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1. Introduction.

Let $\Sigma=(X, \sigma)$ be a topological dynamical system where $X$ is a compact Hausdorff
space and $\sigma$ is a homeomorphism. We denote by $\alpha$ the automorphism induced by $\sigma$ on the
algebra $C(X)$ of all continuous functions on $X$ , namely $\alpha(f)(x)=f(\sigma^{(-1)}x)$ . Let $A(\Sigma)$ be
the associated transformation group $C^{*}$ -algebra, that is, the $C^{*}$ -crossed product with respect
to $\alpha$ , regarding it as an action of the integer group Z. We call this algebra a homeomorphism
$C^{*}$ -algebra.

Now one of the main problems about the interplay between topological dynamical sys-
tems and $C^{*}$ -algebras is to determine relations between two dynamical systems when their
associated homeomorphism $C^{*}$ -algebras are isomorphic with each other (General isomor-
phism problem). A more restrictive problem is to settle the relationship between dynamical
systems when an isomorphism between those $C^{*}$ -algebras keeps their distinguished subalge-
bras of continuous functions (Restricted isomorphism problem). In case of Cantor minimal
systems, we now know full aspects of isomorphism problems due to recent remarkable pre-
sentations by T. Giordano, I. Putnam and C. Skau ([6], [7]). With their results, we have then
recognized that contrary to the case of measurable dynamical systems there appears a serious
gap (even for minimal systems) from general isomorphisms to restricted isomorphisms.

In the author’s joint work [3] with M. Boyle, we have solved the latter problem in the
best possible way. However, we have not been making so much progress towards the general
isomorphism problem. On the other hand, there are isomorphism theorems proved for some
limited classes of dynamical systems such as rotations, Denjoy homeomorphisms etc. ([11],

[12]), in which no obstruction appears. In fact, we do not know in general how the obstruction
between two types of isomorphisms appears, and whether or not it disappears in an elementary
connected space as it has been shown to be the case mentioned above.
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Since the global structure of ideals of $C^{*}$ -algebras is not changed by isomorphisms, it $i$

the purpose of this paper to investigate the properties of ideals of $A(\Sigma)$ and then to analys
the isomorphisms themselves.

There has been extensive literature conceming structure of ideals of general $C^{*}- crosse($

products and that of transformation group $C^{*}$ -algebras, but results presented there are not ap
plicable to our situation, particularly when we treat topological dynamical systems $admittin_{1}$

periodic points.
In the following we shall consider first the approximation in the universal $C^{*}- crosse($

product by the integer group $Z$(definition below) in connection with generations of ideals. $W|$

then introduce the notion ofwell behaving ideals and give characterizations of them (Theoren
2).

In the last section, we shall discuss properties of topological dynamical systems pre
served by isomorphisms of relevant homeomorphism $C^{*}$ -algebras and then good isomoI
phisms (standard) which preserve those well behaving ideals.

2. Approximation in the universal $C^{*}$ -crossed product by the integer group $Z$ .
Let $A$ be a unital $C^{*}$ -algebra acting on a Hilbert space $H$ with an automorphism $\alpha$

Let $A\times_{\alpha}Z$ be the $C^{*}$ -crossed product with respect to the automorphism $\alpha$ (regarding it a
an action of $Z$ ) with the generating unitary $\delta$ and the canonical projection of norm one $E$

$A\times_{\alpha}Z\rightarrow \mathcal{A}$ . Denote by $\{a(n)\}$ the Fourier coefficients of an element $a$ of $A\times_{\alpha}Z$ . Then th $($

norm convergent property of the expansion of $a,$ $a=\sum_{n\in Z}a(n)\delta^{n}$ , is somewhat $misleadin_{\{}$

(as is the case of a von Neumann crossed product with respect to strong topology), and thi
certainly does not hold. We have however the result stating that the generalized Ces\‘aro $meal$

$\sigma_{n}(a)$ converges to $a$ in norm ([5, Theorem VIII. 2.2]). Since this result is quite useful $w|$

shall present first this type of approximation theorem in a more general form including th $($

case of Ces\‘aro mean. Moreover, in connection with out problem of isomorphisms amon}
homeomorphism $C^{*}$ -algebras we consider the approximation as a result in the universal $C^{*}$

crossed product by $Z$ formulated in the following way.
Let

$K=l_{2}\otimes H=l_{2}(Z, H)$ ,

and consider the unitary representation $v_{t}$ of the torus $T$ where for each point $t$ of the torus 2
the unitary operator $v_{t}$ on $K$ is defined as

$v_{t}\xi(n)=e^{2\pi int}\xi(n)$ .
Denote by $\lambda$ the shift unitary operator on $K$ , that is, $(\lambda\xi)(n)=\xi(n-1)$ . We write the on $($

parameter automorphism groups of $B(K)$ induced by the adjoints of $v_{t}$ by $\hat{\omega}_{t}$ . As is wel
known, the restriction of this action to each $C^{*}$ -crossed product $A\times_{\alpha}Z$ is called the dua
action of $\alpha$ , usually written as $\hat{\alpha}_{t}$ .
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Now Let $B(Z)$ be the $C^{*}$ -algebra in $B(K)$ consisting of all elements on which the action
$\hat{\omega}_{t}(a)$ is norm continuous. This is a quite big irreducible $C^{*}$ -algebra on $K$ absorbing all $C^{*}-$

crossed products of a single automorphism. Let $B(\hat{\omega})$ be the fixed point algebra of the action
$\hat{\omega}$ . We define the projection of norm one $E_{Z}$ form $B(Z)$ to $B(\hat{\omega})$ by

$E_{Z}(a)=\int_{0}^{1}\hat{\omega}_{t}(a)dt$ .

We then set the generalized n-th Fourier coefficient of an element $a$ in $B(Z)$ as $a(n)=$

$E_{Z}(a\lambda^{*n})$ . Note that
$\hat{\omega}_{t}(\lambda)=e^{2\pi it}\lambda$ and $E_{Z}(\lambda^{n})=0$ $\forall n\neq 0$ .

Henceforth we regard this algebra as the universal $C^{*}$ -crossed product by the integer
group $Z$ .

Next recall that a sequence of real valued continuous functions $\{k_{n}(t)\}$ on the torus $T$ is
called a summability kemel if they satisfy the following three conditions:

(a) $\int_{T}k_{n}(t)dt=1$ ,

(b) $\int_{T}|k_{n}(t)|dt\leq C$ (constant).
(c) For every $0<\delta<1$ ,

$\lim_{n\rightarrow\infty}\int_{\delta}^{1-\delta}|k_{n}(t)|dt=0$ .

Well known summability kemels are Fej\’er kemel,

$K_{n}(t)=\sum_{-n}^{n}(1-\frac{|j|}{n+1})e^{2\pi ijt}$

de la Vall\’ee Poussin kernel,

$V_{n}(t)=2K_{2n-1}(t)-K_{n-1}(t)$ ,

and Jackson kemel etc, which are trigonometric polynomials. On the other hand, parameters
of summability kemels need not be natural numbers in general. Whenever families of con-
tinuous functions satisfy the above three conditions with respects to the attached parameters,
we can apply the same arguments. Therefore, we can regard the Poisson kemel $P(r, t)$ as a
summability kemel with continuous parameter $r$ . In this case $P_{r}(t)$ satisfies the condition (c)

as $r\rightarrow 1$ . This kemel is however not consisting of trigonometric polynomials. The Dirichlet
kemel $\{D_{n}(t)\}$ is not a summability kemel because it does not satisfy the third condition, and
this shows why we can not obtain the norm convergence of the sum $\sum_{-\infty}^{\infty}a(n)\delta^{n}$ .

Let $B$ be a Banach space and consider the space of all B-valued continuous functions on
$T,$ $C(T, B)$ . We define the convolution $k_{n}\star F$ in $C(T, B)$ by

$k_{n}\star F(t)=\int_{T}k_{n}(s)F(t-s)ds$ .

One then easily sees that the convolution is also a B-valued continuous function. We assert
here the Banach space version of the following classical approximation theorem in Fourier
analysis.
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PROPOSITION 1. For any summability kemel $\{k_{n}\}$ and a continuousfunction $F(t)i$

$C(T, B)$ , the convolution $k_{n}\star F(t)$ converges uniformly to $F(t)$ in $B$ .
The proof of this result is just a linear modification of the one given in the classic,

Fourier analysis, and we leave the readers its verification.
Define the n-th Fourier coefficient $\hat{F}(n)$ of $F$ by

$\hat{F}(n)=\int_{T}F(t)e^{-2\pi int}dt$ .

Then if $k_{n}(t)$ is a polynomial of a form,

$k_{n}(t)=\sum_{-l_{n}}^{l_{n}}c_{j}e^{2\pi ijt}$

we have

$k_{n}\star F(t)=\sum_{-l_{n}}^{l_{n}}c_{j}\hat{F}(j)e^{2\pi ijt}$

Hence the above result says that the function $F(t)$ is uniformly approximated in norm by $th|$

above trigonometric polynomials.
We now apply this result to the algebra $B(Z)$ taking this algebra as the above Banacl

space $B$ with the continous function $\hat{\omega}_{t}(a)$ for an element $a$ of $B(Z)$ . Write this function a
$\tilde{a}(t)$ . We have then

$a(n)\lambda^{n}=\int_{T}\hat{\omega}_{t}(a\lambda^{*n})dt\lambda^{n}=\int_{T}\hat{\omega}_{t}(a)e^{-2\pi int}d^{\wedge}t=\tilde{a}(n)$ .

Therefore we obtain the following approximation theorem in $B(Z)$ .
THEOREM 1. Let $\{k_{n}(t)\}$ be a summability kemel on the torus T. Then an element ‘

in $B(Z)$ is approximated in nom by the sequence $k_{n}\star\tilde{a}(O)$ . In particular $\iota f$ the kemel consist,

of trigonometric polynomials of the form

$k_{n}(t)=\sum_{-l_{n}}^{l_{n}}c_{j}e^{2\pi ijt}$

$a$ is approximated by the generalizedpolynomials of $\lambda$ with the form

$k_{n}\star\tilde{a}(0)=\sum_{-l_{n}}^{l_{n}}c_{j}a(j)\lambda^{j}$ .

Hence $B(Z)$ is linearly spanned by $\{\lambda^{n}\}$ in norm over thefixedpoint algebra $B(\hat{\omega})$ .
Thus, though we do not assume at first any crossed product structure for $B(Z)$ we $ar($

able to deduce the fact that it is linearly generated by generalized polynomials of $\lambda$ whos‘
coefficients are specifically defined from the Fourier coefficients of the elements to whicl
they converge.

Now take a crossed product $A\times_{\alpha}Z$ regarded as a $C^{*}$ -subalgebra of $B(Z)$ . It is then clea
that the canonical projection $E$ in $A\times_{\alpha}Z$ isjust the restriction of $E_{Z}$ and $A=B(\hat{\omega})\cap A\times_{\alpha}Z$
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Hence the Fourier coefficients of an element $a$ in $A\times_{\alpha}Z$ is nothing but those defined as an
element of $B(Z)$ .

Therefore from the above theorem we can derive usual conclusions on the unicity of the
generalized Fourier coefficients, faithfullness of the projection etc. in a quite $C^{*}$ -algebraic
manner.

In a global sense we know that the crossed product is a norm span of those generalized
polynomials of the generating unitary $\delta$ with coefficients coming from elements of $A$ , but the
advantage of the above approximation theorem lies in the fact that for the approximation of
a fixed element we can refer to its Fourier coefficients for those approximation polynomials,
even in several ways depending on which summability kemels to use. Among them the Ces\‘aro
mean for Fej\’er kemel,

$\sigma_{n}(a)=K_{n}\star\tilde{a}(0)=\sum_{-n}^{n}(1-\frac{|j|}{n+1})a(j)\delta^{j}$ ,

is most elementary.

3. Structure of ideals of $A(\Sigma)$ .
Henceforth we stick to a dynamical system $\Sigma=(X, \sigma)$ , where $X$ is an arbitrary compact

Hausdorff space. We emphasize the fact that the space $X$ need not be metrizable.
In the following we shall use the following notations:
Aper $(\sigma)=set$ of all aperiodic points,
Per $(\sigma)=set$ of all periodic points.
For a positive integer $n$ ,

Per $(\sigma)=\{x\in X|\sigma^{n}(x)=x\}$ ,

$Per_{n}(\sigma)=set$ of all n-periodic points.
We write $O_{\sigma}(x)$ for the orbit of $x$ by the homeomorphism $\sigma$ or $O(x)$ if no confusion

occurs.
For the associated $C^{*}$ -crossed product $A(\Sigma)$ , we denote by $\delta$ and $E$ the generating uni-

tary of $A(\Sigma)$ and the canonical projection of norm one to the subalgebra $C(X)$ . For an element
$a$ of $A(\Sigma),$ $a(k)$ means the k-th Fourier coefficient of $a$ . A representation of $A(\Sigma)$ is written
as $\tilde{\pi}=\pi\times u$ where $\pi$ is a representation of $C(X)$ and $u$ the generating unitary element of
$\tilde{\pi}(A(\Sigma))$ such that $\tilde{\pi}(\delta)=u$ .

For basic results conceming the interplay between topological dynamics and $C^{*}$ -theory
used here we mainly refer the reader to the author’s articles [13] or [14].

Now take an aperiodic point $x$ . We write $P(\overline{x})$ the kemel of the irreducible representation
associated to a unique pure state extension of the point evaluation $\mu_{X}$ at the point $x$ . This ideal
depends only on the orbit of $x$ . For a periodic point $y$ in $X$ , we write $P(\overline{y}, \lambda)$ the kemel of the
irreducible representation associated to the pure state extension $\varphi(y, \lambda)$ of the point evaluation
$\mu_{y}$ for a parameter $\lambda$ in the torus $T$ [ $14$ , Proposition 4.3]. The intersection of all such ideals
is written as $Q(\overline{y})$ . We note first that the family $\{P(\overline{y}, \lambda)|y\in Per(\sigma), \lambda\in T\}$ exhausts
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all primitive ideals of $A(\Sigma)$ which are kemels of finite dimensional irreducible represent\v{c}
tions [13, Proposition 4.1.7]. On the other hand, as far as the infinite dimensional irreducibl
representations are concemed a primitive ideal need not to be the kemel of an irreducible $re\iota$

resentation induced by a point, that is, in our setting the family $\{P(\overline{x})|x\in Aper(\sigma)\}$ doe
not exhaust the primitive ideals of infinite dimensional irreducible representations of $ A(\Sigma$

unless $X$ is metrizable.
We, however, still have the following

PROPOSITION 2. Every ideal of $A(\Sigma)$ is the intersection of those primitive ideals $\ell$

$P(\overline{x}_{\alpha})$ and $P(\overline{y}_{\beta}, \lambda)$ where $x_{\alpha},$ $ y\beta$ and $\lambda$ are ranging over some sets of aperiodic point,
periodic points andpoints of the torus, respectively.

This fact has been mentioned already in [1] (and [16, Proposition 4.5] without proof
Since we do not impose any countability condition on the space $X$ , the result is not so $trivi^{t}$

and depends heavily on a particular nature of the images of infinite dimensional irreducibl
representations of $A(\Sigma)$ explained below together with the fact that any finite dimensionz
irreducible representation of $A(\Sigma)$ comes from a periodic point in $X$ . As the reference [1] $i$

not easily available, we give here the proof again.

PROOF. It suffices to show that any primitive ideal $P$ of $A(\Sigma)$ is a intersection of thos
specified ideals. As mentioned above, this holds if $P$ is the kemel of a finite dimensionz
irreducible representation. In order to treat infinite dimensional case we have to recall firs
the following elementary facts about covariant representations induced from closed invariar
subsets of $X$ . Namely, let $S$ be a closed invariant subset and $\rho_{s}$ : $f\rightarrow f|S$ be the restrictio
map from $C(X)$ to $C(S)$ . Denote the induced automorphism of $C(S)$ by $\alpha_{s}$ . Then this $pal$

$\{\rho_{s}, \alpha_{s}\}$ becomes a covariant representation of $A(\Sigma)$ , hence it gives rise to the canonic’
homomorphism $\rho_{s}\times\delta_{s}$ from $A(\Sigma)$ to $A(\Sigma_{s})$ where $\delta_{s}$ means the generating unitary in $A(\Sigma_{SI}$

Let $P_{s}$ be the kemel of this homomorphism, then it coincides with the ideal generated by th
kemel of $S,$ $k(S)$ , of $C(X)$ . We write this as $P_{s}=J(k(S))$ . It follows that an element $ac$

$A(\Sigma)$ belongs to $P_{s}$ if and only if every Fourier coefficient of $a$ vanishes on $S$ . Now let $\rfloor$

be the kemel of the infinite dimensional irreducible representation $\tilde{\pi}=\pi\times u$ where $\pi i$

a representation of $C(X)$ . Here the kemel of $\pi$ is written as $k(S)$ for some closed invariar
subset $S$ . There exists then a faithful projection of norm one from $\tilde{\pi}(A(\Sigma))$ to $\pi(C(X))s$

that the image can be canonically identified with the $C^{*}$ -crossed product $C(S)\times_{\alpha_{S}}Z$ wit
respect to the restricted action of $\sigma$ to $S$ together with that projection $E_{S}[14$ , Corollary 5.1 $B$

Therefore the ideal $P$ is expressed as the intersection of the primitive ideals of those induce
irreducible representations coming from the points of $S$ .

Next we consider the ideals of $A(\Sigma)$ by means of their images under the canonicz
projection $E$ . Let $I$ be a closed ideal of the algebra, then the image $E(I)$ becomes an ide’
of $C(X)$ (not necessarily closed) by the module property of $E$ . One might assume here thz
$E(I)$ would be a proper ideal of $C(X)$ , but in $A(\Sigma)$ it may not be the case. In fact, let $P(\overline{y},$ $1$

be the kemel of the n-dimensional irreducible representation $\tilde{\pi}=\pi\times u$ for a periodic poin
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$y$ with the parameter 1, that is, $\tilde{\pi}(\delta)=u$ and $u^{n}=1$ . Then by definition the element $1-\delta^{n}$

belongs to the ideal and $E(1-\delta^{n})=1$ . Hence $E(P(\overline{y}, 1))=C(X)$ . We regard this kind
of ideal as the worst behaving one and look for the class of some better behaving ideals. One
may regard an ideal $I$ alittle better one if $E(I)$ is a proper ideal of $C(X)$ . We further consider
the following ideal.

In the theorem the inclusion of the assertion (3) is suggested by A. Kishimoto.

THEOREM 2. Let $\Sigma=(X, \sigma)$ be a dynamical system in X. Then the following asser-
tions are equivalent:

(1) Iis an intersection ofsomefamily ofP $(\overline{x})andQ(\overline{y})$ ,

(2) $E(I)\subset I$ and $E(I)$ is a closed invariant ideal of $C(X)$ ,

(3) I is invariant by the dual action $\hat{\alpha}$ ,

(4) $Iislinearlyspannedinnormby\{\delta^{n}\}overE(I)$ ,

(5) The quotient algebra $A(\Sigma)/I$ is canonically isomorphic to the $C^{*}$ -crossedproduct
$q(C(X))\times_{\alpha_{I}}Z$ with respect to the induced automorphism $\alpha_{I}$ of$q(C(X))$ in such a way that

$qoE(a)=E_{I}oq(a)$

where $q$ and $E_{I}$ are the quotient homomorphism and the canonical projection in $q(C(X))\times_{\alpha I}$

$Z$ , respectively.
In particular, when the dynamical system is free, that is, with no periodic points, then

there is $a$ one to one correspondence between the set of closed ideals of $A(\Sigma)$ and the set of
closed invariant subsets of $X$.

PROOF. We note first that the ideals $P(\overline{x})$ and $Q(\overline{y})$ satisfy the assertion (2) by [14,

Proposition 5.2] hence we have the implication (1) $\Rightarrow(2)$ .
Assume the assertion (2). Then one sided inclusion is clear for (4) and the other inclusion

is obtained by Theorem 1 by using Cas\‘aro mean. (One may of course refer here the old Zeller-
Meier’s result [17, Proposition 5.10] but we want to emphasize the above important aspect of
the crossed products by $Z$).

Next the assertion (4) clearly implies (3) by the properties of dual actions, and the asser-
tion (3) leads to (2) by the definition of the projection $E$ .

The assertion (4) $\Rightarrow(5)$ . Define the map $\epsilon_{I}$ by $\epsilon_{I}(q(a))=q(E(a))$ . Then by the
assumption, this map is well defined and one may easily verify that it is a projection of norm
one from $A(\Sigma)/I$ to $q(C(X))$ satisfying the relation

$\epsilon_{I}oq=qoE$ .

Now since the quotient algebra $A(\Sigma)/I$ is generated by $q(C(X))$ and $q(\delta)$ , there exists a
homomorphism $\Phi$ from the crossed product $q(C(X))\times_{\alpha_{I}}Z$ to $A(\Sigma)/I$ such that $\Phi(\delta_{I})=$

$q(\delta)$ where $\delta_{I}$ stands for the generating unitary of the crossed product. Moreover, the above
property of the projection $\epsilon_{I}$ implies the relation,

$\epsilon_{I}0\Phi=\Phi oE_{J}$ .
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Here $E_{J}$ is the faithful canonical projection of the crossed product $q(C(X))\times_{\alpha_{l}}Z$ and $\Phi i$

naturally faithful on $q(C(X))$ . Hence $\Phi$ is an isomorphism.
The assertion (5) $\Rightarrow(1)$ . The kemel of the quotient map $q$ on $C(X)$ is written a

$k(S)$ for an invariant closed subset $S$ of $X$ . Let $S^{\prime}$ be the spectrum of $q(C(X))$ and $\sigma_{s}^{\prime}b($

the homeomorphism defined by the induced automorphism $\alpha_{I}$ on $q(C(X))$ . We can the]

identify the covariant system $\{C(S), \alpha_{s}\}$ with $\{C(S^{\prime}), \alpha_{I}\}$ as well as the dynamical system
$\Sigma_{s}=(S, \sigma|S)$ with $\Sigma_{I}^{\prime}=(S^{\prime}, \sigma_{s^{\prime}})$ . Therefore with this identification the map $q$ is regarde $($

as the homomorphism $\rho_{s}\times\delta_{s}$ from $A(\Sigma)$ to $A(\Sigma_{s})=A(\Sigma)/I$ . It follows that the idea
$I$ is the intersection of all kemels of irreducible representations of $A(\Sigma)$ coming from thos $($

points of $S$ . Hence we have the conclusion (1).
The statement of the second half is clear because in this case, by Proposition 2, ever1.

closed ideal of $A(\Sigma)$ satisfies the equivalent conditions stated in the first half.
This completes all proofs.

We notice that this gives another background for the classical equivalence between sim
plicity of $A(\Sigma)$ and minimality of the dynamical system $\Sigma$ .

REMARK. Actually all the equivalences from (2) to (5) are valid for an arbitrary $crosse\langle$

product $A\times_{\alpha}Z$ , but we are interested in those properties only from the point of view of thei
relationships in the algebra $A(\Sigma)$ .

Next, $1et\overline{E(I)}$ be the closure of $E(I)$ and write it as the kemel $k(S)$ in $C(X)$ for a close $($

invariant subset $S$ of $X$ . Let $P_{1},$ $P_{2},$ $\cdots$ , $P_{n}$ be an n-tuple of ideals associated with $periodi\langle$

points $y_{1},$ $y_{2},$ $\cdots$ , $y_{n}$ whose orbits are disjoint from each other and moreover from $S$ , too
The following ideal is then a prototype of those ideals which do not satisfy the conditions $0$

the above Theorem. Namely we have

PROPOSITION 3. Ifevery $P_{i}$ does not coincide with the ideal $Q(\overline{y_{i}})$ , then the ideal

$I=J(k(S))\cap P_{1}\cap P_{2}\cap\cdots\cap P_{n}$

does not satisfy the condition, $E(I)\subset I$ .
PROOF. Let $K$ be the union of all orbits $O(y_{i})$ , then $I$ clearly contains the ideal

$J(k(S))\cap J(k(K))=J(k(S\cup K))$ .

Take a point $y_{i}$ and fix. From the assumption, $P_{i}\supsetneqq Q(\overline{y_{i}})$ , there exists an element $ao$

$P_{i}$ such that $E(a)$ does not vanish on the orbit of $y_{i}$ . On the other hand, we can also finc
a function $f$ on $X$ such that it vanishes on $S$ and the union of other orbits of $y_{k}$ whereas
$f|O(y_{i})=1$ . Then the element $fa$ belongs to $I$ and $E(fa)$ does not vanish on the orbi
$O(y_{i})$ . Now suppose $I$ satisfied the conditions of the Theorem, say $I$ had the form $J(k(R)$ ,

for a closed invariant subset $R$ . The set $R$ is then contained in S U $K$ , but the above argumen
shows that $R$ is disjoint from each orbit $O(y_{i})$ . Hence, $R=S$ and $I=J(k(S))$ . On the othe]

hand, since $S$ and $K$ are disjoint we see that the ideal $J(k(S))+J(k(K))$ is dense in $A(\Sigma)$
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hence it coincides with $A(\Sigma)$ . Therefore, if $I=J(k(S))$ we reach the contradiction,

$P_{1}\cap P_{2}\cap\cdots\cap P_{n}=A(\Sigma)$ .
This completes the proof.

Actually the above arguments show that, in this case, for each orbit $O(y_{i})$ there exists an
element $a$ ; in $P=P_{1}\cap P_{2}\cap\cdots\cap P_{n}$ such that $E(a_{i})$ becomes 1 on $O(y_{i})$ and vanishes on
other orbits. Hence $P$ contains the element $a$ for which $E(a)$ takes 1 on the set $K$ . Since all
continuous functions vanishing on $K$ belong to the above ideal, this means that $E(P)$ contains
the constant functions and $E(P)=C(X)$ . Thus, when $ S=\phi$ in the proposition the ideal $I$

shows a prototype of those ideals whose images of the projection exhaust the whole algebra
$C(X)$ .

The reason that we might not obtain an exclusive description of an ideal $I$ for which
$E(I)$ is not contained in $I$ stems from the following situation. We have an example of a
topologically free dynamical system in which there exists a countable set $\{y_{n}\}$ of periodic
points without isolated points and ideals $\{P_{n}\}$ with $P_{n}\supsetneq Q(\overline{y}_{n})$ but never-the-less we have

$\bigcap_{n=1}^{\infty}P_{n}=\bigcap_{n=1}^{\infty}Q(\overline{y_{n}})$ .

Here, a dynamical system is said to be topologically free if the set Aper $(\sigma)$ is dense in $X$ .
Then the $C^{*}$ -algebra $A(\Sigma)$ has in this case nice properties as a crossed product described
in [14, Theorem 5.4]. Before going to show our example, however, we need the following
observation.

LEMMA 1. The map
$\Phi$ : $Per_{k}(\sigma)\times T\rightarrow\{\varphi(x, \lambda)|x\in Per_{k}(\sigma), \lambda\in T\}$

is a homeomorphism with respect to the $w^{*}$-topology in the pure state space.

PROOF. Suppose a net $\{(y_{\alpha}, \lambda_{\alpha})\}$ converges to a point $(y_{0}, \lambda_{0})$ . Since each $\varphi(y_{\alpha}, \lambda_{\alpha})$

is a pure state extension of the point evaluation $\mu_{\mathcal{Y}\alpha},$
$\varphi(y_{\alpha}, \lambda_{\alpha})(f)=f(y_{\alpha})$ converges to

$f(y_{0})=\varphi(y_{0}, \lambda_{0})$ for every continuous function $f$ . On the other hand, we have, by the
definition of the parameter for pure state extensions, that

$\varphi(y_{\alpha}, \lambda_{\alpha})(\delta^{nk})=\lambda_{\alpha}^{n}\rightarrow\lambda_{0}^{n}=\varphi(y_{0}, \lambda_{0})(\delta^{nk})$ .
Moreover, the values of pure states of other powers of the unitary $\delta$ are all zero [14, Proposi-
tion 4.3] or [16, Theorem 3.1]. Now since

$\varphi(y, \lambda)(f\delta^{n})=f(y)\varphi(y, \lambda)(\delta^{n})$

by [14, Lemma 4.2], we see that the net $\{\varphi(y_{\alpha}, \lambda_{\alpha})\}$ converges to $\varphi(y_{0}, \lambda_{0})$ in the $w^{*}-$

topology.
The converse continuity may be easily seen from the above arguments.

When we lack the condition for the period, we can not expect this kind of result.
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[Example] Let $\Sigma=(T^{2}, \sigma)$ be the topologically free dynamical system in the $twc$

dimensional torus $T^{2}$ defined by the matrix $\left(\begin{array}{l}10\\11\end{array}\right)$ described in [14]. Denote a point in $T^{\acute{A}}$

by $(s, t)$ and consider the segment $($ 1/2, $T)$ . Let $\{y_{n}\}$ be the set of all rational points of thil
segment between $0$ and 1/3. For each point $y_{n}$ , let $P_{n}$ be the intersection of all primitive $ideal(\backslash $

$P(\overline{y_{n}}, \lambda)$ where $\lambda$ is ranging over the interval $[0,1-1/n]$ . Then each $P_{n}$ contains strictl]

the ideal $Q(\overline{y_{n}})$ . Moreover, by the above lemma every pure state extension $\varphi(y_{n}, \lambda)$ can be
weakly approximated by a subsequence $\{\varphi(y_{n_{k}}, \lambda_{n_{k}})\}$ where $n_{k}\neq n$ and $\lambda_{n_{k}}\in[0,1-1/n_{k}]$

Therefore the intersection of all $P_{m}$ is contained in the ideal $P(\overline{y_{n}}, \lambda)$ for every integer $ntt$

parameter $\lambda$ , hence

$\bigcap_{n=1}^{\infty}P_{n}=\bigcap_{n=1}^{\infty}Q(\overline{y_{n}})$ .

4. Algebraic invariants of topological dynamical systems and isomorphi$sms$.
So far, our motivation to investigate the structure of ideals of $A(\Sigma)$ lies in its relation

ship to the general isomorphism problem between homeomorphism $C^{*}$ -algebras. Therefort
it would be natural to consider the following definition.

DEFINITION 1. Let $\Sigma_{1}=(X, \sigma)$ and $\Sigma_{2}=(Y, \tau)$ be two dynamical systems witi
associated $C^{*}$-algebras $\mathcal{A}(\Sigma_{1})$ and $A(\Sigma 2)$ . We say that a property of $\Sigma_{1}$ is an $algebrai_{t}$

invariant if the other dynamical system $\Sigma_{2}$ has the same property when $A(\Sigma 2)$ is $isomorphi_{t}$

with $A(\Sigma_{1})$ .
Typical examples of such properties of dynamical systems are minimality and topolog

ical transitivity. Namely they are kept by isomorphisms through the simplicity and prime
ness of those associated $C^{*}$ -algebras. We notice that the above definition does not $simpl\urcorner$

mean algebraic characterization of relevant properties. For instance, we have a nice equiv
alent algebraic assertion of topological freeness of $\Sigma_{1}$ cited before as the maximality of $th_{1}$

commutative $C^{*}$ -subalgebra $C(X)$ , but then it does not trivially imply the maximality of th $($

subalgebra $C(Y)$ . In fact, location of the algebra $C(X)$ in the $C^{*}$ -crossed product $A(\Sigma)i$

deeply connected with the gap between general isomorphisms and restricted isomorphisms
Thus the following characterization of topological freeness is quite meaningful.

PROPOSITION 4. The dynamical system $\Sigma$ is topologicallyfree ifand only $\iota f$ the $C^{*}$

algebra $A(\Sigma)$ has sufficiently many infinite dimensional irreducible representations. Conse
quently, topologicalfreeness ofa dynamical system is an algebraic invariant.

PROOF. If $\Sigma$ is topologically free, the intersection of all kemels of infinite dimensiona
irreducible representations induced by aperiodic points of in $X$ becomes zero by [14, Corol
lary 5. $1B$ and Proposition 5.2].

Conversely, take a non-zero continuous function $f$ on $X$ . By the assumption, ther
exists an infinite dimensional irreducible representation $\tilde{\pi}=\pi\times u$ with $\pi(f)\neq 0$ . $L\epsilon$

$\Sigma_{\pi}=(X_{\pi}, \sigma_{\pi})$ be the dynamical system induced by the representation $\tilde{\pi}$ ([14, p. 26]). The
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$\Sigma_{\pi}$ becomes topologically free ([14, Corollary 5. $1B]$ ), and $\pi(f)$ does not vanish on the set
Aper $(\sigma_{\pi})$ . Since $\pi(f)$ on $X_{\pi}$ is identified with the restriction of $f$ on the invariant subset
$X_{\pi}$ , this means that $f$ does not vanish on the set Aper $(\sigma)$ . Hence, $\Sigma$ is topologically free.

The above result says that actually in $A(\Sigma)$ the existence of sufficiently many infinite
dimensional irreducible representations is equivalent to the existence of sufficiently many of
those representations induced from aperiodic points in $X$ , although there is a big difference
between these two families in general.

It would be better to mention here the following fact.

LEMMA 2. The kemel of an infinite dimensional irreducible representation of $A(\Sigma)$

satisfies the condition of Theorem 2.

PROOF. In this case the induced topological dynamical system becomes topologically
free, hence by [14, Theorem 5.1] the kemel satisfies the condition.

Besides the above three properties we illustrate below other algebraic invariants of topo-
logical dynamical systems.

(1) $\Sigma$ is free ([14, Proposition 4.5]),
(2) Per $(\sigma)=X$ , and (3) $Per(\sigma)$ is dense in X, ([14, Theorem4.6]).

When $X$ is metrizable;
(4) $C(\sigma)=Per(\sigma)$ where $C(\sigma)$ is the set of all recurrent points of $\Sigma$ , and
(5) $C(\sigma)\backslash Per(\sigma)$ is dense in $X$ ( $[2$ , Corollary 2.1 and Corollary 2.2]).
(6) $X(\sigma)=X$ where $X(\sigma)$ is the set of all chain recurrent points of $\Sigma$ ([10, Theorem

9]).

These properties are preserved by any isomorphism among homeomorphism $C^{*}$ -algebras.
There may be, however, kinds of badly behaving isomorphisms, and we consider the follow-
ing.

DEFINITION 2. We say that an isomorphism between $A(\Sigma_{1})$ and $A(\Sigma_{2})$ is standard if
it preserves the class of ideals described in Theorem 2.

For an isomorphism, kemels of infinite dimensional irreducible representations are al-
ways preserved, hence the problem whether the isomorphism is standard or not is actually
the problem whether it keeps the ideal of the form $Q(\overline{x})$ for every periodic point $x$ . In this
connection, we note first that there exists a pair of compact connected manifolds (X, Y) which
are not homeomorphic to each other but their product spaces with torus are homeomorphic,
that is, $X\times T\approx Y\times T$ . Hence if we consider the trivial dynamical systems in these compact
manifolds, we have an isomorphism

$A(\Sigma_{1})=C(X\times T)\simeq C(Y\times T)=A(\Sigma_{2})$ .

But no isomorphism between these $C^{*}$ -algebras keeps the ideals $Q(\overline{y})$ for all points of $X$

because if there exists such an isomorphism, then it would inuce a homeomorphism between
$X$ and Y. Here an isomorphism brings certainly unitarily equivalent irreducible representa-
tions to equivalent pairs. But classes of finite dimensional irreducible representations have
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two parameters, namely orbits and numbers from the torus, and the trouble arises from $th\epsilon$

circumstances where we can not tell how these two kinds of parameters change after each
isomorphism.

On the other hand, as mentioned in Theorem 2, if a dynamical system is free all isomor.
phisms for $A(\Sigma)$ are standard. Futhermore we have.

PROPOSITION 5. In the dynamical system $\Sigma\iota f$ the set Per $(\sigma)$ is at most countable
every isomorphism through $A(\Sigma)$ is standard.

PROOF. Suppose $\Phi$ be an isomorphism from $A(\Sigma)$ to another homeomorphism $C^{*}$ .

algebra $A(\Sigma_{1})$ for $\Sigma_{1}=(Y, \tau)$ . In order to show that $\Phi$ is a standard isomorphism, it is
enough to show by (1) of Theorem 2 that it keeps the ideals of the form $Q(\overline{x})$ for periodie
points. Let $Q(\overline{y})$ be such an ideal in $A(\Sigma_{1})$ for a periodic point $y$ with period $p$ . We as.
sert that the inverse image $I=\Phi^{-}’$ $(Q(\overline{y}))$ has the same form. Note first that the $quotien|$

algebra $A(\Sigma_{1})/Q(\overline{y})$ is regarded as the homeomorphism algebra on the orbit $Q_{\tau}(y)$ and $i|$

is canonically isomorphic to the algebra of all $M_{p}$ -valued continuous functions on the torus
$T$ ([16, Proposition 4]). Hence, the dual of that algebra is homeomorphic to $T$ , a $compac|$

connected space. On the other hand, dual of the corresponding quotient algebra, $A(\Sigma)/I$ , is
by [9, Theorem $A$] a compact subset $\Pi$ of the product space $(Per_{p}(\sigma)/\sim)\times T$ as a part of
the p-dimensional dual of $A(\Sigma)$ . Hence $\Pi$ is written as the disjoint sum of at most countable
number of closed sets,

$F_{n}=\{(\overline{x}_{n}, \lambda)\in\Pi\}$ .
Hence, by Sierpinski’s theorem we have that

$\Pi=F_{n_{0}}$ for some $n_{0}$ .
Thus,

$T^{\prime}=\{\lambda|(\overline{x}_{n_{0}}, \lambda)\in\Pi\}$

becomes a compact subset of $T$ , which is homeomorphic to $T$ . It follows that $T^{\prime}=T$ and 1
has the form $Q(\overline{x}_{n_{0}})$ .

From the above arguments we also see that the set of all ideals of the form $Q(\overline{y})$ in $A(\Sigma 1_{\text{・}}^{\backslash }$

is at most countable, hence the set Per $(\tau)$ is at most countable, too. Thus we conclude that $\Phi$

also keeps the form of the ideal $Q(\overline{x})$ for a periodic point $x$ in $X$ . This completes the proof.

We notice that most of examples of dynamical systems in manifolds satisfy the above
condition (thus becoming topologically free dynamicl systems). The author does not know
whether or not an isomorphism between homeomorphism $C^{*}$ -algebras of topologically fret
dynamical systems is always a standard isomorphism.

So far, we come to know that for most of those reasonable dynamical systems all isomor
phisms between associated $C^{*}$ -algebaras are relatively better behaving ones, but unfortunatel]
this fact does not mean that we can perturb them towards extremely well-behaving isomor
phisms, that is, restricted isomorphisms.

For a topologically free dynamical system, we can give a characterization of a restricte $($

isomorphism as the one which almost commutes with dual actions. This will be shown $b$]
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the arguments based on the short exact sequence conceming the normalizer of the topological
full group and the automorphism group of $A(\Sigma)$ preserving $C(X)$ . We shall discuss this
elsewhere with other results about full groups.
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