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Abstract In [GW], S. B. Giddings and S. A. Wolpert proposed aprocedure to obtain anew cell decomposition
of the moduli space of curves. In this paper, we work out this procedure in detail. The number of cells in this new
cell decomposition is smaller than that in other cell decompositions given in [BE, Ha, P3] and this makes the explicit
computations of the orbifold Euler numbers of the moduli spaces for small genera easier. We check in many examples
that they coincide with the known value.

1. Introduction.

We first recall some basic results of S. B. Giddings and S. A. Wolpert [GW]. Let
$(R, \{p_{j}\}_{i=1}^{n})$ be an n-pointed Riemann surface of any genus $(n\geq 2)$ . Given $n$ real numbers
$\{r_{i}\}_{i=1}^{n}$ satisfying $\sum_{i=1}^{n}r;=0$ , we obtain a unique abelian differential of the third kind that
has $n$ simple poles at $p_{i}$ of residue $r_{i}$ and pure imaginary period for every Riemann surface.
This differential has a particular trajectory structure; the sum of real trajectories emanating
from zeros forms a finite graph $G$ on $R$ . Cutting $R$ along this graph, we obtain finite numbers
of components which is biholomorphic to a band of finite width along imaginary axis and
infinite length along real axis in the complex plain:

$R\backslash G=\coprod B_{i}$ ,

$B_{j}\cong R\times(0, b_{j})\subset C$ .
Thus every Riemann surface can be obtained by pasting such bands and the pattem of

pasting is represented by the graph $G$ . We show that the set of all marked Riemann surfaces
that have the same pasting pattem forms a cell, parametrized by the widths of bands and
the distances between zeros. We obtain a cell decomposition of the Teichm\"uller space by
classifying marked Riemann surfaces according to their pasting pattem:

$\mathcal{T}_{g}^{n}=\coprod_{c*}C(G^{*})$
,
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where $C(G^{*})$ is the set of all marked Riemann surfaces that have the same pasting patter]

which is represented by the marked graph $G^{*}$ . We denote by $G^{*}$ a graph with a marking (se $($

\S 3 for details).

The cell decomposition obtained in this way was introduced by S. B. Giddings and S. A
Wolpert [GW]. Since it is not a cell decomposition of the decorated Teichmuller space [P3

but that of the Teichm\"uller space itself, the number of cells is smaller than that in other cel
decompositions given in [BE, Ha, P3]. This cell decomposition is invariant under the action
of the mapping class group and descends to the moduli space. Using this cell decomposition
we calculate the orbifold Euler number of the moduli space by the following formula ([Br]):

$\chi(\mathcal{M}_{g}^{n})=\sum_{G}(-1)^{\dim C(G)}\frac{1}{|AutG|}$ .

A certain characterization of these graphs enables us to combinatorially enumerate all tht
graphs, their automorphism groups and the dimensions of their corresponding cells, and thus
to calculate the orbifold Euler numbers. Since the number of cells is smaller than that of tht
known ones, explicit calculations of the orbifold Euler numbers get much simpler for smal
genera. We check that, in all of our examples, it coincides with the known value [HZ, Pl].

The author would like to express his gratitude to Professor S. Morita for his encourage
ment and suggestions, and Professor T. Kohno for his advice.

2. Band decomposition.

We first introduce the abelian differential considered in [GW].

PROPOSITION 2. 1 (Giddings-Wolpert). Let $(R, \{p_{i}\}_{i=1}^{n})$ be an n-pointedRiemann sur
face of any genus $g$ and let $\{r_{i}\}_{i=1}^{n}$ be non-zero real numbers satisfving $\sum_{i=1}^{n}r_{i}=0$ . The’
there exists a unique abelian differential of the third kind on $R$ , denoted by $\omega$ , which satisfie.
the following conditions;

(a) $\omega$ has simple poles at $p_{j}$ ($i=1,$ $\cdots$ , n) of residue $r_{i}$ and no otherpoles.
(b) $\omega$ has pure imaginary periods.

REMARK. When $g=0$ we need only (a) since the condition (b) is always valid.

Because of the condition (b), any imaginary trajectory of $\omega$ is closed and any real trajec
tory of $\omega$ is not closed; it begins and ends at different poles and zeros (see [GW]). The sun
of real trajectories that run through zeros forms a graph $G$ on $R$ . Precisely it is defined $a\{$

follows.

DEFINITION. Every zero or pole of $\omega$ is a vertex of $G$ . An edge of $G$ is a real trajecton.
of $\omega$ that begins or ends at some zero of $\omega$ .

A characterization of these graphs for the combinatorial enumeration will be given late
in Proposition 2.3. If we cut $R$ along this graph $G$ then we obtain finite numbers of compo
nents. Each component is formed by all the real trajectories that are homotopic rel {poles} $t($

each other. In fact, we can see that this component is a band in the following sense.
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PROPOSITION 2.2. Let $B$ be a component of $R\backslash G$ . Fix a point $z0$ in B. The map
$f$ : $B\rightarrow C$ defined by

$f(z)$ $:=\int_{zo}^{z}\omega$

is holomorphic and
Image$(f)=R\times(a, a+b)\subset C$

for some $a$ and $b\in R$ .

PROOF. We first show that every real trajectory in $B$ has the same endpoints. Suppose
that there exist two real trajectories $\gamma_{1},$ $\gamma_{2}$ in $B$ that begin at different poles of $\omega$ , say $p_{1},$ $p_{2}$

respectively. Then there must be some zero $z$ of $\omega$ and a real trajectory $\gamma$ in $B$ between $\gamma_{1}$ and
$\gamma_{2}$ such that 7 begins at $z$ and $z$ is connected to $p_{1}$ and $p_{2}$ by two real trajectories. But this
cannot happen because a real trajectory that begins at a zero must be contained in $G$ . Hence
all the real trajectories in $B$ have the same initial point. Similarly, they must have the same
terminal point. Let $p$ be the above initial point of all the real trajectories in $B$ . We may choose
$zo$ close enough to $p$ so that there is no zero near $p$ and $zo$ . Let $\delta$ be the imaginary trajectory
that runs through $z0$ and let $z_{1}$ and $Z2$ be the intersection points of $\delta$ and $\partial\overline{B}$ . Notice that there
are two intersection points (possibly they are equal). Since the length of $\delta$

$\int_{\delta}\omega=2\pi iRes(\omega, p)$

is finite, the following lengths $a,$ $b$ are finite:

$ a:=\int_{zo}^{z_{1}}\omega$ , $ b:=\int_{z_{1}}^{Z2}\omega$ .

The paths from $z0$ to $ z\iota$ and from $Z1$ to $z_{2}$ are taken along $\delta$ in the above integrals. We define
$f$ by

$ f(z)=\int_{zo}^{w}\omega+\int_{w}^{z}\omega$ , $z\in B$ ,

where $w$ is the intersection point of $\delta$ and the real trajectory that runs through $z$ and the
paths from $z0$ to $w$ and from $w$ to $z$ are taken along the imaginary and the real trajectories
respectively (Fig. 1). The image of $f$ is easily seen to be $R\times(a, a+b)\subset C$ , which is
simply-connected. Hence, in fact, the definition of $f$ does not depend on the choice of the
path from $z0$ to $z$ and also the choice of $z0$ is not essential. $\square $

The graph $G$ derived from the abelian differential of Proposition 2.1 is characterized by
the following;

PROPOSITION 2.3. The graph $G$ derivedfrom the abelian differential ofProposition
2.1 satisfies the following conditions.

(a) $G$ is a connectedfinite graph with the orientation on edges.
(b) a cyclic order of edges around each vertex is given.
(c) $G$ has two types ofvertex, called “pole” and “zero”.
(d) a numbering among poles is given.
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Fig. 1

(e) edges around a pole are all incoming or all outgoing.
(f) a zero has incoming and outgoing edges alternately with respect to the cyclic order
(g) no edge has the same endpoint and no edge has only poles as its endpoints.
(h) every closed edge-path (see definition below) of $G$ has exactly two poles.

TERMINOLOGY. Considering $G$ as a ribbon graph, we obtain a surface $F(G)$ with
some boundary components. Each boundary component gives a closed chain of edges of $C$

(Fig. 2), called a closed edge-path of $G$ (see [P2]).

PROOF OF PROPOSITION 2.3. The orientation on trajectories of an abelian differentia
can be canonically defined, hence edges of $G$ have the orientations. Numbering among pole:
comes from the numbering among marked points $\{p_{t}\}$ . The trajectory structure around zeros
or poles of general abelian differential leads to the conditions (e) and ( $f\gamma$ . If some edge ha;

the same end point then the period of $\omega$ with respect to this loop is real, which contradict;

to the condition (b) of Proposition 2.1. An edge of $G$ has at least one zero as its end poin
by definition, hence (g) follows. Condition (h) is a consequence of Proposition 2.2; a closee
edge-path $c$ of $G$ corresponds to the boundary of some band $B$ , a component of $R\backslash G$ . All the
real trajectories in $B$ have the same endpoints $p_{1},$ $p_{2}$ , as mentioned in the proof of Propositior
2.2, hence $c$ has no pole other than $p_{1},$ $p_{2}$ . $\subset$

REMARK. Apole that has all outgoing (resp. incoming) edges is called apositive (resp
negative) pole. A closed edge-path of $G$ has one positive and one negative pole. An edge-path
that begins at positive pole and ends at negative pole is called an oriented edge-path. A closec
edge-path of $G$ consists of exactly two oriented edge-paths.

Thus every Riemann surface can be decomposed into bands each of which is biholo.
morphic to $R\times(O, b)$ , by cutting along the graph $G$ . Conversely, every Riemann surface
can be reconstructed by pasting bands according to the graph $G$ , which has the informatior
how many bands we need and how to paste them. Each closed edge-path of $G$ corresponds
to some band in this band decomposition; two poles are regarded to be at infinity and $twe$

oriented edge-paths correspond to two sides of a band, $R\times\{0\}$ and $R\times\{b\}$ . If the graph $C$

has $k$ closed edge-paths then we take $k$ bands of the form $R\times[a, a+b]$ in C. On both sides $0l$

bands, we put vertices and edges according to the corresponding oriented edge-paths. Notict
that each edge of $G$ corresponds to two edges that are drawn on different sides of bands. Then
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Fig. 3

we identify these two edges by parallel transformation in $C$ and add some vertices at infinity
to obtain a closed Riemann surface (Fig. 3). Local coordinates around inner points of bands
and around edges are defined simply by $z$ , the coordinate of C. But around vertices that are
put on sides of bands, the total angle become larger than $ 2\pi$ by pasting edges, therfefore we
take local coordinate $w=z^{1/n}$ if the vertex has total angle $ 2n\pi$ . Local coordinates around
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added points are defined by $w=c$ log $z$ Notice that the abelian differential $dz$ on $Cdescend|$

to this Riemann surface and its zeros correspond to vertices on sides of bands and its $pole^{1}|$

correspond to added vertices. This abelian differential satisfies the conditions in Propositiol
2.1. Thus we can reconstruct a Riemann surface from a graph characterized by the $condition|$

of Proposition 2.3. In the next section, we classify Riemann surfaces by their correspondin5
graphs and give a new cell decomposition of the Teichm\"uller space.

3. Cell decomposition.

Throughout this section, we fix $g\geq 0,$ $n\geq 2$ and a tuple of non-zero real number:
$\{r_{i}\}_{i=1}^{n}$ such that $\sum_{i=1}^{n}r_{i}=0$ . We denote by $\mathcal{T}_{g}^{n}$ the Teichmuller space of genus $g,$ n-pointe $($

Riemann surfaces. For each marked Riemann surface $R$ , we can obtain a marked graph
denoted by $G_{R}^{*}$ , by using the abelian differential of Proposition 2.1 with marking defined bj
that of $R$ . Here a marking of a graph $G$ means an embedding of $G$ to some fixed surface $\llcorner\{$

and we denote by $G^{*}$ a graph with a marking. The graph $G_{R}^{*}$ satisfies certain conditions. $T($

describe these, we use the following notations for a graph of Proposition 2.3.

NOTATION.
$n(G)=the$ number of poles of $G$ ,
$k(G)=the$ number of closed edge-paths of $G$ ,
$\chi(G)=the$ Euler number of $G$ ,
$p_{i}=the$ i-th pole of $G$ with respect to the numbering among poles of $G$ .

We can easily show the following conditions for $G^{*}=G_{R}^{*}$ :
$n(G^{*})=n$ , $\chi(G^{*})+k(G^{*})=2-2g$ ,

$p_{i}$ : $\left\{\begin{array}{ll}positive & if r_{i}>0\\negative & if r;<0.\end{array}\right.$

Define the set of all marked Riemann surfaces that have the given marked graph $G^{*}$ as thei]

corresponding graph:

$C(G^{*})$ $:=$ { $R\in \mathcal{T}_{g}^{n}|G_{R}^{*}$ is isomorphic to $G^{*}$ }.

We can decompose $\mathcal{T}_{g}^{n}$ into these sets:

$\mathcal{T}_{g}^{n}=\coprod_{G^{*}\in \mathcal{G}}C(G^{*})$
,

$\mathcal{G}=\{G^{*}of$ Proposition 2.1 $|n(G^{*})=n,\chi(G^{*})+k(G^{*})=2-2gp_{i}ispositiveifr_{i}>0,negativeifr_{i}<0\}$ .

Next we show that every $C(G^{*})$ is a cell. In the previous section, we considered how
to construct a Riemann surface from a given graph, where we did not mention the lengths
of edges or the widths of bands. These values are necessary to exactly determine a Riemanr
surface. We consider below the detailed description of constructing a marked Riemann surface
from the given graph $G^{*}$ . Let $\omega$ be the abelian differential derived from a marked Riemanr
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surface $R$ . Let $G^{*}=G_{R}^{*}$ be the marked graph obtained from $R$ . Suppose that $G^{*}$ has $k$ closed
edge-paths, $c_{1},$ $\cdots$ , $c_{k}$ , and $l+1$ zeros, $z0,$ $\cdots$ , $z_{l}$ Denote the band that corresponds to the
closed edge-path $c_{i}$ by $B_{j}$ and its width by $b;$ . Let $d_{j}$ be the distance between $z0$ and $z$ ; along
the real direction, that is

$d;$ $:={\rm Re}(\int_{zo}^{z\iota}\omega)$ .

Because of the condition (b) of Proposition 2.1, this integral is well-defined and is called time
function in [GW].

In this way, given a marked Riemann surface $R$ , we obtain a marked graph $G^{*}$ and
parameters $(b_{1}, \cdots b_{k}, d_{1}, --, d_{l})$ . These parameters satisfy the following relations; if a
pole $p_{i}$ is contained in closed edge-paths $c_{i_{1}},$

$\cdots$
$c_{i_{j}}$ then

$b_{i_{1}}+\cdots+b_{i_{j}}=|r_{i}|$ .

If there exists an oriented edge-path that connects $Zi$ and $z_{j}$ in this order then

$d_{i}<d_{j}$ $(d_{0}=0)$ .
NOTATION. We denote these relations corresponding to a graph $G$ by $(*)c$ .
Conversely, we define a marked Riemann surface from a given graph $G^{*}$ and correspond-

ing parameters $(b_{1}, \cdots b_{k}, d_{1}, \cdots d_{l})$ as follows. Take bands $B_{i}=R\times[a_{i}, a_{i}+b_{i}]$ in $C$ ,
where $a_{i}’ s$ are chosen so that $B_{j}\cap B_{j}=\emptyset(i\neq j)$ . On each side of bands, we put vertices
$Zj$ , according to the corresponding oriented edge-path, so that their real coordinates in $C$ are
given $d_{j}$ . Identification of edges by parallel transformation and the coordinates around zeros
are the same as mentioned in the last section. Coordinate around added point, or pole, $p_{i}$ is
defined by $w=r$; log $z$ . The marking of this Riemann surface is cannonically defined by that
of $G^{*}$ since each component of $R\backslash G$ is simply-connected.

DEFINITION. We denote a marked Riemann surface obtained as above by

$R(G^{*}; b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})$ .
REMARK. This definition depends on a choice of the numberings among closed edge-

paths of $G^{*}$ and among zeros of $G^{*}$ .

The graph $G_{R}^{*}$ derived from $R=R(G^{*}; b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})$ is isomorphic to the
original $G^{*}$ , therefore $R(G^{*}; b_{1}, \cdots b_{k}, d_{1}, \cdots d_{l})$ is contained in $C(G^{*})$ .

PROPOSITION 3.1. The map $F$ defined by

$F$ : { $(b_{1}, \cdots b_{k}, d_{1}, \cdots d_{l})\in R_{+}^{k}\times R^{l}$ relation $(*)c1\rightarrow C(G^{*})$ ,

$F(b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})$ $:=R(G^{*}; b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})$

is bijective.

PROOF. Every marked Riemann surface in $C(G^{*})$ is decomposed into bands by Propo-
sitions 2.1, 2.2, with parameters $(b_{1}, \cdots b_{k}, d_{1}, \cdots d_{l})$ satisfying relations $(*)c$ , therefore
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the map $F$ is surjective. Suppose that

$F(b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})=F(b_{1}^{\prime}, \cdots , b_{k}^{\prime}, d_{1}^{\prime}, \cdots d_{l}^{\prime})$ ,

or equally

$R(G^{*}; b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})=R(G^{*}; b_{1}^{\prime}, \cdots , b_{k}^{\prime}, d_{1}^{\prime}, \cdots d_{l}^{\prime})$ .

Since the markings of both Riemann surfaces are defined by the same marked graph $G^{*}an($

the numberings among closed edge-paths of $G^{*}$ and among zeros of $G^{*}$ are fixed, the width
of bands and the distances between zeros should be all equal:

$(b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})=(b_{1}^{\prime}, \cdots , b_{k}^{\prime}, d_{1}^{\prime}, \cdots , d_{l}^{\prime})$ . $\square $

There are $n$ relations between $b_{1},$ $\cdots$ , $b_{k}$ among $(*)c$ , which come from the give]
residues $r_{j}$ of the pole $p;$ , and these residues satisfy the relation $\sum_{i=1}^{n}r_{i}=0$ . $Therefor($

the set $\{(b_{1}, \cdots b_{k}, d_{1}, \cdots , d_{l})|(*)_{G}\}$ is a cell of dimension $k+l-n+1$ . Thus we $cal$

see that every $C(G^{*})$ is a cell. A cell $C(G_{1}^{*})$ is contained in the boundary of a cell $C(G_{2}^{*})$

when $G_{1}^{*}$ is obtained from $G_{2}^{*}$ by contracting some edges or contracting closed edge-paths
A contraction of a closed edge-path means that we identify two oriented edge-paths, that $ar($

contained in this closed edge-path, to form a new oriented edge-path. A contraction of an $edg($

indicates that the distance between zeros tends to zero and a contraction of a closed edge-patl
indicates that the width of a band tends to zero.

NOTATION. We write $G_{1}^{*}<G_{2}^{*}$ when $G_{1}^{*}$ is obtained by contracting edges or close $($

edge-paths of $G_{2}^{*}$ .
With these preparations in hand, we can now formulate the theorem of Giddings $an\langle$

Wolpert [GW] explicitly as follows.

THEOREMM 3.2. Let $\{r_{i}\}_{i=1}^{n}$ be non-zero real numbers satisfying $\sum_{i=1}^{n}r_{i}=0$ and le
$p$ be the number ofpositive numbers among them. There exists a cell decomposition of th $($

Teichmiiller space ofgenus $g$, n-pointed Riemann surfaces $\mathcal{T}_{g}^{n}(g\geq 0, n\geq 2)$ ;

$\mathcal{T}_{g}^{n}=\coprod_{G^{*}\in \mathcal{G}}C(G^{*})$
,

where

$\mathcal{G}=\{G^{*}of$Proposition 2.1 $|n(G^{*})=n,\chi(G^{*})+k(G^{*})=2-2gp_{i}ispositiveifr_{i}>0,negative\iota fr_{i}<0\}$

$C(G^{*})$ $:=$ { $R\in \mathcal{T}_{g}^{n}|G_{R}^{*}$ is isomorphic to $G^{*}$ }.

When $G^{*}has$ $k$ closed edge-paths and $l+1$ zeros, $C(G^{*})$ a cell ofdimension $k+l-n+1$

$C(G^{*})\cong\{(b_{1}, \cdots , b_{k}, d_{1}, \cdots , d_{l})\in R_{+}^{k}\times R^{l}|(*)_{G}\}$ .

If $G_{1}^{*}<G_{2}^{*}$ then,

$C(G_{1}^{*})\subset\partial\overline{C(G_{2}^{*})}$ .



ORBIFOLD EULER NUMBER 95

We can compute the orbifold Euler numbers of the moduli space of Riemann surfaces
using these cell decompositions since they are invariant with respect to the action of the map-
ping class group. Let $\chi(\mathcal{M}_{g}^{n})$ be the orbifold Euler number of the moduli space of genus $g$,
n-pointed Riemann surfaces $\mathcal{M}_{g}^{n}$ . It is computed as (see [Br])

$\chi(\mathcal{M}_{g}^{n})=\sum_{G}(-1)^{\dim C(G)}\frac{1}{|AutG|}$ ,

where the sum is taken over all unmarked graph and AutG is the automorphism group of
$G$ preserving cyclic order and fixing every pole. We give some examples of this calculation
below. They are the cases where the number of positive numbers among $\{r_{l}\}$ is one. For given
$(g, n)$ , the number of graphs which satisfy the conditions of Proposition 2.3 is smaller than that
of the ribbon graphs which give surfaces of type $(g, n)$ , so that this cell decomposition is more
convenient for the calculations of the orbifold Euler numbers than other cell decompositions.

EXAMPLE 1. $(g, n)=(0,3)$ .
There is only one graph in this case (Fig. 4 $(a)$) with

dim $C(G)=0$ , $|AutG|=1$ ,

therefore the orbifold Euler number of $\mathcal{M}_{0}^{3}$ is 1:
$\chi(\mathcal{M}_{0}^{3})=1$ .

EXAMPLE 2. $(g, n)=(O, 4)$ .
The graph (b) in Fig. 4 has naively six numberings among poles but, in fact, there are

three different ways to give numbering because of the symmetry that the graph has. The di-
mension of the corresponding cell is two. Similarly, the graph (c) has six different numberings
and the dimension of its cell is one and the graph (d) has two numberings and the dimension
of its cell is zero. The automorphism groups of these graphs are all trivial. Thus,

$\chi(\mathcal{M}_{0}^{4})=3-6+2=-1$ .
EXAMPLE 3. $(g, n)=(1,2)$ .
There are four graphs in this case (Fig. 4(e), $(0, (g),$ $(h))$ . The dimensions of the cells

and the orders of the automorphism groups are as follows.

Then

X $(\mathcal{M}_{1}^{2})=\frac{1}{4}-1+\frac{1}{3}+\frac{1}{2}+\frac{1}{12}$ .

We calculated the orbifold Euler numbers of $\mathcal{M}_{0}^{3},$ $\mathcal{M}_{0}^{4},$ $\mathcal{M}_{0}^{5},$ $\mathcal{M}_{0}^{6},$ $\mathcal{M}_{0}^{7},$ $\mathcal{M}_{0}^{8},$ $\mathcal{M}_{1}^{2},$ $\mathcal{M}_{1}^{3}$ ,
$\mathcal{M}_{1}^{4},$ $\mathcal{M}_{1}^{5},$ $\mathcal{M}_{1}^{6},$ $\mathcal{M}_{2}^{2},$ $\mathcal{M}_{2}^{3},$ $\mathcal{M}_{2}^{4},$ $\mathcal{M}_{3}^{2}$ , which coincided with the values already computed in
[HZ, Pl]. We enumerated all the graphs, the orders of their automorphism groups and the
dimensions of the corresponding cells, which are shown on the following tables. As in the
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(b)

(c) (d)

\langle $e)$ \langle $f$)

(h)

Fig. 4

above examples, these are the cases where the number of positive numbers among $\{r_{i}\}i$

one. Moreover, we allow the automorphism group of a graph not to fix poles except th
positive pole. It is because we take the different definitions of the moduli spaces in thes
cases. That is, two n-pointed Riemann surfaces are biholomorphic if and only if there exist
a biholomorphism between these Riemann surfaces which fixes the first point (the positiv
pole) and fixes other points (negative poles) setwise. Therefore, the orbifold Euler numbers $0$
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these moduli spaces differ from those of usual ones (i.e. fix $n$ points point-wise) by the factor
$1/(n-1)$ !.

EXAMPLE 4. $(g, n)=(O, 5)$ .
In the following tables, the bracketed number shows the order of the automorphism

groups and the number of the graphs is shown next to it. The orbifold Euler number of
$\mathcal{M}_{0}^{5}$ is computed as

$\chi(\mathcal{M}_{0}^{5})=(-3+3-2)+\frac{1}{2}(1+2)+\frac{1}{3}+\frac{1}{4}=\frac{1}{12}$

The orbifold Euler numbers for other $g$ and $n$ are computed in the same way, and are
shown in the tables.

TABLE 1. $(g, n)=(0,5)$ $\chi(\mathcal{M}_{0}^{5})=- 171$

TABLE 2. $(g, n)=(0,6)$ $\chi(\mathcal{M}_{0}^{6})=-\frac{1}{20}$

TABLE 3. $(g, n)=(0,7)$ $\chi(\mathcal{M}_{0}^{7})=\frac{1}{30}$

TABLE 4. $(g, n)=(0,8)$ $\chi(\mathcal{M}_{0}^{8})=-\varpi^{1}$
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TABLE 5. $(g, n)=(1,3)$ X $(\mathcal{M}_{1}^{3})=-I^{1}2$

TABLE 6. $(g, n)=(1,4)$ X $(\mathcal{M}_{1}^{4})=D^{1}$

TABLE 7. $(g, n)=(1,5)$ X $(\mathcal{M}_{1}^{5})=-1T^{1}$

TABLE 8. $(g, n)=(1,6)$ X $(\mathcal{M}_{1}^{6})=$ if

TABLE 9. $(g, n)=(2,2)$ X $(\mathcal{M}_{2}^{2})=-\varpi^{1}$



ORBIFOLD EULER NUMBER 99

TABLE 10. $(g, n)=(2,3)$ $\chi(\mathcal{M}_{2}^{3})=\varpi^{1}$

TABLE 12. $(g, n)=(3,2)$ $\chi(\mathcal{M}_{3}^{2})=\frac{5}{252}$
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