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1. Introduction.

It is well known that a 6-dimensional sphere $S^{6}$ can be considered as a homogeneous
space $G_{2}/SU(3)$ where $G_{2}$ is the Lie group of automorphisms of the octonions O. From
this representation, we can define an almost Hermitian structrure $(J, \langle, ))$ on a 6-dimensional
sphere by making use of the vector cross product of the octonions. Also it is known that
the almost Hermitian structure of $S^{6}$ satisfy the nearly K\"ahler condition $((D_{X}J)X=0)$

where $D$ is the Riemannian connection of $S^{6}$ with respect to the canonical metric and $X$

is a tangent vector of $S^{6}$ . A submanifold $M$ in an almost Hermitian manifold $N$ is called
an almost complex submanifold if each tangent space of $M$ is invariant under the almost
complex structure of $N$ . Almost complex submanifolds of $S^{6}$ were studied by many authors,
for example, K. Sekigawa ([Se]), J. Bolton et al. ([Bol]), R. L. Bryant ([Brl]), F. Dillen et
al. ([D-V-V]), and A. Gray ([G]). A. Gray proved that there exists no 4-dimenional almost
complex submanifold of $S^{6}$ . Hence the dimension of almost complex submanifold of $S^{6}$

is either 2 or 6. In particular, we call a 2-dimensional almost complex submanifold a J-
holomorphic curve. R. L. Bryant ([Brl]) constructed superminimal J-holomorphic curves of
any compact Riemann surface to $S^{6}$ by using twistor methods with respect to the $G_{2}$ -moving
frame. Also, J. Bolton et al. ([Bol, 2]) constructed non-superminimal J-holomorphic curves
of 2-dimensional tori to $S^{6}$ by using the soliton theory. Curvature properties of J-holomorphic
curves of $S^{6}$ were studied by K. Sekigawa ([Se]) and F. Dillen et al. ([D-V-V]). In this paper,
we unify their results about J-holomorphic curves, making use of $G_{2}$ -moving frame methods
by R. L. Bryant and a Lemma of Eschenburg et al. [E-G-T] (also see ([Ch])), and give some
results of curvcature properties of a J-holomorphic curve of $S^{6}$ . Also we give two partial
$differential\vee$ equations with respect to the Gauss curvature and the third fundamental form, and
we obtain some $G_{2}$ rigidity theorem of J-holomorphic curves of $S^{6}$ , genus formula (which
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is obtained by R. L. Bryant) by making use of another elementary methods, and give some
existence theorem of superminimal points by applying this genus formula.

The author wishes to express his sincere thanks to Professor K. Sekigawa for his man3
valuable suggestions, discussions and encouragement, to Professor K. Tsukada and the refree;

for their valuable comments and some pieces of kind advice.

2. Preliminaries.

2.1. Notations. We denote by $M_{p\times q}(C)$ the set of $p\times q$ complex matrices and $[a]\in$

$M_{3\times 3}(C)$ is given by

$[a]=\left(\begin{array}{lll}0 & a3 & -a_{2}\\-a_{3} & 0 & a_{1}\\a_{2} & -a_{1} & 0\end{array}\right)$

where $a=\left(\begin{array}{l}a_{1}\\a_{2}\\a_{3}\end{array}\right)\in M_{3\times 1}(C)$ . Then we have

$[a]b+[b]a=0$

where $a,$ $b\in M_{3\times 1}(C)$ . Let (, \rangle be the canonical inner product of O. For any $x\in O,$ $w($

denote by $\overline{x}$ the conjugate of $x$ . We remark that the octonians may be regarded as the direc
sum $H\oplus H$ where $H$ is the quatemions.

2.2. Structure equation of $G_{2}$ . We recall the structure equations of $({\rm Im} O, G_{2})$ whicl
is established by R. Bryant ([Brl]). The Lie group $G_{2}$ is defined by

$G_{2}=$ { $g\in GL_{8}(R):g(uv)=g(u)g(v)$ for any $u,$ $v\in O$}.

Now, we set a basis of $C\otimes_{R}{\rm Im} O$ by $\epsilon=(0,1)\in H\oplus H,$ $E_{1}=iN,$ $E_{2}=jN,$ $E_{3}=-kN$

$\overline{E_{1}}=i\overline{N},$ $\overline{E_{2}}=j\overline{N}$ and $\overline{E_{3}}=-k\overline{N}$ , where $ N=(1-\sqrt{-1}\epsilon)/2,\overline{N}=(1+\sqrt{-1}\epsilon)/2\xi$

$C\otimes_{R}O$ and $\{1, i, j, k\}$ is the canonical basis of H. A basis $(u, f,\overline{f})$ of $C\otimes_{R}{\rm Im} O$ is sait
to be admissible, if there exists $g\in G_{2}\subset M_{7\times 7}(C)$ such that $(u, f,\overline{f})=(\epsilon, E,\overline{E})g$. $W$

identify the element of $G_{2}$ with corresponding admissible basis. Then we have

PROPOSITION 2.1. There exist lefl invariant l-forms $\kappa$ and $\theta$ on $G_{2}$ ; $\theta=(\theta^{i})$ wltl
values in $M_{3\times 1}(C)$ and $\kappa=(\kappa_{j^{j}}),$ $1\leq i,$ $j\leq 3$ , with values in the 3 $\times 3$ skew Hemitial
matrices which satisp tr $\kappa=0$ , and

$d(u, f,\overline{f})=(u, f,\overline{f})(-2\sqrt{-1}$ $-\sqrt{-1}{}^{t}\overline{\theta}[\theta]\kappa$ $\sqrt{-1}{}^{t}\theta[\overline{\frac{\theta}{\kappa}}])$

$=(u, f,\overline{f})\Phi$ . (2. 1

Then $\Phi$ satisfies $ d\Phi=-\Phi\wedge\Phi$ , or equivalently,
$d\theta=-\kappa\wedge\theta+[\overline{\theta}]\wedge\overline{\theta}$ . (2.2

$d\kappa=-\kappa\wedge\kappa+3\theta\wedge{}^{t}\overline{\theta}-({}^{t}\theta\wedge\overline{\theta})I_{3}$ . (2.3
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3. Oriented surfaces in $S^{6}$ .
In the sequel, we denote by $S^{6}$ a 6-dimensional unit sphere with the canonical Riemann-

ian metric \langle , ). Let $M=(M, x)$ be an oriented surface in $S^{6}$ with (isometric) immersion
$x$ : $M\rightarrow S^{6}$ . We denote by $D,$ $\nabla$ and $\nabla^{\perp}$ the Riemannian connections of $S^{6},$ $M$ and the nor-
mal bundle $T^{\perp}M$ , respectivcely. The Gauss and Weingarten formulas are given respectively
by

$D_{X}Y=\nabla_{X}Y+\sigma(X, Y)$ , (3.1)

$ D_{X}\xi=-A_{\xi}X+\nabla_{X}^{\perp}\xi$ , (3.2)

where $\sigma$ and $A_{\xi}$ are the second fundamental form and the shape operator (with respect to a
normal vector field $\xi$ ), and $X,$ $Y$ are smooth vector fields tangent to $M$ . The second funda-
mental form $\sigma$ and the shape operator $A_{\xi}$ are related by

$(\sigma(X, Y),$ $\xi\rangle$ $=\langle A_{\xi}X,$ $Y$ ).

The Gauss, Codazzi and Ricci equations are given respectively by

$(R(X, Y)Z,$ $ W\rangle$ $=\langle X, W\rangle(Y, Z\rangle-\langle X, Z)(Y,$ $ W\rangle$

$+(\sigma(X, W),$ $\sigma(Y, Z)\rangle$ $-(\sigma(X, Z),$ $\sigma(Y, W))$ , (3.3)

$(\nabla_{X}\sigma)(Y, Z)=(\nabla_{Y}\sigma)(X, Z)$ , (3.4)

$\langle R^{\perp}(X, Y)\xi, \eta)=([A_{\xi}, A_{\eta}]X, Y\rangle$ , (3.5)

where
$(\nabla_{X}\sigma)(X, Z)=\nabla_{X}^{\perp}\sigma(Y, Z)-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ , (3.6)

$ R^{\perp}(X, Y)\xi=[\nabla_{X}^{1}, \nabla_{Y}^{\perp}]\xi-\nabla_{[X,Y]}^{\perp}\xi$ , (3.7)

$X,$ $Y,$ $Z,$ $W\in X(M)$ ($X(M)$ denotes the Lie algebra of all smooth vector fields tangent to $M$)
and $\xi,$

$\eta$ are vector fields normal to $M$ (cf. [Sp], Chapter 7).
Let $\{e_{1}, e_{2}\}$ be a local orthonormal frame field of $M$ . If the immersion $x$ is minimal (see

(1) of Proposition 4.1 in the next section), the Gaussian curvature $K$ is given by

$K=1-(\Vert\sigma(e_{1}, e_{1})\Vert^{2}+\Vert\sigma(e_{1}, e_{2})\Vert^{2})$ . (3.8)

4. Fundamental properties of J-holomorphic curves of $S^{6}$ .
In this section, we shall derive some elementary properties of J-holomorphic curves

of $S^{6}$ . First we recall the almost Hermitian structrure of $S^{6}$ . Let $X$ be a tangent vector of
$S^{6}\subset{\rm Im} O$ at $x$ , the almost complex structure $J$ is defined as follows;

$JX=X\times x$

$where\times is$ the vector cross product of ${\rm Im}$ O. We may observe that this almost complex struc-
ture $J$ is orthogonal with respect to the canonical metric on $S^{6}$ . Hence $S^{6}=$ $(S^{6}, J, \langle, \rangle)$ is
an almost Hermitian manifold and this structure satisfy nearly K\"ahler condition $(D_{X}J)X=0$

([Brl]). However the second betti number of $S^{6}$ is zero, this almost Hermitian structure is not
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K\"ahler. We denote by $v_{1}=span_{R}\{\sigma(X, Y)|X, Y\in TM\}$ the first normal space. First we
prove the following.

PROPOSITION 4.1. Let $x:M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ .
(1) For any vectorfields X, $YonM$ , we have

$\sigma(JX, Y)=\sigma(X, JY)=J\sigma(X, Y)$ .
In particular the immersion is minimal.
(2) For a nomal vectorfield $\xi\in v_{1}$ , we have

$A_{J\xi}(X)=J(A_{\xi}X)$ .
(3) For a nomal vectorfield $\xi\in v_{1}$ , we have

$\nabla_{X}^{\perp}(J\xi)=J(\nabla_{X}^{\perp}\xi)+\xi\times X$ .

PROOF. For any vector fields $X,$ $Y$ on $M$ , we have

$\tilde{D}_{X}(JY)=\tilde{D}_{X}(Y\times x)=(\tilde{D}_{X}Y)\times x+Y\times(\tilde{D}_{X}x)$

$=(\nabla_{X}Y+\sigma(X, Y)-(X, Y\rangle x)\times x+Y\times X$

$=J(\nabla_{X}Y)+J(\sigma(X, Y))+Y\times X$ ,

where $\tilde{D}$ is the canonical connection of a 7-dimensional Euclidean space $R^{7}\simeq{\rm Im} O$ . On the
other hand, by the Gauss formula, we get

$\tilde{D}_{X}(JY)=\nabla_{X}(JY)+\sigma(X, JY)-\langle X,$ $JY$ ) $x$ .
Since $X,$ $Y\in TM$ , we have

$Y\times X=-(X, JY)x$ .
Therefore we have (1). Next we shall prove (2) and (3). By the weingarten formula, we have

$D_{X}(J\xi)=-A_{J\xi}(X)+\nabla_{X}^{\perp}(J\xi)$ .
From the definition of the almost complex structure of $S^{6}$ , we get

$D_{X}(J\xi)=D_{X}(\xi\times x)=\tilde{D}_{X}(\xi\times x)-(X,$ $\xi\times x\rangle$ $x$ .
Since $\xi\times x=J(\xi)$ , we have \langle X, $\xi\times x$ ) $=0$ , so we get

$D_{X}(J\xi)=\tilde{D}_{X}(\xi\times x)$

$=(\tilde{D}_{X}\xi)\times x+\xi\times(\tilde{D}_{X}x)$

$=(-A_{\xi}(X)+\nabla_{X}^{\perp}(\xi))\times x+\xi\times X$

$=-JA_{\xi}(X)+J\nabla_{X}^{1}(\xi)+\xi\times X$ .
Since $\xi\in v_{1}$ , we easily see that $\xi\times X$ is a normal vector field, we get the desired results. $\square $

By Proposition 4.1, we have immediately

COROLLARY 4.2. Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ . Then we have
(1) The ellipse ofcurvature $\sigma(X, X)(|X|=1)$ is a circle in thefirst nomal space $v_{1}$ .
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(2) If the point $p\in M$ is not ageodesic one, then we have
$T_{p}^{\perp}M=v_{1}(p)\oplus v_{2}(p)$

where $v_{2}$ denote the second normal space which is spanned by $e_{1}\times\xi_{1}$ and $J(e_{1}\times\xi_{1})$ for
$\xi_{1}\in v_{1}$ .

PROOF. (1) Let $e_{1},$ $Je_{1}$ be an orthonormal basis of $T_{p}M$ at $p\in M$ . Any unit vector
$X$ can be represented by $X=\cos\theta e_{1}+\sin\theta Je_{1}$ . Then we have

$\sigma(X, X)=$ cos2 $(\theta)\sigma(e_{1}, e_{1})+\sin(2\theta)\sigma(e_{1}, Je_{1})+\sin^{2}\theta\sigma(Je_{1}, Je_{1})$

$=\cos(2\theta)\sigma(e_{1}, e_{1})+\sin(2\theta)\sigma(e_{1}, Je_{1})$ .
Since $\sigma(e_{1}, Je_{1})=J\sigma(e_{1}, e_{1})$ , we get desired result.

(2) If we put $\xi_{1}=\sigma(e_{1}, e_{1})/|\sigma(e_{1}, e_{1})|$ , then we have $\xi_{1}\in v_{1}$ . By (1) of Proposition
4.1, we have

$v_{1}=$ span $R\{\xi_{1}, J\xi_{1}\}$ .
Also we have

$\langle e_{1}\times\xi_{1}, x\rangle=0$ , $(e_{1}\times\xi_{1},$ $ e_{1}\rangle$ $=0,$ $(e_{1}\times\xi_{1},$ $ Je_{1}\rangle$ $=0$ ,

$\langle e_{1}\times\xi_{1}, \xi_{1}\rangle=0$ , $\langle e_{1}\times\xi_{1}, J\xi_{1}\rangle=0$ .
Hence we have (2). $\square $

COROLLARY 4.3. Ifa point $p$ is not a geodesic one, then the shape operators $A_{\xi_{\alpha}}$ are
given by the followingform

$A_{\xi_{1}}=\left(\begin{array}{ll}\lambda & 0\\0 & -\lambda\end{array}\right)$ , $A_{J\xi_{1}}=\left(\begin{array}{ll}0 & \lambda\\\lambda & 0\end{array}\right)$ , $A_{e_{1}\times\xi_{1}}=0$ , and $A_{J(e_{1}\times\xi_{1})}=0$ ,

where $\xi_{1}=\sigma(e_{1}, e_{1})/|\sigma(e_{1}, e_{1})|$ and $\lambda=|\sigma(e_{1}, e_{1})|$ (or equivalently, $\sigma(e1, e_{1})=$

$-\sigma(Je_{1}, Je_{1})=\lambda\xi_{1},$ $\sigma(e_{1}, Je_{1})=\lambda J\xi_{1})$ .
PROOF. From the definition of $\xi_{1}$ , we have

$\langle A_{\xi_{1}}(e_{1}), e_{1}\rangle=\langle\sigma(e_{1}, e_{1}), \xi_{1}\rangle=\{\sigma(e_{1}, e_{1}),$ $\frac{\sigma(e_{1},e_{1})}{|\sigma(e_{1},e_{1})|}\}$

$=\lambda(=-(A_{\xi_{1}}(Je_{1}), Je_{1}\rangle)$ ,

and

$\langle A_{\xi_{1}}(e_{1}), Je_{1}\rangle=(\sigma(e_{1}, Je_{1}),$ $\xi_{1}\rangle$

$=\langle J\sigma(e_{1}, e_{1}), \xi_{1}\rangle=\{J\sigma(e_{1}, e_{1}),$ $\frac{\sigma(e_{1},e_{1})}{|\sigma(e_{1},e_{1})|}\}=0$ .

Similary, we have

$A_{J\xi_{1}}=\left(\begin{array}{ll}0 & \lambda\\\lambda & 0\end{array}\right)$ .

Since the first normal space is perpendicular to the second normal space, we can easily get
$A_{e_{1}\times\xi_{1}}=0$ and $A_{J(e_{1}\times\xi_{1})}=0$ . $\square $
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5. $G_{2}$ moving frame.

In this section, we shall give the relation between the ordinary surface theory (section 3)

and $G_{2}$ admissible frame field along the immersion $x$ . We recall that the Lie group $G_{2}$ is a
principal $SU(3)$ right bundle over $S^{6}$ . First we define complexified local $SU$ (3)-frame field
as follows (at points which are not geodesic).

$f_{3}=\frac{1}{2}(e_{1}-\sqrt{-1}Je_{1})$ , (5.1)

$f_{2}=\frac{1}{2}(\xi_{1}-\sqrt{-1}J\xi_{1})$ , (5.2)

$f_{1}=-\frac{1}{2}(e_{1}\times\xi_{1}-\sqrt{-1}J(e_{1}\times\xi_{1}))$ , (5.3)

where $e_{1},$ $Je_{1},$ $\xi_{1},$ $J\xi_{1}$ and $e_{1}\times\xi_{1},$ $J(e_{1}\times\xi_{1})$ are local orthonormal frame fields of $M,$ $v_{1}$

and $v_{2}$ , respectively. Then, $\{f_{1}, f_{2}, f_{3}\}$ satisfy
$Jf_{i}=\sqrt{-1}f_{i}$

for any $l=1,2,3$ . We can easily see that $\{f_{1}, f_{2}, f_{3}\}$ is a $SU(3)$ -frame field, and
$\{x, f_{1}, f_{2}, f_{3}, \overline{f_{1}}, \overline{f_{2}}, \overline{f_{3}}\}$ is a local admissible $G_{2}$ -frame along the immersion $x$ .

Next we shall write down the structure equations of a J-holomorphic curve of $S^{6}$ which
may admit geodesic points. The left invariant l-forms on $G_{2}$ pull back under the immersion
$x$ give forms on the pullback boundle $x^{*}(G_{2})$ which we continue to denote the same letters.
We obtain the following

PROPOSITION 5.1. Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ . Then we have
the following.

$dx=f_{3}(-2\sqrt{-1}\theta^{3})+\overline{f_{3}}(2\sqrt{-1}\overline{\theta^{3}})$ , (5.4)
$\theta^{2}=\theta^{1}=0$ , $\kappa_{3}^{1}=0$ , (5.5)

$df_{3}=x(-\sqrt{-1}\overline{\theta^{3}})+\sum_{i=1}^{3}f_{i}\cdot\kappa_{3^{i}}$ Gauss formula), (5.6)

$df_{2}=\sum_{i=1}^{3}f_{i}\cdot\kappa_{2^{i}}+\overline{f_{1}}\theta^{3}$

$df_{1}=\sum_{i=1}^{3}f_{i}\cdot\kappa_{1}^{i}-\overline{f_{2}}\theta^{3}$

Also we have

(5.7)

Weingartenformula). $(5.8^{\backslash }$,

$\kappa_{3^{3}}+\kappa_{2^{2}}+\kappa_{1}^{1}=0$ , $(5.9_{J}^{\backslash }$

$d\theta^{3}+\kappa_{3^{3}}\wedge\theta^{3}=0$ , $(5.10_{1}^{\backslash }$

$d\kappa_{3^{3}}+\kappa_{2^{3}}\wedge\kappa_{3^{2}}=2\theta^{3}\wedge\overline{\theta^{3}}$ , $(5.11^{\backslash }$

$d\kappa_{2^{2}}+\kappa_{3^{2}}\wedge\kappa_{2^{3}}+\kappa_{1^{2}}\wedge\kappa_{2}^{1}=-\theta^{3}\wedge\overline{\theta^{3}}$ , $(5.12^{\backslash }$,

$d\kappa_{1}^{1}+\kappa_{2^{1}}\wedge\kappa_{1^{2}}=-\theta^{3}\wedge\overline{\theta^{3}}$ , $(5.13^{\backslash }$

$d\kappa_{3^{2}}+(\kappa_{2^{2}}-\kappa_{3^{3}})\wedge\kappa_{3^{2}}=0$ , $(5.14^{\backslash }$
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$d\kappa_{2}^{1}+(\kappa_{1}^{1}-\kappa_{2^{2}})\wedge\kappa_{2^{1}}=0$ . (5.15)

We note that $\kappa_{3^{2}},$ $\kappa_{2}^{1}\in\Lambda^{(1,0)}$ where $\Lambda^{(1,0)}$ is a space of l-forms of type $(1, 0)$ with respect to
the complex structure $J$ of $M$ .

PROOF. By (5.5), we get

$d\theta^{1}=-\kappa_{3}^{1}\wedge\theta^{3}=0$ , $d\theta^{2}=-\kappa_{3^{2}}\wedge\theta^{3}=0$ ,

so the l-forms $\kappa_{3}^{1},$ $\kappa_{3^{2}}$ are $(1, 0)$ -forms on $M$ . Since $x(M)$ is a minimal surface of $S^{6}$ ,
we can take the vector field $f_{1}$ is an orthogonal complement of the complex vector space
span$c\{f_{2}, f_{3}\}$ (with respect to the Hermitian inner product), we have

$\kappa_{3}^{1}(X)=2\langle df_{3}(X), \overline{f_{1}}\rangle=2(\sigma(X, f_{3}),$ $\overline{f_{1}}$ } $=0$ .
We get the desired result. $\square $

We put the connection l-form $\kappa_{3^{3}}=\sqrt{-1}\rho_{1}$ of $M$ , the connection $\kappa_{2^{2}}=\sqrt{-1}\rho_{2}$ of
the 1st normal bundle $v_{1}$ , the connection $\kappa_{1}^{1}=\sqrt{-1}\rho_{3}$ , of the second normal bundle $v_{2}$ ,
respectively. If the immersion $x$ does not have a geodesic point, then we have

$\rho_{1}(X)=\langle\nabla_{X}e_{1}, Je_{1}\rangle$ , (5.16)

$\rho_{2}(X)=\langle\nabla_{X}^{\perp}\xi_{1}, J\xi_{1}\rangle$ , (5.17)

$\rho_{3}(X)=\{\nabla_{X}^{1}e_{1}\times\xi_{1},$ $ J(e_{1}\times\xi_{1})\rangle$ (5.18)

for any $X\in TM$ .

LEMMA 5.2. If the immersion $x$ does not have a geodesic point, then we have

$\kappa_{3^{3}}=\sqrt{-1}\rho_{1}$ , $\kappa_{2^{2}}=\sqrt{-1}\rho_{2}$ , $\kappa_{1}^{1}=\sqrt{-1}\rho_{3}$ , (5.19)

$\kappa_{3^{2}}=\lambda(-2\sqrt{-1}\theta^{3})$ , (5.20)

$\kappa_{2^{1}}=\frac{2}{\lambda}\langle(\nabla_{f_{3}}\sigma)(f_{3}, f_{3}), \overline{f_{1}}\rangle(-2\sqrt{-1}\theta^{3})$ , (5.21)

where $\lambda=\sqrt{(1-K)}/2$.
PROOF. From the structure equations $(5.6)-(5.8)$ , and $(5.16)-(5.18)$ , we have (5.19).

Next we show (5.20). Since $\kappa_{3^{2}}\in\Lambda^{(1,0)}$ , we get

$\kappa_{3^{2}}=\kappa_{3^{2}}(f_{3})(-2\sqrt{-1}\theta^{3})$

$=2\{D_{f_{3}}f_{3},$ $\overline{f_{2}}$ ) $(-2\sqrt{-1}\theta^{3})$

$=2(\sigma(f_{3}, f_{3}),$ $\overline{f_{2}}\rangle$ $(-2\sqrt{-1}\theta^{3})$

$=\frac{1}{4}\langle\sigma(e_{1}-\sqrt{-1}Je_{1}, e_{1}-\sqrt{-1}Je_{1}), \xi_{1}+\sqrt{-1}J\xi_{1}\rangle(-2\sqrt{-1}\theta^{3})$

$=\langle\sigma(e_{1}, e_{1})-\sqrt{-1}\sigma(e_{1}, Je_{1}), \xi_{1}+\sqrt{-1}J\xi_{1}\rangle(-\sqrt{-1}\theta^{3})$

$=\lambda(-2\sqrt{-1}\theta^{3})$ .
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In the same way, we have

$\kappa_{2}^{1}=\kappa_{2}^{1}(f_{3})(-2\sqrt{-1}\theta^{3})$

$=2(\nabla_{f_{3}}^{\perp}f_{2}, \overline{f_{1}}\rangle(-2\sqrt{-1}\theta^{3})$

$=\frac{1}{2}(\nabla_{e_{1}-\sqrt{-1}Je_{1}}^{\perp}(\xi_{1}-\sqrt{-1}J\xi_{1}), \overline{f_{1}})(-2\sqrt{-1}\theta^{3})$

$=\frac{1}{2}\langle\nabla_{e_{1}-\sqrt{-1}Je_{1}}^{\perp}\frac{1}{\lambda}(\sigma(e_{1}, e_{1})-\sqrt{-1}J\sigma(e_{1}, e_{1})), \overline{f_{1}}\rangle(-2\sqrt{-1}\theta^{3})$

$=\frac{1}{\lambda}((\nabla_{e_{1}}\sigma)(e_{1}, e_{1})-\sqrt{-1}(\nabla_{Je_{1}}\sigma)(e_{1}, e_{1}),$ $\overline{f_{1}}$) $(-2\sqrt{-1}\theta^{3})$

$=\frac{2}{\lambda}((\nabla_{f_{3}}\sigma)(e_{1}, e_{1}),$ $\overline{f_{1}}\rangle$ $(-2\sqrt{-1}\theta^{3})$ .

On the other hand, we have $(\nabla_{f_{3}}\sigma)(\overline{f_{3}}, \overline{f_{3}})=(\nabla_{\overline{f_{3}}}\sigma)(f_{3}, \overline{f_{3}})=0$ . This yields

$\kappa_{2^{1}}=\frac{2}{\lambda}\langle(\nabla_{f_{3}}\sigma)(f_{3}, f_{3}), \overline{f_{1}}\rangle(-2\sqrt{-1}\theta^{3})$ .

We get (5.21). $[$

PROPOSITION 5.3. $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ .
(1) $ d\rho_{1}=(2|\kappa_{3^{2}}(f_{3})|^{2}-1)\Omega=-K\Omega$ ,

(2) $ d\rho_{2}=\frac{1}{2}(1-4|\kappa_{3^{2}}(f_{3})|^{2}+4|\kappa_{2^{1}}(f_{3})|^{2})\Omega$ ,

(3) $ d\rho_{3}=\frac{1}{2}(1-4|\kappa_{2}^{1}(f_{3})|^{2})\Omega$ ,

where $\Omega=2\sqrt{-1}\theta^{3}\wedge\overline{\theta^{3}}$ is a volume element of $M$ .
PROOF. By (5.11) and (5.20), we get

$d\rho_{1}=-\sqrt{-1}\overline{\kappa_{3^{2}}}\wedge\kappa_{3^{2}}-2\sqrt{-1}\theta^{3}\wedge\overline{\theta^{3}}$

$=(4\sqrt{-1}\kappa_{3^{2}}(f_{3})\overline{\kappa_{3^{2}}(f_{3})}-2\sqrt{-1})\theta^{3}\wedge\overline{\theta^{3}}$

$=(2|\kappa_{3^{2}}(f_{3})|^{2}-1)\Omega$

$=-K\Omega$ .

Hence we get (1). Similarly, we have (2) and (3). $[$

REMARK. Each second cohomology class $[-d\rho_{i}/2\pi]\in H^{2}(M^{2}, Z)$ is a first Chen
class of the corresponding complex line bundle.

Next we show that the function $|\kappa_{2}^{1}(f_{3})|^{2}$ is well defined at isolated geodesic point. $W($

recall the definition the holomorphic line bundles $v_{1}^{(1,0)}$ and $v_{2}^{(1,0)}$ . First, we shall define th $($

$su(3)$ connection on $T^{(1,0)}S^{6}$ as follows;
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Let $\{f_{1}, f_{2}, f_{3}\}$ be the $SU$ (3)-frame field of $T^{(1,0)}S^{6}$ . A section $s$ of the bundle $T^{(1,0)}S^{6}$

can be represented by

$s=\sum_{i=1}^{3}f_{i}\otimes s^{i}$

We set the operator $\tilde{\nabla}$ on $T^{(1,0)}S^{6}$ such that

$\tilde{\nabla}_{s}=\sum_{i=1}^{3}f_{i}\otimes(ds^{j}+\kappa_{j^{j}}s^{j})$ .

Then $\tilde{\nabla}$ is the connection which satisfies $\tilde{\nabla}J=0$ and preserve the Hermitian inner product
of $T^{(1,0)}S^{6}$ (see [Brl] or [H]).

Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ which is not totally geodesic. We
denote by $T^{\perp}M$ the normal bundle of rank 4 over the J-holomorphic curve. Since the tangent
bundle of $M$ is invariant under the almost complex structure, so is $T^{\perp}M$ . We denote by
$T^{\perp(1,0)}M$ the $(1, 0)$ part of the complexified normal bundle $T^{1}M\otimes C$ . Since we take $f_{3}$ as a
section of $T^{(1,0)}M,$ $\{f_{1}, f_{2}\}$ is a local unitary frame of $T^{1(1,0)}M$ . We can define the induced
conneciton of $T^{1(1,0)}M$ from the above $su(3)$ -connection as follows. A (local) section $s$ of
the bundle $T^{\perp(1,0)}M$ can be represented by

$s=\sum_{i=1}^{2}f_{i}\otimes s^{i}$

We set the operator $\tilde{\nabla}$ on $T^{\perp(1,0)}M$ such that

$\tilde{\nabla}s=\sum_{i=1}^{2}f_{i}\otimes(ds^{i}+\kappa_{j^{l}}s^{j})$ .

Since $M$ is a Riemmann surface, it can be shown that $\tilde{\nabla}$ dePnes the compatible holomorphic
structure on $T^{\perp(1,0)}M$ by the Proposition (3.7) (in $[K$ : page 9]). We call a (local) section $s$

holomorphic one if
$\tilde{\nabla}_{\overline{\partial_{z}}}s=0$ ,

where $\overline{\partial_{z}}=\partial/\partial\overline{z}$ . We show that $\sigma(\partial_{z}, \partial_{z})$ is a holomorphic section of $\tau^{\perp(1,0)}$ where $\partial_{z}=$

$\partial/\partial z$ In fact, by (5.7) and (5.8), we have

$\tilde{\nabla}_{\overline{\partial_{z}}}(\sigma(\partial_{z}, \partial_{z}))=\nabla_{\overline{\partial_{z}}}^{\perp}(\sigma(\partial_{z}, \partial_{z}))=(\nabla_{\overline{\partial_{z}}}\sigma)(\partial_{z}, \partial_{z})$ (since $\nabla_{\overline{\partial_{z}}}\partial_{z}=0$)

$=(\nabla_{\partial_{z}}\sigma)(\overline{\partial_{z}}, \partial_{z})=0$ ,

the 3rd equality holds by the Codazzi equation and the last equality holds by (1) of Corollary
4.2. Since we assume that $\sigma$ is not identically zero, the geodesic points are isolated. Let $z0$ be
an isolated geodesic point on $M$ and $(U, z)$ is an isothermal coordinate of $M$ centered at $zo$ ,

then the metric is given by
$ds^{2}=\rho^{2}dz\circ\overline{dz}$ .
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Since $\sigma(\partial_{z}, \partial_{z})$ is a holomorphic section of $T^{\perp(1,0)}M$ , we may put

$\sigma(\partial_{z}, \partial_{z})=(z-z_{0})^{m}\xi(z)$ ,

on $U$ , where $\xi(z_{0})(\neq 0)\in\tau^{\perp(1,0)}$ . We define $(1, 0)$ part of the first normal bundle $v_{1}^{(1,0)}a\{$

follows

fiver of $v_{1}^{(1,0)}$ over $tz$ } $=\left\{\begin{array}{ll}spt_{C\{\sigma(\partial_{z},\partial_{z})\}} & for any z\in U\backslash \{z_{0}\}\\spt_{C}\{\xi(z_{0})\} at & zo.\end{array}\right.$

Then $v_{1}^{(1,0)}$ is well defined on $M$ and it is a holomorphic line bundle. Since the geodesi $($

point $z0$ is isolated, we may put

$f_{2}=\frac{\xi(z)}{\sqrt{2}|\xi(z)|}$

where $\xi(z)$ is a $\tau^{\perp(1,0)}$ -valued holomorphic section and satisfy $\xi(z)\neq 0$ on $U$ . In this case
we have

$\kappa_{3^{2}}(f_{3})=\frac{2}{\rho}(D_{\partial_{z}}f_{3}, \overline{f_{2}})=\frac{\sqrt{2}}{\rho}\{D_{\partial_{z}}(x_{*}(\frac{1}{\rho}\partial_{z})),$ $\overline{f_{2}})$

$=\frac{\sqrt{2}}{\rho^{2}|\xi(z)|}(\sigma(\partial_{z}, \partial_{z}),$ $\overline{\xi(z)}$) $=\frac{\sqrt{2}(z-z_{0})^{m}|\xi(z)|}{\rho^{2}}$

In the same way,

fiver of $v_{2}^{(1,0)}$ over $\{z\}=\{span_{C}\{-x_{*}(\partial\overline{\frac{z}{z}})\times^{\overline{\frac{\sigma(\partial_{z}}{\xi(z_{0})\}}}}ats_{P^{t}ct-x_{*}(\partial)\times,\partial_{z})\}}fortyz0$

.
$z\in U\backslash \{z_{0}\}$

Then $v_{2}^{(1,0)}$ is also we defined. Also the bundle $v_{2}^{(1,0)}$ can be considered as the quotien
bundle

$\tau^{\perp(1,0)}/v_{1}^{(1,0)}=v_{2}^{(1,0)}$ .
Next we shall define $|\kappa_{2}^{1}(f_{3})|^{2}$ at the geodesic point as follows. We note that

$\kappa_{2^{1}}(f_{3})=\frac{2}{\rho}(D_{\partial_{z}}f_{2},$ $\overline{f_{1}}\rangle$ .

Since the vector field $f_{1}$ is well defined at $z0$ , we have

$\kappa_{2}^{1}(f_{3})=\frac{-1}{\rho^{2}|\xi(z)|^{2}}(D_{\partial_{z}}\xi, x_{*}(\partial_{z})\times\xi(z)\rangle$ .

Therefore,

$|\kappa_{2^{1}}(f_{3})|^{2}=\frac{1}{\rho^{4}|\xi(z)|^{4}}(D_{\partial_{z}}\xi, x_{*}(\partial_{z})\times\xi(z))(D_{\partial_{z}}\xi, x_{*}(\partial_{z})\times\xi(z)\rangle$ .

We can easily see that the function $|\kappa_{2}^{1}(f_{3})|^{2}$ does not depend on the choice of the frame
fields, so we can define $|\kappa_{2}^{1}(f_{3})|^{2}$ whole on $M$ (if $M$ has only isolated geodesic points)
We put $|III|^{2}=|\kappa_{2}^{1}(f_{3})|^{2}$ (in the extended sense). We recall the definition of functions $0$

holomorphic type and absolute value type.

DEFINITION 5.4. A smooth complex valued function $p$ : $M\rightarrow C$ is called a one $0$

holomorphic type if locally $p=p0\cdot p_{1}$ , where $p0$ is a holomorphic function and $p_{1}$ is smootl



6-DIMENSIONAL SPHERE 147

without zeros. A non-negative function $f$ : $M\rightarrow R\geq 0$ is called a one of absolute value type,
if there exists a function $g$ of holomorphic type with $f=|g|$ . The zero set of such function is
either isolated or the whole of $M$ , and outside its zero, the function is smooth.

Then we have

PROPOSITION 5.5. Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ which is not
totally geodesic. We assume that the induced metric is given by the followingforrn (locally)

$ds^{2}=\rho^{2}dz\circ\overline{dz}$

Then the functions and $a_{2}^{1}=\kappa_{2^{1}}(\partial_{z})$ are of holomorphic type and hence $|\kappa_{3^{2}}(f_{3})|=$

$\sqrt{(1-K)/2}$ and $|\kappa_{2}^{1}(f_{3})|=|III|$ are of absolute value type. Moreover they satisfy the
following equations.

(1) $4|111|^{2}-1=\Delta\log(1-K)-6K$ ,

(2) $\Delta\log|III|=1-4|III|^{2}$

(3) $\Delta\log\{(1-K)|III|\}=6K$ ,

outside the corresponding zero sets. The l-forms $\rho_{1},$ $\rho_{2},$ $\rho_{3}$ satisfy the following

(4) $\rho_{1}-\rho_{2}=-2{\rm Im}\{\partial_{z}(\log(\overline{a_{3^{2}}}))dz\}$ ,

(5) $\rho_{2}-\rho_{3}=-2{\rm Im}\{\partial_{z}(\log(\overline{a_{2^{1}}}))dz\}$ .

In order to prove Proposition 5.5, we recall the following fundamental lemma which is
obtained by Eschenberg et al. ([E-G-T]) or S. S. Chem ([Ch]).

LEMMA 5.6. Let $(M, ds^{2})$ be a Riemann $su\phi ace$ and $(U, z)$ be an isothermal coordi-
nate system. Let $p$ : $U\rightarrow C$ be a smooth complex valued function which is not identically
zero, and $\omega$ be a real valued l-form on M. Thefunction $p$ and a l-form $\omega$ satisfy thefollowing
equality

$(dp-\sqrt{-1}p\omega)\wedge dz=0$ ,

ifand only if
(1) $p$ is a function ofholomorphic type.

(2) $\omega=-2{\rm Im}\{\partial_{z}(\log(\overline{p}))dz\}$ .

In particular, by (2), we have
$ d\omega=-\Delta$ log $|p|\Omega$ .

Now we are in a position to prove Proposition 5.5.

PROOF OF PROPOSITITION 5.5. Since the l-forms $\kappa_{3^{2}},$ $\kappa_{2}^{1}\in\Lambda^{(1,0)}(M)$ , there exist
local functions $a_{3^{2}},$ $a_{2}^{1}$ such that

$\kappa_{3^{2}}=a_{3^{2}}dz$ , $\kappa_{2^{1}}=a_{2^{1}}dz$ .
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From the assumption, $a_{3^{2}},$ $a_{2}^{1}$ are smooth. By (5.14) and (5.15), the following equalities hol

$\{da_{3^{2}}-\sqrt{-1}(\rho_{1}-\rho_{2})a_{3^{2}}\}\wedge dz=0$ ,

$\{da_{2^{1}}-\sqrt{-1}(\rho_{2}-\rho_{3})a_{2^{1}}\}\wedge dz=0$ .
$(5.22_{J}^{\backslash }$

We can apply (2) of Lemma 5.6 to (5.22), we get (4) and (5). By applying (3) of Lemma 5
to (5.22), we get (1)$-(3)$ . $[$

LEMMA 5.7. For any real valuedpositivefunction $f$ : $M\rightarrow R_{>0}$ , we have
$J^{*}$ ($d$ log $f$ ) $=2{\rm Im}\{\partial_{z}(\log f)dz\}$ ,

where $J^{*}is$ defined by $J^{*}\alpha(X)=-\alpha(JX)$ for any l-fom $\alpha$ and $X\in TM$ .
PROOF.

$J^{*}$ ($d$ log $f$ ) $=J^{*}$ { $(\partial_{z}$ log $f)dz+(\overline{\partial_{z}}$ log $f)d\overline{z}$ }

$=\partial_{Z}$ log $f(-\sqrt{-1}dz)+\partial_{\overline{z}}$ log $f(\sqrt{-1}d\overline{z})=2{\rm Im}(\frac{\partial}{\partial z}(\log f)dz)$ . $\subset$

LEMMA 5.8. Letx : $M\rightarrow S^{6}$ be aJ-holomorphic curve of $S^{6}$ . We assume that th
induced metric is given by the followingform (locally)

$ds^{2}=\rho^{2}dz\circ\overline{dz}$ .
Then the connection l-foms are given by the following

$\rho_{1}=J^{*}d$ log $\rho$ , (5.23

$\rho_{2}=2{\rm Im}\{\partial_{z}\log(\rho\overline{a_{3}^{2}})dz\}$ , (524

$\rho 3=-2{\rm Im}\{\partial_{z}\log(\rho^{2}\overline{a_{3}^{2}})dz\}$ , (5.25

$0={\rm Im}\{\partial_{Z}(\log(\rho^{3}(\overline{a_{3}^{2}})^{2}\overline{a_{2^{1}}}))dz\}$ . (5.26

In particular, we have

$d\rho_{1}=$ ( $\Delta$ log $\rho$ ) $\Omega=-K\Omega=(2\rho^{2}|a_{3}^{2}|^{2}-1)\Omega$ ,

$d\rho_{2}=$ ( $\Delta$ log $\rho|a_{3}^{2}|$ ) $\Omega=$ ( $-K+\Delta$ log $|a_{3}^{2}|$ ) $\Omega$ ,

$d\rho_{3}=-$ ( $\Delta$ log $\rho^{2}|a_{3}^{2}|$ ) $\Omega=$ ($ 2K-\Delta$ log $|a_{3}^{2}|$ ) $\Omega$ .

PROOF. Since the induced metric is given by the above form, we get

$\rho_{1}=J^{*}d$ log $\rho$ .
By (4) of Proposition 5.5 and Lemma 5.7, we have

$\rho 2=\rho_{1}+2{\rm Im}\{\partial_{z}\log(\overline{a_{3}^{2}})dz\}$ .
Hence, we get (5.24). By (5.9), (5.23) and (5.24), we obtain (5.25). By (5.24), (5.25) and (5
of Proposition 5.5, we get (5.26). $[$
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REMARK. The equation (5.26) gives an important role to define geometrical invariants
$ofG_{2}$ .

6. Local existence and rigidity.

We first remark that a J-holomorphic curve $M$ of $S^{6}$ is a totally geodesic, if and only if,
the Gauss curvature of $M$ is identically 1. Therefore we may consider the case that the Gauss
curvature of $M$ is not identically 1. We shall prove the following existence theorem.

THEOREM 6.1 Let $M$ be a connected, simply connected Riemann sufface with the
metric of the form

$ds^{2}=\rho^{2}dz\circ\overline{dz}$

We assume that the Gauss curvature $K$ is not identically 1 and $K\leq 1$ . Then functions
$\sqrt{1-ki}$ $and|III|$ are ofabsolute value type and that the following equations are satisfied

$\Delta\log(1-K)=6K-1+4|III|^{2}$ (6.1)

$\Delta$ log $|III|=1-4|III|^{2}$ (6.2)

outside its zero set. Then there exists a J-holomorphic curve of $\varphi$ : $M\rightarrow S^{6}$ with the Gauss
curvature $ K=-\Delta$ log $\rho and|III|=|\kappa_{2}^{1}(\partial_{z})/\rho|$ .

In order to prove Theorem 6.1, we recall the following theorem.

PROPOSITION 6.2 ([Gri]). Let $G$ be a Linear Lie group and $\mathcal{G}$ denote its Lie algebra.
Let

$\omega=g^{-1}dg$

be the Maurer-Cartan form where $g=(g_{ij})$ is a variable non-singular matrix, and $N$ be a
connected, simply connected n-dimensional manifold. If there exists a $\mathcal{G}$ valued l-form $\psi$

such that
$d\psi+\frac{1}{2}[\psi, \psi]=0$ , (integarability condition)

then there exists a map $f$ : $N\rightarrow G$ such that
$\psi=f^{*}\omega$ .

PROOF OF THEOREM 6.1. By Proposition 6.2, to show Theorem 6.1, we may prove
that there is a $\mathcal{G}_{2}$ valued l-form on $M$ which satisfy the integarability condition. First we
define $\mathcal{G}_{2}$ valued l-form on surface $M$ . Let $(U, z)$ be a local isothermal coordinate system
of $M$ . From the assumption, there exists holomorphic functions $h_{0}(z),$ $g$) $(z)$ and nowhere-
zero (complex valued) functions $h_{1}(z),$ $g_{1}(z)$ such that $\rho\sqrt{(1-K)}/2=|h_{0}(z)h_{1}(z)|$ and
$\rho|III|=|g_{0}(z)g_{1}(z)|$ . If $z0$ is a geodesic point, then we have $h_{0}(z)=(z-z_{0})^{m}\alpha_{0}(z)$ where
$\alpha_{0}(z)\neq 0$ on $U$ . If $z_{1}$ is a zero point of $|III|$ , i.e., $|III|(z_{1})=0$ (which will be called a
super-minimal point in the later of this paper), then we have $g_{0}(z)=(z-z_{1})^{k}\beta_{0}(z)$ where
$\beta_{0}(z)\neq 0$ on $U$ . By (6.1) and (6.2), we have

$\Delta\log(|\alpha_{0}(z)\beta_{0}(z)h_{1}(z)g_{I}(z)|\rho^{6})=0$ .
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Since the function $\alpha_{0}(z)\beta_{0}(z)h_{1}(z)g_{1}(z)$ does not have a zero point on $U$ , there exists
holomorphic function $f(z)$ such that $\rho^{6}\alpha_{0}(z)\beta_{1}(z)h_{1}(z)g_{1}(z)=e^{{\rm Re} f(z)}$ . We put

$\theta^{3}=\frac{1}{2}\sqrt{-1}\rho dz$ , $\theta^{1}=\theta^{2}=0$ ,

$\kappa_{3^{3}}=\sqrt{-1}\rho_{1}=\sqrt{-1}$( $J^{*}d$ log $\rho$),

$\kappa_{2^{2}}=\sqrt{-1}\rho_{2}=2\sqrt{-1}{\rm Im}\{\partial_{z}\log(\rho\overline{h_{0}(z)h_{1}(z)})dz\}$ ,

$\kappa_{1}^{1}=\sqrt{-1}\rho_{3}=-2\sqrt{-1}{\rm Im}\{\partial_{z}\log(\rho^{2}\overline{h_{0}(z)h_{1}(z)})dz\}$ ,

$\kappa_{3^{2}}=h_{0}(z)h_{1}(z)dz=-\overline{\kappa_{2^{3}}}$ ,

$\kappa_{3}^{1}=0=\kappa_{1^{3}}$

$\kappa_{2^{1}}=\frac{(z-z_{1})^{k}e^{{\rm Re} f(z)}}{\rho^{6}\alpha_{0}(z)h_{1}(z)}dz=-\overline{\kappa_{1^{2}}}$ ,

on $U$ , where $h_{0}(z)=(z-z_{0})^{m}\alpha_{0}(z)$ if $z0$ is a geodesic point in $U$ . By (6.1), (6.2) and diret
calculation, we can easily see that the integrability conditions are satisfied. By Propositio
6.2, there exists a map $\tilde{\varphi}$ : $M\rightarrow G_{2}$ . From the definition, the image of $\tilde{\varphi}$ transverse to $SU(3$

We get the desired result. $[$

REMARK. From the above observation, we can obtain a J-holomorphic curve assoc
ated to $\tilde{\varphi}$ as follows

$\pi 0\tilde{\varphi}(p)=the$ first column of the matrix $(\epsilon, E,\overline{E})\rho(\tilde{\varphi}(p))$

where $\rho$ : $G_{2}\rightarrow SO(7)\subset End_{R}C^{7}$ is a faithful representation, $\epsilon=(0,1)\in{\rm Im} O$ an
$p\in M$ .

We shall prove the rigidity theorem with respect to $G_{2}$ . First, we shall determine th
geometrical invariants up to the action of $G_{2}$ .

Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ and $\{f_{3}, f_{2}, f_{1}\}$ (resp. $\{f_{3}^{\prime},$ $f_{2}^{\prime},$ $f_{1}^{\prime}\}$ )

special unitary frame on $U$ (resp. on $V$ ) where $U,$ $V$ are sufficiently small open subset of $J$

such that $ U\cap V\neq\emptyset$ . Then there exists a $\theta\in S^{1}$ such that $f_{3}^{\prime}=e^{\iota\theta}f_{3},$ $f_{2}^{\prime}=e^{2\iota\theta}f_{2},$ $f_{1}^{\prime}$ :

$e^{-3\iota\theta}f_{1}$ where $\iota=\sqrt{-1}$ . From this relation, we have the following relations about l-fom
on $U\cap V$

$\theta^{;3}=e^{-\iota\theta}\theta^{3}$

$\kappa_{3}^{\prime 3}=\kappa_{3^{3}}+\sqrt{-1}d\theta 2’ 1$
’ $\kappa_{2}^{\prime 2}=\kappa_{2^{2}}+2\sqrt{-1}d\theta 1$

$\kappa_{1}^{\prime 1}=\kappa_{1}^{1}-3\sqrt{-1}d\theta$ ,

$\kappa_{3}=e^{-\iota\theta}\kappa_{3^{2}}$ $\kappa_{3}=\kappa_{3}^{1}=0$ , $\kappa_{2}=e^{5\iota\theta}\kappa_{2^{1}}$

Therefore we can easily see that

$\Lambda=4\sqrt{-1}(\kappa_{3^{2}})^{2}\otimes\kappa_{2^{1}}\otimes(\theta^{3})^{3}$

is independent of the choice of the special unitary frame. We call $\Lambda$ a geometrical invaria’
of a J-holomorphic curve of $S^{6}$ with respect to the action of $G_{2}$ . We remark that $\Lambda$ is
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holomorphic section of the bundle $\otimes^{6}T^{*(1,0)}M$ . In particular, by (5.26), $\Lambda$ is a globally
defined holomorphic 6-differential on $M$ . In fact, we may put $f_{3}=(1/\rho)\partial_{z}$ , then we have

$\Lambda=\left\{\begin{array}{ll}-(\sigma_{2}(\partial_{z}, \partial_{z}, \partial_{z}), x_{*}(\partial_{Z})x\sigma(\partial_{z}, \partial_{z})\rangle (dz)^{6} & (without geodesic point)\\-(z-zo)^{2m}(D_{\partial_{z}}\xi(z), x_{*}(\partial_{Z})\times\xi(z)\rangle(dz)^{6} & (where z0 is a geodesic point)\end{array}\right.$ (6.3)

where $\sigma_{2}(X, Y, Z)$ is the components of the 2nd normal space of $(\nabla_{X}\sigma)(Y, Z)$ for any tangent
vectors $X,$ $Y,$ $Z$ of $M$ . From the above representation of $\Lambda$ , we may write $\Lambda=F(z)dz^{6}$ where
$F(z)$ is a holomorphic function on $(U, z)$ . By direct calculation, we have

$|\Lambda|=\frac{(1-K)|III|}{32}$ .

LEMMA 6.3. LetM beaconnectedsurface $andx_{1},$ $x_{2}$ : $M\rightarrow S^{6}$ be twoJ-holomorphic
curves with same induced metric. Let $\Lambda_{1}$ and $\Lambda_{2}$ be the corresponding holomorphic differen-
tials. Then there exists an element $g\in G_{2}$ such that $gox_{1}=x_{2}$ ifand only if $\Lambda_{1}=\Lambda_{2}$ .

PROOF. We may assume that $ds_{1}^{2}=ds_{2}^{2}=\rho^{2}dz\circ\overline{dz}$ and $\Lambda_{1}=\Lambda_{2}$ on sufficiently
small neighborhood $(U, z)$ of $M$ . We can take the common complexified tangent vector field
$f_{3}=f_{3}^{\prime}$ . Then we have $\theta^{3}=\theta^{\prime 3}$ and $\kappa_{3^{3}}=\kappa_{3}^{\prime 3}$ . Since $|a_{3^{2}}|=|a_{3}^{\prime 2}|=\rho\sqrt{(1-K)/2}$,

there exists a real valued differentiable function $\varphi$ such that $a_{3}^{\prime 2}=e^{\iota\varphi}a_{3^{2}}$ . If we change
the adapted frame field of $x_{2}$ , from $\{f_{3}^{\prime}=f_{3}, f_{2}^{\prime}, f_{1}^{\prime}\}$ to $\{f_{3}^{\prime}=f_{3}, e^{\iota\varphi}f_{2}^{\prime}, e^{-\iota\varphi}f_{1}^{\prime}\}$ , we may
assume that $a_{3}^{\prime 2}=a_{3^{2}}$ . By (5.24) and (5.25), we have $\kappa_{1}^{1}=\kappa_{1}^{\prime 1},$ $\kappa_{2^{2}}=\kappa_{2}^{\prime 2}$ . Also, since
$\Lambda=\rho^{3}(a_{3^{2}})^{3}a_{2^{1}}(dz)^{6},$ $\Lambda_{1}=\Lambda_{2}$ implies that $a_{2}^{\prime 1}=a_{2^{1}}$ . Therefore we have $\kappa_{2^{1}}=\kappa_{2}^{\prime 1}$ .
From the following Proposition 6.4, we see that the subset of $M$ where $x_{2}$ and $gox_{1}$ agree, is
closed and open subset in $M$ , it is coincide with the whole of $M$ . The converse statement is
clear. $\square $

PROPOSITION 6.4 ([Gri]). Let $f,$ $f$ : $N\rightarrow G$ be two smooth maps of a connected
mamfold $N$ into G. Then we have

$f=g\circ f$

forfixed $g\in G$ , ifand only if
$ f^{*}\omega=\tilde{f}^{*}\omega$

where $\omega$ is the Maurer-Cartan forms on $G$ .
THEOREM 6.5. Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve and $M$ is a connected

surface.
(1) We assume that $x$ is totally geodesic. Let $x^{\prime}$ : $M\rightarrow S^{6}$ be a J-holomorphic curve

with the same induced metric as $x$ . Then there exists a $g\in G_{2}$ such that $x^{\prime}=gox$ .
(2) We assume that $x$ is not totally geodesic and $|III|\equiv 0$. Let $x^{\prime}$ : $M\rightarrow S^{6}$ be a

J-holomorphic curve with the same induced metric as $x$ . Then there exists a $g\in G_{2}$ such that
$x^{\prime}=gox$ .

(3) We assume that $x$ is not totally geodesic and $|III|$ is not identically zero. Let $x^{\prime}$ :
$M\rightarrow S^{6}$ be a J-holomorphic curve with the same induced metric as $x$ . Then there exists a
one parameterfamily ofJ-holomorphic curves of $x_{\theta}$ : $M\rightarrow S^{6}(\theta\in S^{1})$ with same induced
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metric as $x$ . Moreover, any J-holomorphic curve with the same induced metric belongs to $thi$.
family, up to the action of $G_{2}$ .

PROOF. (1) By Lemma 4.4 in [Brl], this is proved.
(2) $ByLemma6.3$ , we get ( $ 2\rangle$ .
(3) By (1) of Proposition 5.5, the function $|III|$ is determined by the induced metric

By the assumption, we can easily see that there exists a real valued function $\theta\in S^{1}$ such tha
$\Lambda^{\prime}=e^{\iota\theta}\Lambda$ . Since $\Lambda^{\prime},$ $\Lambda$ are holomorphic 6-differential on $M,$ $\theta$ is a constant. By Theoren
6.1, there exists a l-parameter family of J-holomorphic curves with the same induced $metri\langle$

of $x$ and $ e^{\iota\theta}\Lambda$ where $\theta$ is a constant. By Lemma 6.3, any J-holomorphic curve with the samt

induced metric of $x$ , is congruent to this family up to the action of $G_{2}$ . We get the
$desire(\subset$

result.

7. Some theorems associated to curvature.

In this section, we give some theorems as an application of Proposition 5.5 and $unif.\urcorner$

some results obtained by K. Sekigawa ([Se]) and F. Dillen et al. ([D-V-V]) concemed witl
curvatures of $M$ . It was proved that the Veronese immersion of $S_{1,6}^{2}$ to $S^{6}$ and the Kenmotsu

surface $T^{2}$ to $S^{5}\subset S^{6}$ , are J-holomorphic curves of $S^{6}$ ([Se], [Bo2]). First we prove th $($

following.

THEOREM 7.1. Letx : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ . If its induced $metri_{t}$

is complete and the Gauss curvature $K$ satisfies the following conditions
(1) $K$ is boundedfrom below,
(2) $K\leq 1/6$ ,
(3) $\int_{M}(K^{-})\Omega$ isfinite, where $K^{-}(x)=\max\{-K(x), 0\}$ ,

(4) $|m|^{2}<1/4$ . Then the immersion $x$ is congruent to the Veronese immersion of $s_{\frac{4)}{\{}}^{\prime}$

to $S^{6}$ up to the action of $G_{2}$ .
In order to prove Theorem 7.1, we prepare the following

PROPOSITION 7.2. Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ . The Gaus
curvature $K$ and the length of thirdfundamental $fom|III|^{2}$ satisfy the following differentia
equations

(1) $\frac{1}{2}\Delta(1-K)^{2}=2||gradK||^{2}+(1-K)^{2}(6K-1+4|III|^{2})$ ,

(2) $\frac{1}{2}\Delta|111|^{4}=2||grad|m|^{2}||^{2}+|III|^{4}(1-4|III|^{2})$ ,

(3) $\frac{1}{2}\Delta\{(1-K)^{2}|III|^{2}\}^{2}=2||grad(1-K)^{2}|111|^{2}||^{2}+12K(1-K)^{4}|III|^{4}$
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PROOF. First we shall prove (1). Since the immersion $x$ is minimal, the Gauss cur-
vature $K$ satrisfy $K\leq 1$ . If $K\equiv 1$ , then (1) is automorphically satisfied. Hence we may
consider the case that $K$ is not identically 1. Then the geodesic points are isolated. On the
other hand, we have

$\Delta$ log $f=\frac{f\Delta f-||gradf||^{2}}{f^{2}}$

outside the corresponding zero sets, for any non-negative function $f$ which is not identically
zero. This formula and (1) of Proposition 5.5, we get (1) for the regular points. Since the
L.H. $S$ and the R.H. $S$ of (1) are continuous functions, the equatlity holds on $M$ . In the same
way, we get (2) and (3). $\square $

Now we are in a position to prove Theorem 7.1.

PROOF OF THEOREM 7.1. From the condition (2), we see that the immersion does not
have a geodesic point. If $M$ is a non-compact complete Riemann surface, then the conditions
(1) and (3) imply $M$ is a parabolic Riemann surface by Huber’s theorem ([Hu, Theorem 15]).
By the condition (4) of Theorem 7.1, and the equation (2) of Proposition 7.2, $|III|^{2}$ is a
bounded subharmonic function on $M$ , and hence it is constant. By (2) of Proposition 7.2 and
the assumption (4), we have $|III|^{2}=0$ . By (1) of Proposition 5.5, conditions (1) and (2), we
$get-\log(1-K)$ is also a bounded subharmonic function on $M$ , the Gauss curvature $K$ must
be constant. Again by (1) of Proposition 7.2, we have $K\equiv 1/6$ . By (2) of Theorem 6.5, we
get the desired result. $\square $

We give another proof of the following theorems conceming to the curvcature properties
of J-holomorphic curve of $S^{6}$ .

THEOREM 7.3 (of Sekigawa [S] and F. Dillen et al. [D]). Let $M$ be a J-holomorphic
curve of $S^{6}$ .

(1) $M$ is complete and $1/6\leq K\leq 1$ then $K\equiv 1/6$ or $K\equiv 1$ ,
(2) If $M$ is compact and $0\leq K\leq 1/6$ then $K\equiv 0$ or $K\equiv 1/6$ .
PROOF. (1) By Myers’ Theorem and the assumption, $M$ is diffeomorphic to 2-

dimensional sphere. By Theorem 4.6 in ([Brl]), we have $|III|^{2}=0$ . By (1) of Proposition
7.2, we get the desired results.

(2) If the genus of $M$ is zero, then by Theorem 4.6 in ([Brl]), $|III|^{2}=0$ . Applying
Theorem 7.1, we have $K\equiv 1/6$ . If the genus of $M$ is one, by the Gauss Bonnet Theorem, we
get $K\equiv 0$ . $\square $

We give somewhat generalization of Theorem 7.3.

THEOREM 7.4. Let $M$ be a complete J-holomorphic curve of $S^{6}$ . If the Gauss curva-
ture $K$ is nonnegative $and|III|^{2}$ is boundedfrom above, then we have the one ofthefollowing

(1) $K\equiv 0$ and congment to the one parameterfamily ofKenmotsu surface $T^{2}\rightarrow S^{5}$ ,

up to the actionof $G_{2}$ .
(2) $(1-K)^{2}|III|^{2}=0$ .
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PROOF. From the assumption, we see that $M$ is a parabolic Riemann surface by Hu.
ber’s theorem ([Hu, Theorem 15]). If $K$ is not identically zero, by (3) of Proposition 7.2
$(1 -K)^{2}|III|^{2}$

is a bounded subharmonic function, therefore it is constant on $M$ . We
$ge\subset$

$(1-K)^{2}|III|^{2}=0$ .
Also we have the following

THEOREM 7.5. Let $x$ : $M\rightarrow S^{6}$ be a compact J-holomorphic curves in $S^{6}$ . Then $w$

have the following inequality

2 $\int_{M}$ grad $ K|^{2}\Omega\leq\int_{M}(1-6K)(1-K)^{2}\Omega$ .

The equality holds $\iota f$and only if
$(1-K)^{2}|111|^{2}\equiv 0$ .

PROOF. By (1) Proposition 7.2, we get the desired result. $[$

THEOREM 7.6. Letx : $M\rightarrow S^{6}$ be a J-holomorphic curve of $S^{6}$ . If its induced metri$($

is complete and the Gauss curvature $K$ satisfies thefollowing conditions
(1) $K$ is boundedfrom below,
(2) $K\leq 0$ ,

(3) $\int_{M}(K^{-})\Omega$ isfinite,
(4) $|III|^{2}\leq 1/4$ .

Then $K\equiv 0$, IIII2 $\equiv 1/4$ and the immersion $x$ is congruent to the one parameterfamily $0$.
Kenmotsu surface $T^{2}\rightarrow S^{5}$ up to the action of $G_{2}$ .

PROOF. By (2) of Proposition 7.2, IIII4 is a bounded subharmonic function on $M$

Since $M$ is a parabolic Riemann surface by Huber’s theorem ([Hu]), $|III|^{2}$ is a constant func
tion on $M$ . Also, by (2) of Proposition 7.2, we have $|III|^{2}\equiv 0$ or 1/4. If IIII2 $\equiv 0$ , by (1

of Proposition 5.5, we have $\Delta\log(1-K)=6K-1$ , therefore $1/(1-K)$ is a bounded sub
harmonic function, $K$ is constant on $M$ . Also, by (1) of Proposition 5.5, we have $K\equiv 1/6$

This contradicts the assumption. Hence $|III|^{2}\equiv 1/4$ . By (3) of Proposition 5.5, we havt
$\Delta\log(1-K)=6K$ . Hence 1 $-K$ is a super harmonic function on $M$ . Since $M$ is a para
bolic, $K$ is constant, so $K\equiv 0$ . We get the desired result by (2) of Theorem 6.5 and

$Theoren\subset$

3.1 in ([Br2]).

8. Genus formulas of R. L. Bryant ([Brl]).

In this section we give another proof of R. L. Bryant’s Divisor formula. We recall tht
Bryant’s formula in our situation.

THEOREM 8.1. Let $x$ : $M\rightarrow S^{6}$ be a compact J-holomorphic curve in $S^{6}$ . If th‘

Gauss curvature $K$ is not identically 1 $and|III|$ is not identically $0$. Then we have

(1) $\chi(v_{1})+\chi(v_{2})+\chi(M)=0$ ,



6-DIMENSIONAL SPHERE 155

(2) $\chi(v_{1})=2\chi(M)+N(\lambda)$ ,

(3) $\chi(v_{2})=-3\chi(M)+N(\lambda)=\frac{1}{2}N(|III|)$

(or equivalently, $6\chi(M)+2N(\lambda)+N(|III|)=0$), where $\chi(M)$ is the Euler number of $TM$

and $\chi(v_{i})$ is the degree of the i-th normal bundle, and $N(f)$ is the sum of all orders for all
zeros of $f$ .

REMARK. R. L. Bryant showed the divisor formulas for any branched J-holomorphic
curve of $S^{6}$ . We use the formulas for the case that J-holomorphic curve has no branched point
in this paper.

To prove Theorem 8.1, we recall the following elementary lemma which is obtained by
Eschenberg et al. ([E-G-T]).

LEMMA 8.2. Let $f$ be a non-negative function of an absolute type on M. Then we
have

$\int_{M}\Delta$ log $f\Omega=-2\pi N(f)$ .

PROOF OF THEOREM 8.1. Since $\lambda$ and $|III|$ are functions of absolute value type, we
can apply to Lemma 8.2 to the functions $\lambda$ and $|III|$ . From the definition of the degree, we
have

$2\pi\chi(v_{1})=-\int_{M}d\rho_{2}=\int_{M}$ ($ 2K-\Delta$ log $\lambda$ ) $\Omega$

$=4\pi\chi(M)-\int_{M}$ ( $\Delta$ log $\lambda$ ) $\Omega$

$=4\pi\chi(M)+2\pi N(\lambda)$ .
By (1) and (2) of Proposition 5.5, we get

$2\pi\chi(v_{2})=-\int_{M}d\rho_{3}=-\int_{M}$ ($ 3K-\Delta$ log $\lambda$ ) $\Omega$

$=-6\pi\chi(M)-2\pi N(\lambda)$

$=-\frac{1}{2}\int_{M}(1-4|III|^{2})\Omega$

$=-\frac{1}{2}\int_{M}\Delta$ log $|III|\Omega=\pi N(|III|)$ .

By (5.9) of Propostion 5.1, we get (1). Hence we get the desired results. $\square $

COROLLARY 8.3. Letx : $M\rightarrow S^{6}$ be a compact J-holomorphic curve of $S^{6}$ . If the
Gauss curvature $K<1/6$ . Then we have

$12(g-1)=N(|III|)$

where $g$ is a genus ofM. In particular, $g\geq 2$ , then there exists a supeminimal point. More-
over if the immersion does not have a geodesic point $and|III|\neq 0$ then the genus of$M=1$ .
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PROOF. In order to prove Corollary 8.3, we show that $|III|$ does not identically zero. If
the function $|III|$ is identically zero, then (1) of Proposition 5.5, we have

$\int_{M}(6K-1)\Omega=0$ .

This contradicts the assumption. Hence we see that $|III|$ is not identically zero. So we can
apply (3) of Theorem 8.1, we get the desired result.

Since the functions $\lambda$ and $|III|$ are positive functions of $M$ , by (1) and (2) of Proposition
5.4, we have $g=1$ . $\square $

9. Existence of superminimal points and the genus of $M$ .
In this section, we consider the relation between the existence of superminimal points

and the genus of $M$ without geodesic points. First we give some equivalent conditions of a
superminimal point.

DEFINITION 9.1. The point $p\in M$ is called a superminimal one of J-holomorphic
curve if $|III(p)|=0$ .

We have the following.

PROPOSITION 9.2. Let $x$ : $M\rightarrow S^{6}$ be a J-holomorphic curve in $S^{6}$ which is nol

totally geodesic. For a point $p$ of $M$ which is not geodesic, the following conditions are
equivalent.

(1) $p$ is a supeminimal point.
(2) $|\sigma_{2}(X, X, X)|$ is constantfor any unit tangent vector $X\in T_{p}M$ .
(3) The holomorphic 6-differential

$\Lambda=-(\sigma_{2}(\partial_{z}, \partial_{z}, \partial_{z}),$ $\partial_{z}\times\sigma(\partial_{Z}, \partial_{z})\rangle$ $(dz)^{6}$

is zero at $p\in M$ , where $z$ is a local isothemal coordinate system centered at $p$ which is
compatible with the given orientation.

PROOF. Since $|III|=2|F(z)|/(\lambda^{2}\rho^{6})$ and (6.4), the condition (1) is equivalent to (3).

The 3rd fundamental form $\sigma_{2}$ is given by

$\sigma_{2}=2((\nabla_{f}3\sigma)(f_{3}, f_{3}),$
$\overline{f_{1}}\rangle$ $f_{1}\otimes(-2\sqrt{-1}\theta^{3})^{3}$

$+2\{(\nabla_{f_{3}}\sigma)(f_{3}, f_{3}),$ $ f_{1}\rangle$ $\overline{f_{1}}\otimes(-2\sqrt{-1}\theta^{3})^{3}$

$+2((\nabla_{\overline{f_{3}}}\sigma)(\overline{f_{3}}, \overline{f_{3}}),$ $\overline{f_{1}}\rangle$ $f_{1}\otimes(2\sqrt{-1}\overline{\theta^{3}})^{3}$

$+2((\nabla_{\overline{f_{3}}}\sigma)(\overline{f_{3}}, \overline{f_{3}}),$ $f_{1}$ ) $\overline{f_{1}}\otimes(2\sqrt{-1}\overline{\theta^{3}})^{3}$

We may put $f_{3}=(1/\rho)\partial z$ , then

$((\nabla_{f_{3}}\sigma)(f_{3}, f_{3}),$
$\overline{f_{1}}$) $=\frac{1}{\lambda\rho^{6}}F(z)$ ,
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where $F(z)$ is a holomorphic function on some neighborhood near $p$ . Since $f_{1}$ is an element
of the second normal space, we have

$((\nabla_{f_{3}}\sigma)(f_{3}, f_{3}),$ $ f_{1}\rangle$ $=(\nabla_{f_{3}}^{\perp}(\sigma(f_{3}, f_{3})),$ $ f_{1}\rangle$ $-2(\sigma(\nabla_{f3}f_{3}, f_{3}),$ $ fi\rangle$

$=-(\sigma(f_{3}, f_{3}),$ $\nabla_{f}^{\perp}3f_{1}\rangle$ .
By (5.8), we get

$\nabla_{f_{3}}^{1}f_{1}=fi\kappa_{1}^{1}(f_{3})+f_{2}\kappa_{1^{2}}(f_{3})-\overline{f_{2}}\theta^{3}(f_{3})$

$=fi\kappa_{1}^{1}(f_{3})+f_{2}\kappa_{1^{2}}(f_{3})-\frac{l}{2}\overline{f_{2}}$ .

This yields

$((\nabla_{f_{3}}\sigma)(f_{3}, f_{3}),$ $ f_{1}\rangle$ $=\frac{\iota\lambda}{4}$ .
Hence

$\sigma_{2}=\frac{2}{\lambda\rho^{6}}F(z)f_{1}\otimes(-2\sqrt{-1}\theta^{3})^{3}+\frac{\iota\lambda}{2}\overline{f_{1}}\otimes(-2\sqrt{-1}\theta^{3})^{3}$

$-\frac{\iota\lambda}{2}f_{1}\otimes(2\sqrt{-1})^{3}+\frac{2}{\lambda\rho^{6}}\overline{F(z)}\overline{f_{1}}\otimes(2\sqrt{-1}\overline{\theta^{3}})^{3}$

So we get

$\sigma_{2}(f_{3}, f_{3}, f_{3})=\frac{2F(z)}{\lambda\rho^{6}}f_{1}+\frac{\iota\lambda}{2}\overline{f_{1}}$ .

Since we can put $X=f_{3}e^{\iota\theta}+\overline{f_{3}}e^{-\iota\theta}$ , then

$\sigma_{2}(X, X, X)=\sigma_{2}(f_{3}, f_{3}, f_{3})e^{3\iota\theta}+\sigma_{2}(\overline{f_{3}}, \overline{f_{3}}, \overline{f_{3}})e^{-3\iota\theta}$

$=(\frac{2}{\lambda\rho^{6}}F(z)f_{1}+\frac{\iota\lambda}{2}\overline{f_{1}})e^{3\iota\theta}+(\frac{2}{\lambda\rho^{6}}\overline{F(z)}\overline{f_{1}}-\frac{\iota\lambda}{2}f_{1})e^{-3\iota\theta}$

$=(\frac{2}{\lambda\rho^{6}}F(z)e^{3\iota\theta}-\frac{\iota\lambda}{2}e^{-3\iota\theta})f_{1}+(\frac{2}{\lambda\rho^{6}}\overline{F(z)}e^{-3\iota\theta}+\frac{\iota\lambda}{2}e^{3\iota\theta})\overline{f_{1}}$ .

Finally, we have

$|\sigma_{2}(X, X, X)|^{2}=\frac{4|F(z)|^{2}}{\lambda^{2}\rho^{12}}+\frac{\lambda^{2}}{4}-2\frac{|F(z)|}{\rho^{6}}\sin(\alpha+6\theta)$ ,

where $F(z)=|F(z)|e^{\iota\alpha}$ . From this we see that condition (2) is equivalent to (3). Hence we
get desired results.

THEOREM 9.3. Let $x$ : $M\rightarrow S^{6}$ be a compact J-holomorphic curve in $S^{6}$ with genus
$g$. Then we have

(1) The immersionx is supeminimal $ifg=0$ . ([Brl]).
(2) The immersion $x$ is supeminimal or otherwise the immersion $x$ is nowhere super-

minimal on $M$ if $g=1$ .
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(3) If $K<1,$ $g\geq 2$ and there exists a point at which the immersion is not supemin-
imal, then the multiplicity of each zero of the third fundamental form is divisible by 6 and

furthermore the equality

$\sum_{i=1}^{l}k_{i}=12(g-1)$

holds, where $p_{i}(1\leq i\leq l)$ are supeminimal points of $x$ with multiplicity $k_{i}$ .
PROOF. By Riemann Roch theorem, we can get (1) and (2). By Theorem 8.1, we may

show that $k_{i}$ is divisible by 6. In fact, if $F(p_{i})=0$ then we can put
$F(z)=(z-p_{i})^{k;}g(z)$

where $g(z)\neq 0$ on an isothermal coordinate system $(U, z)$ centered at $p_{i}$ where $U$ is a suffi-
ciently small simply connected neighborhood of $p_{i}$ . Since we have

$|\sigma_{2}(X, X, X)|^{2}=\frac{4|F(z)|^{2}}{\lambda^{2}\rho^{12}}+\frac{\lambda^{2}}{4}-2\frac{|F(z)|}{\rho^{6}}\sin(\alpha+6\theta)$

where $X=(1/\rho)\{e^{\iota\theta}\partial_{z}+e^{-\iota\theta}\overline{\partial_{z}}\}$ and $F(z)=|F(z)|e^{\iota\alpha}$ , where $\alpha\in R(mod 2\pi)$ . If we put

$e_{1}=\frac{1}{\rho}\{e^{\iota\theta_{0}}\partial_{z}+e^{-\iota\theta_{0}}\overline{\partial_{z}}\}$

where $\theta_{0}=-(\alpha/6)-(\pi/12)$ . Then the vector field $e_{1}$ is differentiable on $U\backslash \{p_{i}\}$ and satisfy

$|\sigma_{2}(e_{1}, e_{1}, e_{1})|=\max|\sigma_{2}(X, X, X)||X|=1$

Since
$\alpha=-\frac{l}{2}\{\log F(z)-\log\overline{F(z)}\}$ ,

we have

$d\theta_{0}=-\frac{1}{6}d\alpha=\frac{l}{12}$ ($d$ log $F(z)-d$ log $\overline{F(z)}$) $=\frac{l}{12}(\frac{F^{\prime}(z)}{F(z)}-\overline{\frac{F^{\prime}(z)}{F(z)}})$

on $U\backslash \{p_{i}\}$ . Therefore we have

$\frac{1}{2\pi}\int_{\partial B_{r}}d\theta_{0}=-\frac{1}{12\pi}\int_{\partial B_{r}}d\alpha$

$=-\frac{l}{24\pi}\{\int_{\partial B_{r}}\frac{F^{\prime}(z)}{F(z)}dz-\overline{\int_{\partial B_{r}}\frac{F^{\prime}(z)}{F(z)}dz}\}$

Since $F(z)$ is a holomorphic function, we have

$\frac{1}{2\pi\iota}\int_{\partial B_{r}}\frac{F^{\prime}(z)}{F(z)}dz=k\in Z+\cdot$

So we get

$\frac{1}{2\pi}\int_{\partial B_{r}}d\theta_{0}=\frac{1}{6}k\in Z+\cdot$
$\subset$
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COROLLARY 9.4. Let $x$ : $M\rightarrow S^{6}$ be a compact J-holomorphic curve in $S^{6}$ with
genus $g$. If $K<1/6$ and $g\geq 2$, there exist at most $2(g-1)$ superminimal points.

PROOF. Since $K<1/6$ , superminimal points are isolated. In fact, if $|III|^{2}\equiv 0$, then,
by (1) of Proposition 5.5 the Gauss curvature $K$ is constant (because $M$ is compact), and
hence $K\equiv 1/6$ . This contradicts the assumption. By (3) of Theorem 9.3, we get the desired
result. $\square $
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