lightlike vector or a timelike vector if
(x,x) > 0, (x,x) = Oor (x,x) < O respectively. Forx € R?, the norm of x is defined
by |lx|| = /sign(x){x, x), and x is called a unit vector if ||x|| = 1, where sign(x) denotes the
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signature of x which is given by

1 x : spacelike
sign(x) = § 0  x: lightlike
—1 x:timelike.

Lety : I —> R3; y(t) = (x1(t), x2(t), x3(¢)) be a smooth regular curve in Ri’ Gi.e,y(@®) #0
for any + € I), where I is an open interval. For any ¢t € I, the curve y is called a
spacelike curve, a lightlike curve or a timelike curve if (y(t), y(t)) > 0, (y(@), y(t)) = 0,
(y (), y(t)) < O respectively. We call y a nonlightlike curve if y is a timelike curve or a
spacelike curve. The arc-length of a nonlightlike curve y, measured from y (tg), to € I is

t
s(t) = [ Iy () ldt
fo

Then the parameter s is determined such that ||/(s)|| = 1 for the nonlightlike curve, where
y'(s) = dy/ds(s). So we say that a nonlightlike curve y is parameterized by arc-length if it
satisfies that ||y’(s)|| = 1. Throughout the reminder in this paper we denote the parameter s
of y as the arc-length parameter. Let us denote #(s) = y’(s), and we call £(s) a unit tangent
vector of y at s. We define the curvature by k(s) = \/I(y”(s), y"(s))|. If k(s) # O then -
the unit principal normal vector n(s) of the curve y at s is given by y”(s) = k(s) - n(s). We
denote that (y (s)) = sign(¢(s)) and §(y (s)) = sign(n(s)). The unit vector b(s) = t(s) An(s)
is called a unit binormal vector of the curve y at s. Then the following Frenet-Serret type
formula holds:

t'(s) =k(s) - n(s)
n'(s) = —e(y(s)) - 8(y(s)) - k(s) - t(s) + (¥ (s)) - T(s) - b(s)
b'(s) = t(s) - n(s),
where t(s) is the torsion of the curve y at s (cf., [7]). This is the fundamental formula for the

study of nonlightlike curves in R?.
We now define

H12(r)p = {x = (x1, x2, x3) ER?I(x—p,x_p) = —r?},
Slz(r)pz{x =(x1,x2,x3) ER?l(X—p,x-—p) =r2},

where p = (p1, p2, p3) and r € R — {0}). We respectively call H(r) := H2(r), — {p},
512 (r) = Sl2 (r)p —{p} a hyperbola, a pseudo sphere with radius t at the center p. We denote
that H? = H? (1) and S? = S2(1)o.

Lety : I —> R-;’ be a nonlightlike curve with e(y)8(y(s)) = —1 and k(s) # 0. In this
case we always have b(s) € Sf. On the other hand, if e(¥)8(y (s)) = 1 and k(s) # O, then y
is spacelike. In this case, we have b(s) € H12.

We now define a curve BN, : I — Sl2 for e(y)8(y (s)) = —1 (respectively, BN, : I —
H? for y with e(y)8(y(s)) = 1) by

BN, (s) =b(s),
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and a ruled surface E, : ] x R — R‘;’ by

e(y)
S(y)k

E,(s,u) = (y+ n+ub) (s).
We call BN, the binormal indicatrix and E,, the focal surface of y.

In §3, under the assumption that k(s) # 0, 7(s) # 0 and 8(y (s0)) (k%12 — e(y)k'?)(s0) >
0, we show that there exist a unique pseudo sphere which has four-point contact with nonlight-
like curve y at y (so) which is called the osculating pseudo sphere of y at sq and its center v =
(v + () /8(»)kn + (k' /e(y)8(y)k*T)b)(s0) is called the center of the osculating pseudo
sphere at so. Under the assumption that k(s) # 0, T(s) # 0, (b(so), b(so)) = —8(y(s0))
and 8(y (so)) (k372 — ek (s9) < 0, we also show that there exists a unique hyperbola
which has four-point contact with spacelike curve y at ¥ (sg), which is called the osculating
hyperbola of y at so and its center v = (y + (1/8(y)k)n + (k' /8(y)k?t)b)(so) is called the
center of the osculating hyperbola at sq.

We now consider the following conditions:

(A1) The number of points p of y (I) where the osculating pseudo sphere at p having
five-point contact with the curve y is finite.

(A2) There is no point p of y(I) where the osculating pseudo sphere at p having
greater than or equal to six-point contact with the curve y.

(A 3) The number of points p of y (/) where the osculating hyperbola at p having
five-point contact with the curve y is finite.

(A 4) There is no point p of y(I) where the osculating hyperbola at p having greater
than six-point contact with the curve y.

(A'5) The number of points at where y has at least four-point contact with the osculat-
ing plane is finite.

(A 6) There are no osculating plane with which y has five-point contact at a point.

REMARK. If the curve y satisfies the condition (S()/(s))(k2 2 s(y)k’z)(s) > 0 (re-
spectively, < 0), then we can show that there eixsts the osculating pseudo sphere (respectlvely,
osculating hyperbola) at each point of y (cf. §3).

Our main results are formulated as follows:

THEOREM A. (1) Letn-Immy(l, R?) be the space of proper nonlightlike curves with
k(s) # 0 and 8(y (s)) (k%72 —e(PKk?)(s) > 0 equipped with Whitney C°°-topology. Then
the set of curves which satisfy (A 1) and (A 2) is a residual set in n-Imm_ (I, Rl)

(2) Let n-Imm_(1, R3 ) be the space of proper nonlightlike curves with k(s) # O,
(b(s),b(s)) = —8(y(s)) and Sy ())(k*t? — e(¥)k'?)(s) < O equipped with Whitney C -
topology. Then the set of curves which satisfy (A 3) and (A 4) is a residual set in
n-Imm_(I, R“;’).

(3) Letn-Imm(l, R3) be the space of proper nonlightlike curves with k(s) # 0 equipped
with Whitney C*°-topology. Then the set of curves which satisfy (A 5) and (A 6) is a residual
set in n-Imm(1, R3)
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In order to state the second main theorem, we define the ordinary cusp C and the swallow
tail SW defined by

C={G1,x2) [x2=x3), SW ={(x1,%2,x3) | x1 = 3u* +u?v, x2 = 44> +2uv, x3 = v}.

THEOREM B. (1) Lety :I — R-;’ be a nonlightlike curve with k(s) # 0 and t(s) #
0. Under the assumption of (A 1) and (A 2) (respectively, (A 3) and (A 4)), if p is a point of
the focal surface E, of y at so, then locally at p, the focal surface is

a) diffeomorphicto C xRat (y +(e(y)/8(y)k)n+ub)(so) in R? ifand only if k' (sg) #
0 and ug-= (k' /e(y)8(¥)k21)b)(s0). Moreover, if 8(y(s0))(k?t% — e(y)k'*)(so) > O, then
the locus of the center of the osculating pseudo sphere (y + (e(y)/8(y)k)n + ub)(so) is the
cuspidal edge. If 8(y(s0))(k2t2 — e(¥)k")(s0) < O and (b(s0),b(s0)) = —8(¥(s0)), then
the locus of the center of the osculating hyperbola (y + (1/5(y)k)n + ub)(so) is the cuspidal
edge.

b) diffeomorphic to a SWat (y + (e(y)/8(y)k)n + (k’/s(y)é(y)kzt)b) (so) if and only
if k' (so) # 0 and (kk't’ — kk"t + k*>13 4+ 2k?1)(s0) = 0.

Q) Lety : 1 — R3 be a nonlightlike curve with k(s) # 0. Under the assumptzon of
(A 3) and (A 4), if p is a point of the binormal indicatrix of y at so, then locally at p, the
binormal indicatrix BN, is

a) diffeomorphic to a line if T (so) # O.

b) diffeomorphic to the ordinary cusp C if T(so) = 0 and t’(so) # 0.

2. Lorentzian invariant functions on nonlightlike curves.

In this section we introduce two different families of functions on a nonlightlike curve,
which are useful to the study of Lorentzian invariants of nonlightlike curves.

Lorentzian height functions: For a nonlightlike curve y : I — R3, we now define a
function H : I % 512 — R (respectively, H : I x le — R) by H(s,v) = (y,v). Wecall H a
Lorentzian height function. We denote that h(s) = H,,(s) = H(s, vo) for any fixed vo € Sl2
(respectively, vo € H 12). We have the following proposition.

PROPOSITION 2.1. Lety : 1 — R3 be a unit speed nonlzghtlzke curve with k(s) # 0.
Ifv e S2 (respectively, v € H 2) then

(1) K/ (so) = O if and only if there exist A, u € R such that v = An(so) + ub(so) and
8(Y)(AW2 — e(y)u?) = 1 (respectively, 8(y)(A* — e(y)u?) = —1).

(2) H (so) = h"(s9) =0 ifand only if v = £b(sp).

(3) K (so) = h"(s0) = h®(so) = 0 ifand only if v = £b(so) and T (s0) = 0.

4) ' (s0) = h"(s0) = hP(s0) = h™®(s0) = 0 if and only if v = £b(s0) and t(s0) =
’/(s9) = 0.

PROOF. LetH :1IXx S2 — R (respectively, H : I x H; 2 _» R) be the Lorentzian height
function on the nonlightlike curve y : I — R3 Then we have = (Y/(s), v) = (t(s), v)
and v € 512 (respectively, v € le). It follows that a’s" = 0if and only if (v,t) = 0. Then
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there exist A, 4 € R such that v = An + ub and 8(y) - - s(y),u,z) = 1 (respectively,
8(y)(W? — e(y)u?) = —1). Where (b, b) = —e(y)8(y) by (¢, £) = e(y) and (r, n) = 5(y).

On the other hand, we have %21—. It follows that %Isi = %27121 = 0 if and only if v =
An+ub, (k-n,v) = 0and §(y)- (A2 —e(y)u?) = 1 (respectively, 8(y) (A2 —e(y)u?) = —1).
This is equivalent to the condition that v = +b.

Since 2 83 (k’n+kn v),%—-%%’—: Olfandonlylfv_:!:b T =0.

Moreover, we have 22 a = (¢®, v). Then 3£ = %zsz = 383S3 = W = 0 if and only if
v=%b,t=7=0. 0O

Lorentzian distance-squared functions: For a nonlightlike curve y : I — R?, we
now define a function

G:1 xR?—»R
by
G(s,v) = (y(s) —v,y(s) —v).

We call G a Lorentzian distance-squared function. We denote that g(s) = Gy, (s) = G(s, vo)
for any fixed vg € R?. We also have the following proposition.

PROPOSITION 2.2. Lety : I — R? be a unit speed nonlightlike curve with k(s) # 0
and t(s) # 0. Then

(1) ¢'(so) = Oifand only if there exist A, u € R such that y (so) —v = An(so)+ub(so).

(2) g'(s0) = ¢"(s0) = 0 ifand only ifv = (v + (e(¥)/8(y)k)n — ub)(so) for some
n € R

(3) g'(s0) = ¢'(s0) = gP(s0) = 0 if and only if v = (v + (e(¥)/8(¥)k)n +
(k' /e(¥)8(y)k*T)b)(s0).

@) g'(s0) = g"(50) = §P(s0) = g® (s0) = O if and only if (kk't'—kk" T —e(y)k*T>+
2k"7)(s0) = 0 and v = (¥ + (e(¥)/8(V)k)n + (k' /e(y)8(¥)k*T)b)(50).-

(5) g (s0) = g"(s0) = 9P (s0) = ¥ (s0) = g (s0) = 0 if and only if (kk't’ —kk"T —
(VK213 + 2k21)(s0) = (2kk'T3 — e()kk't” + e(¥)kk Dt + 3k 1%t — 3e(y)k'k't
3e(¥)k?t")(s0) = O and v = (v + (e(¥)/8()In + (k' /£(¥)8(y)k*T)b) (50).

PROOF. LetG : I x R3 — R be a Lorentzian distance-squared function on the non-
lightlike curve y : I — R3 Then we have 3G = 2(y’, y — v). It follows that aG = 0 if and
onlyify —v=A-n4+pu-b.

On the other hand, since 3 3G —2(f,y —v) +2(t,t) =2{(k -n, ¥y —v) + e(y)}, &

a—G =0ifandonly if y — v = An + ub and (k - n, An + ub) = —&(y). The last equallty is

equivalent to the relation that kA8(y) = —e(y). This means that v = y +(e(y)/3(y)k)n —ub
by k # 0.
. 3 52 3 . .
Since &4 = 2((k - ),y — v), 86 = 8¢ = 28 = 0if and only if k # O and
(k' -n+k-n',—(e(y)/8(y)k)n + ub) = 0, which is equivalent to the condition that k # O
and k' + £(y)8(y)k?tu = 0. This means that v = y + (e(y)/8(¥)k)n + (k' /e(y)8(y)k?T)b

by k and 7 are not zero.
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Moreover, we have %ﬁi = 2(k"n + 2k'n’ + kn”,y — v) + 2(k'n + kn’,t). Then
3G _ 0 if and only if (k" — e(¥)8(K3 + e(PIkTDn — 3e(¥)S(¥)kk't + (e(y)k'T +

as4

eWktHb,y —v) = 8(y)k2. Therefore %-f— = %2;% = %G— = %“Tﬂ; = 0 if and only if
(K" —e()8(V)K3 +e(y)kt®I)n—3e(y)8(y)kK't+(2e(Y)k't +e(y)kt)b, —(e(y)/8(y)hk)n—
(k'/e(¥)8(¥)K*T)b) = 8(y)k* and v = y + (e(¥)/8(¥)k)n + (k' /e(y)8(y)k?T)b, which
is equivalent to the condition that kk't’ — kk"t — e(y)k?t3 + 2k>t = Oand v = y +
(e(y)/8(¥Yk)n + (k' [e(v)8(y)k*T)b.

Finally, we have a;_g_ =0 if and only if ({(k" —e(¥)8(P)K3 + e(V)ktP)n—
3e(y)8(p)kk't + 2e(y)k't + e(y)kt)bY, y — v) = 58(y)kk’'. This is equivalent to the con-
dition that ((k® —3e(y)8(¥)k2k’ + (k' T2 +3e(y)ktt' —3e(y)8 (Y k2K’ +2e (¥ k' t¥)n +
(k* — 8(¥)k2T? — 3e(¥)8(¥)k™? — 4e(¥)8(V)kK")t + Be(V)k"t + 2e(y)k't' + e(YIK'T +
e(Ikt” — S(NK3T +ktd)b, y —v) = 58()kK’. S0 88 = £G = 8¢ _ 8¢ _ ¥G _ g jf
and only if kk't’ —kk” t —e(y)k?t3 +2k"2t = 2kk't3 —e(y)kk't” +e(¥)kk P 1 +3k272¢ —
3e(y)K'k’t — 3e(y)k?t' =0and v = y + (e(¥)/8(¥)k)n + (k' /e(y)8(y)k*T)b. [

3. Lorentzian invariants of nonlightlike curves.

In this section we study the geometric properties of the binormal indicatrix and focal
developables of the nonlightlike curves. By the propositions in the last section, we can rec-
ognize the function (kk't’ — kk"t — e(y)k?t3 + 2k’?t)(s) has special meanings. Firstly we
have the following proposition.

PROPOSITION 3.1. Lety : I — R} be a nonlightlike curve with k(s) # 0, k'(s) # 0
and t(s) # 0. Then (kk't’ — kk"t — e(y)k?t3 + 2k"21)(s) = O ifand only if p = y(s) +
(e () /8(y (S )k(sNN(s) + (k' (s)/e(y (5))8(y (s))k*(s)T(s))b(s) are constant vectors.

PROOF. We put

kl
e(y(s)) n(s) + (s) . b
S(y (s)k(s) e(y ($))8(y (s))k=(s)T(s)

P(s) =y(s) + (s),

then we have
(kk't' — kk"t — e()k2t3 + 2k27)(s)

e(y )8y (s))k3(s)T2(s)
It follows that P’(s) = 0 if and only if (kk't’ — kk"t — e(y)k?13 + 2k"21)(s) = 0. O

Lety : I — R? be a nonlightlike curve with k(s) # 0, 7(s) # 0 and 8(y (s))(k*t% —
k'?)(s) # O (the last condition is always satisfied for timelike curves), and G : I x R? —
R a Lorentzian distance-squared function on the curve y. Under the conditions ¢’'(so) =
g’ (s0) = g (sp) = 0 at s = sg, we can show that (y(so) — v, y(so) — v) = (S(y)(k?t? —
(¥)k”)/k*T?)(s0) > 0 for 8(y (s0)) (k*z% —£(y)k"*)(s0) > 0 and (y (s0) — v, ¥ (s0) —v) <O
for 8(y (s0)) (k2t% —k'?)(so) < 0 by Proposition 2.2. (For the case §(y (s0)) (k212 —k'?)(so) =
0 on spacelike curves, see [6].)

So we have the following corollaries.

P'(s) = — b(s).
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COROLLARY 3.2. Lety : I — R? be a nonlightlike curve with k(s) # 0, k'(s) # 0,
T(s) # 0 and 8(y(s))(k?*t? — e(P)k'*)(s) > 0. Then singularities of focal surface are
the locus of centers of osculating pseudo spheres of y which is given by p(s) = y(s) +
(e ($))/8(y (Nk(s)n(s) + (K'(s)/e(y(5))8(y ())k?(s)T(s))b(s). Moreover, if (kk't’ —
kk"t — e(y)k?t3 + 2k"?1)(s) = 0, then p(s) is a constant point and y is a curve on the
pseudo sphere whose center is p(s) and radius is r = \/8(y) (k212 — e(y)k’2) | k*12(s).

COROLLARY 3.3. Lety : I — R? be a spacelike curve with k(s) # 0, k'(s) #
0, T(s) # 0 and 8(y(s))(k%12 — k*)(s) < 0. Then singularities of focal surface are the
locus of centers of osculating pseudo hyperbolas of v which is given by p(s) = y(s) +
(1/8(y (sHk(s))n(s) + (k' (s)/8(y (s))k?(s)T(s))b(s). Moreover, if (kk't’ — kk"t — k73 +
2k'?t) = 0, then p(s) is a constant point and y is a curve on the osculating hyperbola whose
center is p(s) and radius is r = \/—8(y) (k212 — k'2)/ k*12(s).

Let F : R? — R be a submersion and y : I — R? be a nonlightlike curve. We say
that y and F~1(0) have k-point contact for t = 1y if the function g(t) = F o y(t) satisfies
glto) = g’ (k) = --- = g(k_l)(to) =0, g® (1) # 0. By Propositions 2.1, 2.2 and 3.1, we
have the following proposition.

PROPOSITION 3.4. (1) Lety :I — R? be a nonlightlike curve with k(s) # 0. Then
the binormal b and the osculating plane of y have 3-point contact for s = sg if and only if
7(so) = 0 and t'(s¢) # 0.

2) Lety : I — R? be a nonlightlike curve with k(s) # 0, k'(s) # 0 and t(s) #
0. Then y and the osculating pseudo sphere have 4-point contact for s = sqg if and only
if (¥ (s0)(k%t? — (k) (s0) > O, (kk't’ — kk"7 — e(p)k?*t3 + 2k"1)(s9) = O and
(2kk'T3 — e(Y)kk't” + e(¥)kkP 1t + 3k212¢" — 3e()K'K’T — 3e(y)k21t")(s0) # O.

3) Lety:I— R? be a spacelike curve with k(s) # 0, k'(s) # 0 and t(s) # 0. Then
y and the osculating hyperbola have 4-point contact for s = sq if and only if 8(y (s0)) (k*72 —
e(Y)k?)(s0) < 0, (kk't’ — kk"T — k?t3 + 2k"1)(s0) = 0 and (2kk't3 — kk't” + kk® +
3k2t2t’ — 3k'k"t — 3k"2t)(s) # O.

4. Unfoldings of functions by one-variable.

In this section we use some general results on the singularity theory for families of func-
tion germs. Detailed descriptions are found in the book [4]. Let F : (R x R", (s9, x0)) = R
be a function germ. We call F an r-parameter unfolding of f, where f(s) = Fy,(s, x0). We
say that f has Ag-singularity at so if f(P(so) = Oforall1 < p < k, and F**+D(s9) # 0.
We also say that f has Asg-singularity at so if f(P)(s9) = Oforall 1 £ p < k. Let F be an
unfolding of f and f(s) has Ag-singularity (k = 1) at so. We denote the (k — 1)-jet of the
partial derivative 3—5 at so by j(k‘l)(g—z(s, x0))(s0) = Z’J‘;i ajisi fori=1,--- ,r. Then F
is called a (p) versal unfolding if the (k — 1) x r matrix of coefficients (« ji) has rank k — 1
(k—1 < r). There is an important set concerning the unfoldings relative to the above notions.
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The bifurcation set of F is the set

dF 3°F
there exists s with — = —— = 0 at (s, x)l .

Br = e R
F {x 35 052

Then we have the following well-known theorem (cf. [4]).

THEOREM 4.1. Let F : (R x R’, (s0, x0)) — R be an r-parameter unfolding of f (s)
which has the Ag-singularity at sg.

Suppose that F is an (p) versal unfolding.

(@) Ifk =2, then Br is diffeomorphic to {0} x R,

(b) Ifk = 3, then B is diffeomorphic to C x R 2,

(c) Ifk = 4, then BF is diffeomorphic to SW x R 3,
Where, C = {(x1, x2) | x12 = x23} and SW = {(x1, x2, x3) | x1 = 3u* + u?v,x; = 4u3 +
2uv, x3 = v}.

For the proof of Theorem B we have the following fundamental theorem.

THEOREM 4.2. (1) Lety:I — R? be a unit speed nonlightlike curve with k(s) # 0
and H : I x 512 — R be the height function on y.

If h(s) = Hy,(s) has the Ag-singularity (k = 2, 3) at so, then H is the (p)versal unfold-
ing of h.

2) Lety:I1— R% be a unit speed spacelike curve with k(s) # Oand H : I x le — R
be the height function on y.

If h(s) = Hyy(s) has the Ay-singularity (k = 2, 3) at so, then H is the (p)versal unfold-
ing of h.

3) Lety:I— R? be a unit speed nonlightlike curve withk(s) # 0and G : I x R:]’ —
R be the distance-squared function. We consider the point (sg, vg) € I x R?.

If g(s) = Gy,(s) has the Ag-singularity (k = 2,3,4) at so, then G is the (p)versal
unfolding of g := Gy,.

PROOF. (1) Let y(s) = (x1(s), x2(s), x3(s)) be a nonlightlike curve and v =
(vi, v2,v3) € Sf. By definition, in this case we have

H (s, v) = —v1x1(s) + v2x2(s) + v3x3(s) = —v1x1(s) £ V1 + v12 — v32x2(5) + v3x3(s) .
So that % = —x1(5) £ v1x2(5)/v/1 + 112 — v32 = —x1(5) + (v1/v2)x2(s), (since v

is spacelike, v» and v3 are not both zero, so we let vy # 0) so the 2-jet at sg is
—(sx(s) + (1/2)s2x](s)) + (v1/v2)(sx](s) + (1/2)s%x7 (5)). WealsohavegT”; = Fvaxa(s)/

V1+v12 — v32 4+ x3 = —(v3/v2)x2 + x3, so the 2-jet at 5o is (sx}(s0) + (1/2)s2x5 (s0)) —
(v3/v2) (sx5(s0) + (1/2)s2x} (50)).

(i) By Proposition 2.1, h has the A;-singularity at sg if and only if v(sg) = %b(so)
and t(sg) # 0. When h has A; at 5o, we require the 1 x 2 matrix (—x](s) + (v1/v2)x5(s),
— (v3/ vz)xé + xé) to have rank 1, which follows from the proof of the case (ii).
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(ii)) By Proposition 2.1, & has A3 at sg if and only if v = %b(sg), T(s9) = O and
7’(s0) # 0. When & has A3 at s, we require the 2 x 2 matrix

_x1 (s) + xz(s) —-v—3xé + x3
2
1 v U3 1
__Ex{'(s) + z—vzxé’(s) v —2 é’ + = ) 3

to be nonsingular, which it always does. In fact, by v = £b(sg), v(so) = *t(so) A n(sp) =
+(1/k(s0))(¥'(s50) A ¥"(s0)) = (v1, v2, v3) € 2. So that

[ 1

= iE( —x5x§ + x5x3)

1
1 :i:k (x5x] — x{x%)
14

vz = :l:;(—(xixz x5x1) .

L
Hence, the determinant of the above matrix is (1/2){(x3x] — x{x3) + (v3/v2) (x] x5 — x5x{) —
(v1/v2)(—xbxf + xixi)} = £(k/2) (v2 + v3%/v2 — v1%/v2) = £k /2v2 # 0 by k(so) # 0 and
v2 # 0. This means that H is (p)versal when 4 (s) has the Ag-singularity (k = 2, 3) at sp.

(2) Let y(s) = (x1(s), x2(s), x3(s)) be a spacelike curve and v = (vi, v2, v3) € le.
By definition, in this case we have

H(s,v) = —v1x1(s) + v2x2(s) + v3x3(s) = FV 1 + 122 + v32x1(s) + v2x2(s) + v3x3(s) .
So that %’i = +x2(5) Fvax1(8) /v 1 + v22 + v32 = —(v2/v1)x1(s) + x2(s), so the
2-jet at so is (sx5(s) + (1 /2)s2x (5)) — (v2/v1)(sx}(s) + (1/2)s%x](s)). We also have
W = Fu3x1(s)/y/1 + v22 + v32 + x3 = —(v3/v1)x1 + x3, so the 2-jet at sp is (sx}(s0) +
(1/2)s2x} (s0)) — (v3/v1)(sx](s0) + (1/2)s%x] (s0)).

(i) By Proposition 2.1, h has the A;-singularity at sg if and only if v(sp) = =£b(so)
and t(so) # 0. When &k has A, at 59, we require the 1 x 2 matrix (—(vz/v1)xi(s) +
x5(s), —(v3/v)x] + x3) to have rank 1, which follows from the proof of the case (ii).

(i1) By Proposition 2.1, h has A3 at s if and only if v = +b(sg), t(so) = 0 and
7’(s0) # 0. When & has A3 at s, we require the 2 x 2 matrix ‘

—Qxi(s) + x5(s) ——?xi + x5
1

1 v3 1,

2v ( )+ x (S) 2v1x1 + 2X3

to be nonsingular, which it always does. By the same reason as the case 1), the determinant of
the above matrix is (1/2){(v2/v1)(x5x] —x]x5) + (v3/v1)(x] x5 —x5x]) — (=x5x5 +x3%;)} =
+(k/2)((v2%/v1) + (v32/v1) — v1) = Fk/2v; # O by k(so) # 0 and v € H?. This means
that H is (p)versal when A (s) has the Ag-singularity (k = 2, 3) at sp.

(3) In this case we have

G(s,v) = —(x1(s) — v1)® + (x2(5) — v2)? + (x3(s) — v3)?,
where ¥ (s) = (x1(s), x2(s), x3(s)) and v = (vy, v2, v3).
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Thus we have BG 7o (8) = 2(x1(s) — v1), so the 2-jet at sp is 2(sx7(s0) + (1/2)s2x;’(s0))
and the 3-jet at sq is 2(st (s0) + (1/2)s2x} (s0) + (1/3)s3x1® (s0)). We also have S (s) =
—2(xi(s) —v;) (i = 2, 3), so the 2-jet at 59 is —2(sx (so) + (1/2)s2 ”(so)) and the 3-jet at
s0 is —2(sx](s0) + (1/2)s%x! (s0) + (1/3)s3x; (3)(s0)) The condition for (p)versality can be
checked as follows:

(i) By Proposition 2.2, g has the Ax3-singularity at sp if and only if v = y(so) +
(e(¥(50))/8(y (50))k(s0))n(s0) — ub(so) and k(s0), T(s0) # 0. When g has the A>,-singular-
ity at so, we require the 1 x 3 matrix (2x(so), —2x)(s0), —2(x}(s0))) to have rank 1, which
it always does since y is regular.

(it) It also follows from Proposition 2.2 that g has the A>3-singularity at s 1f and only
if v=(y + (¢(¥)/8(¥)l)n + (K’ /e(y)5(¥)k*T)b)(s0) and k(so), T(so) # 0. When g has A,
at 5o, we require the 2 x 3 matrix

2x{(s0) —2x3(s0) —2x}(s0)
x{(s0) —x5(s0) —x%(s0)
to have rank 2, which follows from the proof of the case (iii).
(iii) By Proposition 2.2, g has the A>4-singularity at so if and only if (kk't’ — kk”'t

e(Y)k*T3 + 2k"1)(s0) = 0 and v = (¥ + (e(¥)/8(¥)k)n + (k' /e(¥)8(y)k*T)b)(s0). Where
k(s0), T # 0. When g has A4 at 5o, we require the 3 x 3 matrix

2x1(s0)  —2x;(s0) -2xg (s0)
x7 (s0) —x3 (S0) —x3 (s0)

2 2
~x1®(s0) —§x2(3)(so) —§x3(3)(50)

to be nonsingular, which it always does since the determinant of the above matrix is
(4/3)e(y (s0)k2(s0) T (s0) # 0 by k(so) # 0 and 7(so) # 0. This completes the proof. O

For the proof of Theorem B, we consider the bifurcation set of H and G. By Propositions
2.1 and 2.2, the bifurcation set of H is

By ={veR}|v=>(s)},
and the bifurcation set of G is A
Bs ={v € R} [v =y(s) + (6 (5))/8(y ())k(s)I)n(s) + ub(s)
with the real number u is not zero} .

The assertions of Theorem B follow from Propositions 2.1, 2.2 and Theorems 4.1, 4.2. O

5. Generic properties of nonlightlike curves.

We now consider the notion of Lorentzian Monge-Taylor maps for timelike curves anal-
ogous to the ordinary notion of Monge-Taylor maps for space curves in Euclidean space (cf.
[4]). (For spacelike curves, see [6].) Lety : [ — R? be a (regular) timelike curve, with 7 an
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open connected subset of the unit circle S, increasing ¢ corresponding the anticlockwise ori-
entation of S!. We now choose a smooth family of unit vectors n(¢), with n(t) pseudonormal
toy atz,so ||n(2)|| = 1 and (n(z),t(¢z)) = Oforall ¢ € 1. Suchn(t) can be obtained as follows:
consider the smooth map¢: I — 512 which takes ¢ to the unit tangent vector #(¢). If V is any
vector in S 12 we can obtain the vector field n(z) by pseudo-orthogonally projecting V onto each
of the normal planes and normalizing. Thus n(¢t) = (V + (V, taN)/IV + (V, et |,
then we have (n,n) = 1 and (n,f) = 0. We can obtain a second smooth family of unit
vector b(¢) = £(t) A n(z) normal to y at r. We remark that the triple ¢(¢), n(t), b() is
the Lorentzian frame along y. We now use the pseudoperpendicular lines spanned by #(z),
n(t), b(z) as axes at y(#) with the unit points on the axes corresponding to the three given
vectors. We remark that the Minkowski metric is invariant under the Lorentz transforma-
tion. Note the curve y () not necessarily unit speed, with y(f9) = 0. Then the coordi-
nates 7, £ and x of y(¢) relative to axes ¢, n and b are functions of ¢t : £(t) = y(¢) - t(tp),
n(t) =y (@)-no), x () = y()-b(to), n(t) = f(£(2)), x(2) = g(¢(2)) where f = fo, g = go.
S0 j* £:(0) = a2()E?+a3 ()¢ +- - +ar(t)ek, 1 9,(0) = by +b3(1) 3+ - -+ by (1)t in
the neighbourhood (0, 0, 0). Locally then y (I) can be written in the form {¢, (f;(¢), ¢:())},
with £(0) = g(0) = jl£(0) = j1g:(0) = 0. If Vi denotes the space of polynomials in
¢ of degree 2 2 and < k we have a map, the Lorentzian Monge-Taylor map for the space
curve y, wy 1 I — Vi x Vi given by u,, (1) = (* £: (0), jkg,(O)). (Vk X Vi can be identi-
fied with R*=! x R¥=1 = R2*=1D via the coordinates (az, - - - , ax, b, - - - , by).) Of course
ty depends rather heavily on our choice of unit normals n(¢). Where, a;(¢) = fi 0D /Y,
bi(t) = (0P /(") (2 S i £ k), that is

Vi X Vi = {(@28% + b3g3 + -+ beg), 0222 + 5323 + - + a2}

Let P, denote the set of maps ¥ : R';’ — R-;’ of the form ¥ (x, y, z) = (Y1(x, y, 2),
Y2(x, ¥, 2), ¥3(x, y, 2)) where ¢;(x, y, z) is a polynomial in x, y and z of degree < k. So an
element € P is determined by the coefficients of the various monomials x’yz/ occurring
in Y1, Y2 and V3. There are altogether 1 +3+-- -+ (2k — 1) + 2k + 1 = (k + 1) monomials
of degree < k, so Py can be thought of as a Euclidean space R®+D? It is this space which
will provide the required deformations of the curve.

To simplify matters we now assume that the curve y is proper (i.e. y satisfies the con-
dition that the inverse image of a compact set is compact) and y (/) is bounded. The identity
map lgs : R} — R3, is of course an element of P, (provided k > 1), and using the above
assumption of y it easily follows that there is an open neighbourhood U of IR? in P, with
the property that if € U then the linear map Ty (y (¢)) : R-;‘ — R?; v DYy(y@)) v
satisfy Dy (y(t)) - n(t) is spacelike vector and Dy (¥ (¢)) - t(¢) is timelike vector. Where,
Dy (y (¢)) denotes the derivative of ¥ at y (¢). (In fact, in this case the two conditions can be
written two conditions of algebraic inequality in the open neighbourhood of y (z), so by the
compactness of y(S') the set which satisfy the two conditions is intersection of finite sets.
Hence, it is open.) If we deform the original curve by the map ¥, then we can also obtain the
required new smooth family of normal vectors ny (1) as follows: since the map ¢ : R? - R?
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is a diffeomorphism on some open set containing y (I), the vector n(¢) will be sent to some
new spacelike vector Dy (y (¢))n(t) which will be neither zero nor tangent to ¥ o y at t. Or-
thogonally projecting this vector onto the normal plane to ¥ o y at ¢ and normalizing, that is
ny (t) = (DY (Y E)In@)+(DY (y )n(@), ty)ty) /I DY (y ))n()+(DY (y (1)), ty )ty |,
(ny (1), ny (1)) = 1. Where, ty, denotes the tangent vector of the curve ¥ oy atz. So assuming
as the above, we choose an open neighbourhood U of 1; € P consisting of polynomial maps
which map an open set containing y (/) diffeomorphically to its image. We have now shown
that there is a smooth map
| wil xU— Vi x Vi

defined by u(—, ¥) = Monge-Taylor map for the curve ¥ o y using the family of normal
vectors ny (¢). By exactly the same arguments as those in the proof of Theorem 9.9 in [4], we
have the following theorem.

THEOREM 5.1. Let y be a nonlightlike curve and Q a manifold in Vi X Vi = R%k_z.
For some open set Uy C U containing the identity map, the map 1 : I x Uy — Vi defined by
w(t, ¥) = Uyoy (2) is transverse to Q. (In fact we can prove that u is a submersion so Q does
not enter the argument at all.)

In order to give a proof of Theorem A, we prepare some lemmas.

LEMMA 5.2. (1) Lety:I — R? be a timelike curve defined by y(t) = (¢, f;(£),
9: (D) = (@2 +ast3+---, ¢, bat? + b3t +- ) with £ (t9) = 0 and k(sp) # 0. We denote
that M;j = a;bj — ajb;, N;j = a;aj — e(y)b;b;. Then:

(@) t(s0) = t/(s0) = O0attg if and only if

{ M3 =0
2M4y N2y —3M33N23 = 0.

(b) (kk't’ — kk"t + k%73 + 2k"2t)(s0) = (kk't’ — kk"t 4 k*73 4+ 2k"*7)/(s0) = O at
to with k' (sg) # 0 and t(sg) # O, if and only if
[ Aj = 4May N3 Npp + OIMx3 N3y — 4M3Nos Ny — 3M32 N33 Noy — 4M3 N3, + 3M3, = 0

Az = Ny3(18M3, + 12M43 N2, + 20Ms, N2, + 48 M4 N2sNoy — T2Mp3 N

1 424M3y3N24 Ny + 18Mp3Npo N3z) — M3 (2TN3; + 72N23 N3y — 36 N23N2gNoo
—27N23 N2 N33 + 36 N34 N2, + 20N2s N2, + 3N2 Na3) + 3(M2, + NZ)(12M 4 Ny
| +18M23N23) + 3M32N23(ONZ; + 12N24Noo + 9N N33 + 12N3,) = 0.

2) Lety : I — R:; be a spacelike curve defined by y(t) = (fi1(£), ¢, 9:(¢)) =
(@c%+aszt3+---,2,b202 +b323 + -2 ) with £(tp) = 0 and k(so) # 0. And we denote that
M,'j = aibj — ajb,-, N,'j =aqiaj — E(V)bibj.

Then:
(@) v =0andt =0attyifand only if

[ M3 =0
2M43| Ny | +3M33N3p = 0.
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(b) By the direct calculation, (kk't’ — kk"t — k213 + 2k"?t)(s0) = (2kk'z3 — kk't" +
kk® 1 + 3k2727" — 3k'k" — 3k™t) (s0) = O at 1o with k' (so) # 0 and t(so) # O if and only
if
[ Bi = £4M4y Np3|No| + 3M23 N3y F 4M32Noa| Noo| F 3M32 N33 [N | + 4M3 | Ny [ N

—3M3, =0
By = £N23(18M3, + 12Ma2|Np2|* + 20M'52| Noo|? & 48 M4 No3 | N | — T2M33 N3,
1 E24M23Nou|Noa| £ 18M23| No2| N33) + M32(27N3; + 72N23 Nao | Npo|?
—36N23N24|N22| — 27N23| N2z | N33 &= 36 N34 | Noa | £ 20N2s5| Noz|? & 3| Npz |2 N33)
—3M33N23(—9NZ; + 12N24| Nz | + 9| N2 | N33 — 12N | Npo [?)
—3(M3, — N2,)(12M43|Np2| + 18 M23N23) = 0.

Here { is the coordinate along the t-direction, f;(¢) along the n-direction and g;(¢) along
the b-direction.

Since the proof of Lemma 5.2 is analogous to that of Lemma 5.2 in [6], we omit it.

LEMMA 5.3. We consider smooth maps p; : V4 x V4 = R > R (i =1,2) given by

{ p1 = M3
02 = 2M4y N2y — 3M33Na3

6;: Va x V4 =R® = R (i =1, 2) given by

{91 = M3,
02 = 2M 4| N2 | + 3M33N3;,

¢i:V5><V5:R8—->R(i=1,2)givenby

{¢1=A1

$2 = Az,

andui:V5xV5=R8—->R(i=1,2)givenby
{IL1=B1
M2 = By.

Here, M;;, Nij, P;j, A; and B; are given as the above. Then:

(1) The set Q1 = {(az, a3, a4, bs, b3, bs) € R®| p1 = po = O} is a codimension two
submanifold in R8.

(2) The set Q> = {(az, a3, as, b2, b3, by) € R®|6; = 6, = 0} is a codimension two
submanifold in R8.

(3) Theset Q3 = {(az, a3, aa, as, by, b3, by, bs) € R8 | $1 = ¢2 = 0} is a codimension
two submanifold in RS.

(4) The set Q4 = {(aa, a3, a4, as, by, b3, bs, bs) € R® | w1 = pup = 0} is a codimen-
sion two submanifold in R®.
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PROOF. (1) The Jacobian matrix of the map (p;, p2) is calculated as follows:

0 0
o, 0 oo 0
J( _ day ob;
i K AN I R (A%
da; daz - *\2) 3k, b 2\2

Since k(sg) = 2(az? + b2)1/2 = 0, the numbers a, and b, are not both zero. That is rank
J(p1, p2) = 2. This means that Q; is a submanifold in R?® with codimension two.
(4) The Jacobian matrix of the map (w1, 2) is also calculated as follows:

J(pr, m2) =
dui O K\ dur A k\*
el R T 0 ol R ST 0
da; oa 3(2) ab, aby T B\3
oz  du2 ou2 5, Om2 du2 au2 5
+5(ay + by)k? 2 2 Ju2 S5(az + bk
da; das das R T T by = To@tb)

where k = 2|a;2 — 2|12 £ 0. Then by £ap # 0. And either a3 # 0 or b3 # 0by t(sp) # 0.
Hence rank J(¢1, ¢2) = 2. So that Q4 is a submanifold in R8 with codimension two.

The assertions (2) and (3) follows similar arguments as in the proofs of cases (1) and (4).
This completes the proof. [J

We can use Theorem 5.1, Lemmas 5.2 and 5.3 for the proof of Theorem A exactly the
same way as the proof of Corollary 9.7 in [4]. So we omit the detail here.
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