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Introduction.

A framed link $K$ in a closed 3-manifold $M$ is a system of disjoint simple closed
curves $K=$ $(\kappa_{1}, \kappa_{2}, \cdots , \kappa_{n})$ equipped with another system of simple closed curves $\tilde{K}=$

$(\tilde{\kappa}1,\tilde{\kappa}2, , \tilde{\kappa}_{n})$ such that each component $\tilde{\kappa}_{j}$ , called the framing curve of $\kappa_{j}$ , lies on the
boundary of a regular neighborhood $V_{j}$ of $\kappa_{j}$ in $M$ and meets the meridian curve of $V_{j}$ exactly
once. Given a framed link $K$ in $M$ , a 3-manifold X $(M;K)$ obtained by a Dehn surgery along
$K$ is defined as follows:

$\chi(M;K)=(M-(\mathring{V}_{1}\cup\mathring{V}_{2}\cup\cdots\cup\mathring{V}_{n}))\cup(V_{1}^{\prime}\cup V_{2}^{\prime}\cup\cdots\cup V_{n}^{\prime})$ ,

where each $V_{j}^{\prime}$ is a solid torus glued back by a homeomorphism $h_{j}$ : $\partial V_{j}^{\prime}\rightarrow\partial V_{j}$ which takes
a meridian curve of $V_{j}^{\prime}$ onto the framing curve $\tilde{\kappa}_{j}$ . Furthermore we can define the dualframed
link $K^{*}=$

$(\kappa_{1}^{*}, \kappa_{2}^{*}, \cdots , \kappa_{n}^{*})$ in $M^{*}\equiv\chi(M;K)$ so that each $\kappa_{j}^{*}$ is a core of $V_{j}^{\prime}$ and its framing
curve $\tilde{\kappa}_{j}^{*}$ is a meridian of $V_{j}$ , and we get the dual surgery description $M=\chi(M^{*}; K^{*})$ .

In [1] it was shown that any closed 3-manifold $M$ has a framed link $K$ such that $\chi(M;K)$

is homeomorphic to a 3-sphere $S^{3}$ and the dual framed link $K^{*}$ in $S^{3}$ enjoys some special
properties, especially $K^{*}$ forms a pure plat in $S^{3}$ . It is pointed out in [1] that such a framed
link of $M$ is closely related to a Heegaard splitting (or diagram) of $M$ . On the other hand,
using a notion of a d-pseudo core, we proposed in [2] a condition for a Heegaard splitting to
be reduced.

In this paper, to see how extent we can apply the conditions in [2] to a Heegaard splitting
of a homotopy 3-sphere $M$ induced by a surgery description, we will try to add further good
properties to a special framed link given in [1]. In the case where $\chi(M;K)=S^{3}$ and the
dual framed link $K^{*}$ forms a pure plat, it was shown in [2] that we can take a link isotopic
to $K$ as a generalized core (see [2] for the definition) of the Heegaard splitting of $M$ induced
by the surgery description, and that a key for applying the reducibility condition is to find a
localizing arc system (see [2] and \S 1.3 below) for a generalized core. In \S 1, adding some
conditions on a localizing arc system to a special framed link defined in [1], we introduce a
notion of a “very special framed link” of a closed 3-manifold, and in \S \S 2, 3 we will prove that
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THEOREM 0.1. A closed 3-manifold $M$ has a very specialframed link $\iota f$and only $\iota fM$

is a homotopy 3-sphere.

In \S 4, we will investigate on a relation between a very special framed link and a Heegaard
splitting of a homotopy 3-sphere.

Throughout this paper, we work in the PL-category and use the following notation:
$\bullet$ $c1(\cdot)$ : the closure,
$\bullet$ $N(A, B)$ : a regular neighborhood of $A$ in $B$ where $A\subset B$ ,
$\bullet$ $E(A, B)$ : an exterior of $A$ in $B$ , namely $E(A, B)=c1(B-N(A, B))$ .

1. Deflnitions and notation.

1.1. Conventions. We will consider a framed link $K$ in a general 3-manifold (mainly

a homotopy 3-sphere) $M$ with $\chi(M;K)=S^{3}$ and simultaneously consider its dual framed
link $K^{*}$ in $S^{3}$ . To avoid confusion, we always mark an asterisk $‘*$ for representing alink $(oI$

its component) in $S^{3}$ , and do not mark it for a link in $M$ .
In the case where $\chi(M;K)=S^{3}$ , the exterior $E(K, M)$ coincides with the exterio]

$E(K^{*}, S^{3})$ of the dual link $K^{*}$ in $S^{3}$ . In what follows, without any notice, we use this identi-
fication of the exteriors of $K$ and $K^{*}$ .

As usual, for representing the framing curve $\tilde{\kappa}_{j}$ of a component $\kappa_{j}$ of a framed link in an
oriented homology 3-sphere $M$ , we use the linking number of $\kappa_{j}$ and $\tilde{\kappa}_{j}$ , which is called the
framing number and denoted by $f.n.(\kappa_{j})$ .

1.2. Pure plats and vh-plats in $S^{3}$ . A link $L^{*}$ in $ S^{3}=E^{3}\cup t\infty$ } is said to be rep.
resented by a $2n$-plat (with respect to a height function on the t-axis) if it has $n$ local $maxim^{r}$

and $n$ local minima with respect to the t-axis, when the Euclidian space $E^{3}$ is parametrized b3
rectangular coordinates $(r, s, t)$ . It is said to be apure plat if it is a $2n$-plat with $n$ components

We will give a definition of a special class of pure plats in $S^{3}$ . To define this class, we
will fix a rectangular coordinate $(r, s, t)$ on $E^{3}=S^{3}-\{\infty\}$ (of cause, we assume that all the
objects which we consider do not meet with the point $\infty$). We say a subset $X$ of $E^{3}$ to be
horizontal if $X$ is included in some plane $\{t=const.\}\subset E^{3}$ .

DEFINITION 1.1. A link $\Lambda^{*}$ in $S^{3}$ is said to be a vh-plat ( $vh’$ means ”vertical an$($

horizontal”) if $\Lambda^{*}$ is decomposed into two sublinks $\Lambda_{v}^{*}$ (called the vertical part) and $\Lambda^{*}$,
(called the horizontal part), and these sublinks satisfy the following conditions (cf. Figure
1.1).

(1) $\Lambda_{v}^{*}$ lies on the plane $\{r=0\}$ , is a pure plat with respect to the t-axis, and tht
components of $\Lambda_{v}^{*}$ bound mutually disjoint 2-disks on $\{r=0\}$ . We may assume that tht
maximum points and the minimum points of the components of $\Lambda_{v}^{*}$ are both on the samt

t-level.
(2) $\Lambda_{h}^{*}$ consists of some Hopf links $x_{[1,j]}^{*}\cup x_{[2,j]}^{*}(j=1,2, \cdots , m)$ with the followin5

properties.
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(a) vertical components and guide-arcs

(b) example of a vh-plat

FIGURE 1.1. vh-plat.

(i) For each $x_{[q,j]}^{*}$ there is a unique vertical component, say $\ell_{[q,j]}^{*}$ , which is linking
with $x_{[q,j]}^{*}$ , and $1k(x_{[q,j]}^{*}, l_{[q,j]}^{*})=\pm 1$ .

(ii) The j-th Hopf link $x_{[1,j]}^{*}\cup x_{[2,j]}^{*}$ is included in a regular neighborhood of a hor-
izontal arc $\gamma_{j}$ , called a guide-arc, which connects the two vertical components $l_{1,j}^{*}$ and $\ell_{2,j}^{*}$

within the half plane $\{t=t_{j}\}\cap\{r\geq 0\}$ ( $t_{j}\neq t_{j^{\prime}}$ for $j\neq j^{\prime}$). We denote by $s_{q,j}(q=1,2)$

the s-coordinates of the end points of $\gamma_{j}$ , and assume that $(0, s_{q,j}, t_{j})\in\ell_{q,j}^{*}$ and $s_{1,j}<s_{2,j}$ .
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(iii) Each component $x_{[q,j]}^{*}$ is completely included in a plane

$\Pi_{q,j}=\{t-t_{j}=a_{q,j}\cdot(r-b_{q}\cdot(s-s_{q,j}))\}$

for some constants $a_{q,j},$ $b_{q}(1\leq j\leq m, q=1,2)$ with $a_{1,j}\cdot a_{2,j}<0,$ $b_{1}>0$ and $b_{2}<0$ .
1.3. A localizing arc system for a link. Let $K=$ $(\kappa_{1}, \kappa_{2}, \cdots , \kappa_{n})$ be a link in a

3-manifold $M$ , and let $\delta$ be an embedded 2-disk such that $\delta\cap K$ consists of exactly one point.
And let $\theta$ be an oriented arc going from a component $\kappa_{i}$ to the boundary of $\delta$ . We assume
that this $\theta$ does not intersect with $ K\cup\delta$ except for its end points. The deformation $\kappa_{i}$ into
$\kappa_{i}^{\prime}$ , which we denote by $\kappa_{i}[\theta;\delta]$ , as in Figure 1.2 is called a cross change along $\theta$ . The result
of this deformation is denoted by $K[\theta;\delta]$ . Of cause $K[\theta;\delta]$ is determined up to twisting of
the band centered at the arc $\theta$ . When we do not need to indicate the disk $\delta$ , considering $\theta$

to be an oriented arc going from a point on $K$ to another point on $K$ , we denote the cross
changed link by $K[\theta]$ . For a family $\theta=$ $(\theta_{1}, \theta_{2}, \cdots , \theta_{m})$ of mutually disjoint oriented arcs $\theta_{k}$

each of which connects two points on $K$ , the link obtained by successive cross changes along
$\theta_{1},$ $\cdots$ , $\theta_{m}$ is denoted by $K[\theta]$ .

DEFINITION 1.2. A family $\vec{\theta}=$ $(\theta_{1}, \cdots , \theta_{m})$ of oriented arcs as above is said to
be a localizing arc system for the link $K$ if the cross changed link $K[\vec{\theta}]$ is local in $M$ for a
suitable choice of twisting of bands centered at $\theta_{k}$ $(k=1, \cdots , m),$ where local in $M$ ’ means
“completely included in a 3-ball in $M’$ .

Obviously any link in a homotopy 3-sphere has a localizing arc system.

$\theta$

$|_{\kappa\kappa_{j}}^{\int}:|O\backslash ....\delta|$

FIGURE 1.2. A cross change along $\theta$ .
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1.4. A very special framed link. Let $L$ be a framed link in a 3-manifold $M$ such that
$\chi(M;L)=S^{3}$ and the dual link $L^{*}$ in $ E^{3}=S^{3}-t\infty$ } forms a vh-plat as in Definition 1.1.
Assume that $L_{1}$ is a sublink of $L$ and that it has alocalizing arc system $\vec{\theta}=$ $(\theta_{1}, \theta_{2}, \cdots , \theta_{m})$ .
We may assume that $\tilde{\theta}_{k}\equiv\theta_{k}\cap E(L, M)$ is a connected arc for any $k$ . The localizing arc
system $\vec{\theta}$ is said to be monotone if any $\tilde{\theta}_{k}$ is monotone with respect to the height function $h$

on the t-axis, and is said to be separated if $ h(\tilde{\theta}_{k})\cap h(\tilde{\theta}_{k^{\prime}})=\emptyset$ for any $k^{\prime}\neq k$ .

–:guide-arcs along which
there are horizontal components of $\Lambda^{*}$

FIGURE 1.3. Dual link $\Lambda^{*}\subset S^{3}$ for a very special framed link $\Lambda\subset M$ .
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DEFINITION 1.3. Aframed link $\Lambda$ $isa3$-manifoldM is said to be very special if it
satisfies the following conditions $(a)-(d)$ (cf. Figure 1.3):

(a) the manifold $\chi(M;\Lambda)$ obtained by a surgery along $\Lambda$ is homeomorphic to the 3-
sphere $S^{3}$ ,

(b) the dual link $\Lambda^{*}\subset S^{3}$ forms a vh-plat, and satisfies the conditions (1) and (2) in
Definition 1.1 with respect to some rectangular coordinate $(r, s, t)$ on $E^{3}=S^{3}-\{\infty\}$ ,

(c) the framing numbers of the components of $\Lambda^{*}$ are all $0$,

(d) $\Lambda_{v}$ , which is the sublink of $\Lambda$ corresponding to the vertical part $\Lambda_{v}^{*}$ of $\Lambda^{*}$ , has a
localizing arc system $\vec{\theta}=$ $(\theta_{1}, \theta_{2}, \cdots , \theta_{n_{1}})$ with the properties:

(i) the $2n_{1}$ end points of $\theta_{k}(k=1, \cdots , n_{1})$ are all on different components of $\Lambda_{v}$

from each other,
(ii) $\vec{\theta}$ is monotone and separated,
(iii) $\vec{\theta}\cap E(\Lambda^{*}, S^{3})$ is included in $\{r<0\}$ , and its projection on $\{r=0\}$ does not

intersect with $\Lambda_{v}^{*}$ .
The sublink $\Lambda_{v}$ of a very special framed link $\Lambda$ corresponding to the vertical part $\Lambda_{v}^{*}$ of

$\Lambda^{*}$ is also called the vertical part of $\Lambda$ , and the sublink $\Lambda_{h}$ of $\Lambda$ corresponding to $\Lambda_{h}^{*}$ is called
the horizontal aprt of $\Lambda$ .

1.5. Kirby moves and dual Kirby moves. We now describe the well-known Kirby
moves which can be made on a framed link $K\subset M$ and which do not alter the result of the
surgery $\chi(M;K)$ . There are three moves (cf. Figure 1.4):

Move (I). Introduce a new unknotted component with the framing $number\pm 1$ lying in
a 3-ball disjoint from $K$ . It is well known that the effect of this move is to give the space a
“full twist” as it passes through the new component.

Move (II). Introduce a Hopf link lying in a 3-ball disjoint from $K$ , both of whose
components have the framing number $0$ . This move can be generated by the above Move (I)

and the next Move (III). However, because this move is frequently used, we list it as a basic
move.

Move (III). Given components $\kappa_{jl},$ $\kappa_{j_{2}}$ of $K$ and aband $\beta$ connecting $\kappa_{j_{1}}$ to the framing
curve $\tilde{\kappa}_{j_{2}}$ for $\kappa_{j_{2}}$ , replace $\kappa_{j_{1}}$ by $\kappa_{j_{1}}\#\tilde{\kappa}_{j_{2}}$ , where $\#$ means the connected sum along the band $\beta$ .
The ffaming number of the new component $\kappa_{j_{1}}\#\tilde{\kappa}_{j_{2}}$ is defined to be

(1.1) $f.n.(\kappa_{j_{1}}\#\tilde{\kappa}_{j_{2}})=f.n.(\kappa_{j_{1}})+f.n.(\kappa_{j_{2}})\pm 2\cdot 1k(\kappa_{j_{1}}, \kappa_{j_{2}})$ ,

and the framing numbers of the other components are not altered (cf. [3]).

This move is called a band move of $\kappa_{j_{1}}$ toward $\kappa_{j_{2}}$ .
Let $K$ be a framed link and $K_{1}$ be one obtained by one of the Kirby moves from $K$ . Then

both dual links $K^{*}$ and $K_{1}^{*}$ are in X $(M;K)$ . The change from $K^{*}$ into $K_{1}^{*}$ is said to be duai
moves. As is observed by R\^ego and Rourke [4], the dual moves corresponding to the above
Move $(I)-(III)$ are given as in Figure 1.5. It is to be noticed that the dual move for a band
move deforming $\kappa_{j_{1}}$ into $\kappa_{j_{1}}\#\tilde{\kappa}_{j_{2}}$ is a band move which deforms $\kappa_{j_{2}}^{*}$ into $\kappa_{j_{2}}^{*}\#\tilde{\kappa}_{j_{1}}^{*}$ .
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Composing the above Kirby moves, we obtain a move defined below, which is often used
in the following arguments.

DEFINITION 1.4 (Cross Change Move). The deformation of a framed link shown in
Figure 1.6 is called a cross change move, which realizes a cross change of some two com-
ponents ( $\kappa_{1}$ and $\kappa 2$ in Figure 1.6). As is shown in Figure 1.6, this move is a composition of
Kirby moves.

The dual of a cross change move is shown in Figure 1.7.

FIGURE 1.6. Cross change move.
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the arc $\theta$

$\kappa 1*)^{\backslash }\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot=$

$(\kappa_{2}^{r}$

FIGURE 1.7. Dual move for the cross change move in Figure 1.6.

2. Proof of the “only if” part in Theorem 0.1.

To show the “only if” part, we first prove that

LEMMA 2.1. If$M$ has a framed link $K$ such that $\chi(M;K)=S^{3}$ and each component

of $K$ is null homotopic in $M$, then $M$ is a homotopy 3-sphere.

PROOF. Let $\gamma$ be any loop in $E(K, M)\equiv E(K^{*}, S^{*})$ . For such a $\gamma$ , we can take
an immersed planar surface $X$ in $E(K^{*}, S^{3})$ such that the boundary $\partial X$ consists of $\gamma$ and
some meridians of $N(\kappa_{j}^{*}, S^{3})$ , where $\kappa_{j}^{*}$ is a component of the dual link $K^{*}\subset S^{3}$ . Since a
meridian of $N(\kappa_{j}^{*}, S^{3})$ is parallel to its dual component $\kappa_{j}$ of $K$ and $\kappa_{j}$ is null homotopic in
$M$ by the assumption, $\gamma$ bounds an immersed disk within $M$ . This shows that $M$ has a trivial
fundamental group, namely $M$ is a homotopy 3-sphere. $\square $

Using this lemma, we obtain the following lemma which completes the proof of the
“only if” part of Theorem 0.1.

LEMMA 2.2. $M$ is a homotopy 3-sphere if$M$ admits a very specialframed link.

PROOF. Let $\Lambda=\Lambda_{v}\cup\Lambda_{h}$ be a very special framed link in $M$ . Since $\Lambda_{v}$ has alocalizing
arc system, any component of $\Lambda_{v}$ is null homotopic in $M$ . Hence by Lemma2.1 it is sufficient
for the proof to show that each component $x_{[q,j]}$ of $\Lambda_{h}$ is null homotopic.

Let $x_{[p,j]}^{*}(p\neq q)$ be the horizontal component of $\Lambda^{*}$ which together with $x_{[q,j]}^{*}$ forms
a Hopf link, and let $\omega(x_{[p,j]}^{*})$ be a 2-disk in $S^{3}$ which is bounded by $x_{[p,j]}^{*}$ on the plane $\Pi_{p,j}$

(cf. Definition 1.1).
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In order to see $x_{[q,j]}$ being null homotopic in $M$ , we consider a planar surface $Y\equiv$

$\omega(x_{[p,j]}^{*})\cap E(\Lambda^{*}, S^{3})$ . The boundary $\partial Y$ consists of three circles; one, which we denote
by $\phi(x_{[p,j]}^{*})$ , lies on $\partial N(x_{[p,j]}^{*}, S^{3})$ , one, which we denote by $\pi(x_{[q,j]})$ , is a meridian of
$N(x_{[q,j]}^{*}, S^{3})$ , and the other, which we denote by $\pi(\ell_{p,j})$ is a meridian of $N(\ell_{p,j}^{*}, S^{3})$ , where
$\ell_{p,j}^{*}$ is the vertical component of $\Lambda^{*}$ linking with $x_{[p,j]}^{*}$ . Regard $Y$ to be a subset of $E(\Lambda, M)$

$\subset M$ . Because the framming number of $x_{[p,j]}^{*}$ is $0$, the boundary component $\phi(x_{[p,j]}^{*})$ bounds a
2-disk $D$ within $M$ . Hence the surface $Y\cup D$ is an annulus bounded by $\pi(x_{[q,j]})$ and $\pi(\ell_{p,j})$ .
Noticing that each $\pi(x_{[q,j]})$ and $\pi(p_{p,j})$ is parallel to $x_{[q,j]}$ and $\ell_{p,j}$ respectively and that a
component $\ell_{p,j}$ belonging to $\Lambda_{v}$ is null homotopic in $M$ , we can conclude that $x_{[q,j]}$ is also
null homotopic. This completes the proof. $\square $

3. Proof of the “if” part in Theorem 0.1.

Our starting point for constructing a very special framed link in a homotopy 3-sphere $M$

is the following lemma established in [1].

LEMMA 3.1 ([1]). Any closed 3-manifold $M$ admits aframed link $K$ such that
(i) $\chi(M;K)=S^{3}andtheduallinkK^{*}inS^{3}$ fomsa pure plat, and
(ii) the framing numbers of the components of $K^{*}are$ all even.

Using a framed link as in this lemma, we will show that a homotopy 3-sphere $M$ admits
a framed link with further properties as in the next lemma.

LEMMA 3.2. For any homotopy 3-sphere $M$, there exists aframed link $L$ in $M$ such
that

(1) $\chi(M;L)=S^{3}$ , and the dual link L* isapure plat on the t-axis in $E3=S^{3}-\{\infty\}$ ,
(2) the framing numbers of the dualframed link $L^{*}are$ all even,
(3) $L$ has a localizing arc system $\vec{\theta}=(\theta_{1}, \theta_{2}, \cdots , \theta_{n_{1}})$ which is monotone and sepa-

rated with respect to the heightfunction on the t-axis.

PROOF. By Lemma 3.1 there exists a framed link $K$ in $M$ which satisfies the conditions
(1) and (2). For such a $K$ we can take a localizing arc system $\vec{\theta}^{\prime}=(\theta_{1}^{\prime}, \theta_{2}^{\prime}, \cdots\theta_{m}^{\prime})$ because
$M$ is a homotopy 3-sphere. However $\vec{\theta}^{\prime}$ is neither monotone nor separated in general. So,

applying some Kirby moves on $K$ or $K^{*}$ , we shall modify $K$ into $L$ with all the desired
properties.

Applying an isotopic deformation if necessary, we may assume that the components of
$\vec{\theta}^{\prime}$ are monotone and separated apart from a finite number of crossings (as in Figure $3.1(a)$).

For each of these crossings, add to $K^{*}$ new components with the framing number $0$ (Move
(II)) so as to cancel the crossings (see Figure $3.1(b)$).

Denote by $L^{*}$ the result of the above moves, and denote by $L$ its dual. Obviously $L$

satisfies the required conditions (1) and (2). It is also obvious that, after these moves, $\vec{\theta}^{\prime}$

becomes monotone and separated. But, since the arcs $\theta_{j}^{\prime}$ pass through the disks bounded

by new components, this $\vec{\theta}^{\prime}$ may not be a localizing arc system for $L$ . To obtain the desired
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(a)

(b)

FIGURE 3.1. Cross change for localizing arcs.

localizing arc system $\vec{\theta}$ for $L$ , we must add to $\vec{\theta}^{\prime}$ two arcs indicated in Figure 3.2 for each new
component of $L$ . In fact, as is shown in Figure 3.3, we get a link having the same localizing
arc system as the original $K$ after applying cross changes along additional arcs.

As is shown in Figure 3.2(b), we can arrange $L^{*}$ and $\vec{\theta}$ so that $L^{*}$ is still a pure plat and
$\vec{\theta}$ is monotone. Moreover, since the additional localizing arcs can be taken as short as we
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(a) figure in $M$

(b) figure in $S^{3}$

FIGURE 3.2. Additional localizing arcs arising Rom cross change of arcs.

want (cf. Figure 3.4), we can choose $L$ and $\vec{\theta}$ so that they satisfy also the condition (3). This
completes the proof. $\square $

Now we shall show that

LEMMA 3.3. Any homotopy 3-sphere has a very specialframed link.

PROOF. Let $L$ be a ffamed link in a homotopy 3-sphere $M$ whose existence has been
just proved in Lemma 3.2, and let $\vec{\theta}=$

$(\theta_{1}, \theta_{2}, \cdots , \theta_{n_{1}})$ be its localizing arc system which is
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monotone and separated. First we shall show that we can modify $L$ and $\vec{\theta}$ so that, besides the
conditions (1)$-(3)$ in Lemma 3.2, they satisfy the following additional condition (4):

(4) any component of $\Lambda$ has at most one end point of $\vec{\theta}$ on it, that is, there are mutually
different components $\sigma_{k}$ and $\tau_{k}(k=1,2, \cdots, n_{1})$ such that the k-th arc $\theta_{k}$ goes from $\sigma_{k}$ to $\tau_{k}$ .

In order to get a framed link satisfying (4), for each localizing arc $\theta_{i}(i=1, \cdots , m)$ ,

which is assumed to go from $p_{i_{1}}$ to $\ell_{i_{2}}$ , we apply the following three steps $(i)-(iii)$ of Kirby
moves and dual Kirby moves (cf. Figures 3.5-3.7).

(i) cross change move in $M$ making $L$ local

(ii) dual move in $S^{3}$

FIGURE 3.5. Moves and dual moves for the condition (4) (l-st step).
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$a$

$L_{1}^{*}$ $L_{2}^{*}$

(a) cross change move in $S^{3}$

(b) dual link $L_{2}\subset M$

FIGURE 3,6, Moves and dual moves for the condition (4) (2-nd step).

(i) (Cross change moves in $M$) Along each arc $\theta_{i}$ apply a cross change move as in
Figure 3.5(i) to make the link $L$ local. We write $L_{1}$ for the new framed link, and $a,$ $b$ for
the components of $L_{1}$ introduced by this move. As is shown in Figure 3.5(ii), the dual link
$L_{1}^{*}\subset S^{3}$ is not a pure plat.

(ii) (Cross change move in $S^{3}$ ) To break the crossing between $a^{*}\bm{t}db^{*}$ , we make a
cross change move on $L_{1}^{*}$ shown in Figure 3.6. Let $c^{*}$ and $d^{*}$ be the components introduced
for this cross change move. The new framed link $L_{2}^{*}$ becomes a pure plat again. The dual
moves lead us to the link $L_{2}\subset M$ which is dual to $L_{2}^{*}$ and illustrated in Figure 3.6.
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(a) $L_{3}\subset M$ and its localizing arcs

(b) dual link $L_{3}^{*}\subset S^{3}$ and localizing arcs for $L_{3}$ within $S^{3}$

FIGURE 3.7. Moves and dual moves for the condition (4) (3-rd step).

(iii) (Cross change move in $M$) To break the linking between $c$ (or d) and the com.
ponent of $L_{2}$ , say $\ell_{i_{v}}(v=1,2)$ , we make a cross change move on $L_{2}$ as in Figure 3.7(a)

New components introduced by this cross change move are denoted by $u$ and $v$ (or $y$ and z)

These moves result in a new framed link $L_{3}\subset M$ as in Figure 3.7(a), and in its dual $L_{3}^{*}\subset S^{\prime}$
:

which is drawn in Figure 3.7(b).
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Let $\tilde{L}$ be the sublink of $L_{3}$ which consists of the components corresponding to the origi-
nal $L$ . Because $\tilde{L}$ was made local by the above moves, the set of arcs shown in Figure 3.7(a)
forms a localizing arc system $\vec{\theta}$ for $L_{3}$ . In fact, by cross changes along $\vec{\theta}$ we obtain a link
$L_{3}[\vec{\theta}]$ which can be shrunk into a regular neighborhood of $\tilde{L}$ . Within $S^{3}$ , the arcs in $\vec{\theta}$ are
arranged as in Figure 3.7(b). Because two of three localizing arcs in Figure 3.7(b) can be
taken as short as we want, making isotopic deformations if necessarily, we can see that the
framed link $L_{3}$ and the localizing arc system $\vec{\theta}$ satisfy the required condition (4).

FIGURE 3.8. Well aIranged $L^{*}\subset S^{3}$ .
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$|$

$=$

(a) elementary pure braid (b) vh-plat

FIGURE 3.9. An elementary pure braid and the cross change move for making it a vh-plat.

Notice that the framing numbers of $L_{3}^{*}$ are still all even, because all the new components
introduced by the above moves have $0$ framing and the other framing numbers are altered by
the formula (1.1).

Rewriting $L_{3}$ by $L$ , we may assume that $L$ and $\vec{\theta}=$
$(\theta_{1}, \theta_{2}, \cdots , \theta_{n_{1}})$ satisfy the condi.

tions (1)$-(3)$ in Lemma 3.2 and the additional condition (4), namely there are $2n_{1}$ mutually
different components $\sigma_{k}$ and $\tau_{k}$ $(k=1,2, \cdots , n_{1})$ such that the k-th arc $\theta_{k}$ goes from $\sigma_{k}$

down to $\tau_{k}$ . Then, by a horizontal isotopic deformation, we can arrange the dual link $L^{*}\subset S^{3}$

and $\vec{\theta}$ (correctly speaking $\tilde{\theta}\cap E(L^{*},$ $S^{3})$) as in Figure 3.8.
In order to make $L^{*}$ a vh-plat, we employ the same method as in [1]. Since a pure braid is

generated by an elementary pure braid (cf. Figure 3.9), breaking crossing of elementary pure
braid by a cross change move in the manner illustrated in Figure 3.9, we can get a new framec
link $\Lambda^{*}$ which forms a vh-plat and still gives a surgery description of $M$ . The components
introduced by these cross change moves form the horizontal part $\Lambda_{h}^{*}$ . The ffaning number:
of the horizontal part $\Lambda_{h}^{*}$ are all $0$, and those of the vertical part $\Lambda_{v}^{*}$ are all even.

In order to adjust the framing numbers of the vertical part to $0$, we make final $move_{\backslash }$

indicated in Figure 3.10, which is a composition of isotopic deformations of vertical compo.
nents and cross change moves. Indeed, since each vertical component has an even framing
number, the formula (1.1) shows that, taking an adequate number of left or right full twists $iI$

the first move in Figure 3.10, we get a new Ramed link, which we denote by the same lette)

$\Lambda^{*}$ , whose dual framed link $\Lambda\subset M$ satisfies the conditions (a), (b), (c) in Definition 1.3.
Because the dual moves for getting $\Lambda$ from $L$ do not alter the link $L$ , the vertical part $\Lambda_{\iota}$

is the same link as the original $L$ . This implies that $\vec{\theta}$ is a localizing arc system also for $\Lambda_{v}$

Hence $\Lambda$ satisfies also the condition (d) in Definition 1.3, that is, $\Lambda$ is a very special frame $($

link in $M$ .
This completes the proof of Lemma 3.3, and so of Theorem 0.1. $\square $
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FIGURE 3.10. Moves for adjusting the framing number of a vertical component to $0$ .

4. A very special framed link and a Heegaard splitting.

In this section, we investigate on a Heegaard splitting of a homotopy 3-sphere $M$ which
is induced by a very special framed link $\Lambda$ in $M$ , whose dual link $\Lambda^{*}$ forms a very special
framed link. For definiteness of our argument, we recall the notation used in this section.

$\bullet$ We assume that the vertical part $\Lambda_{v}$ has $(n_{0}+2n_{1})$ components and a localizing arc
system consisting of $n_{1}$ arcs, and that the horizontal part $\Lambda_{h}$ consists of $2n_{2}$ components.

$\bullet$ The components of the vertical part $\Lambda_{v}$ are denoted by
$\lambda_{i}$ $(i=1,2, \cdot. . , n_{0})$ , $\sigma_{k},$ $\tau_{k}$ $(k=1,2, \cdot. . , n_{1})$ ,

and the k-th arc $\theta_{k}$ of the localizing arc system $\vec{\theta}=$ $(\theta_{1}, \theta_{2}, \cdots , \theta_{n_{1}})$ of $\Lambda_{v}$ is assumed to go
from $\sigma_{k}$ down to $\tau_{k}$ .

$\bullet$ The components of $\Lambda_{h}$ are denoted by

$x_{[1,j]},$ $x_{[2,j]}$ $(j=1,2, \cdots n_{2})$ ,

where, for each $j$ , their dual components $x_{[1,j]}^{*}$ and $x_{[2,j]}^{*}$ are those which form a Hopf link
along the j-th guide-arc.

4.1. AHeegaard splitting and its generalized core. We will definea Heegaard split-
ting of $M$ by a l-complex $\Gamma^{*}$ in $S^{3}$ such that $\Gamma^{*}$ includes the vh-plat $\Lambda^{*}$ and the exterior
$E(\Gamma^{*}, S^{3})$ is a handle body. Because $H_{1}\equiv E(\Gamma^{*}, S^{3})$ can be viewed as a handle body in
$M$ and $H_{2}\equiv c1(M-H_{1})$ , which is a regular neighborhood of some l-complex in $M$ , is also
a handle body, such a l-complex $\Gamma^{*}$ determines a Heegaard splitting $\mathcal{H}=(H_{1}, H_{2})$ of $M$ .
Such a l-complex $\Gamma^{*}$ can be defined by adding some arcs to $\Lambda^{*}$ . The added arcs are given as
the following $(i)-(iii)$ .
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FIGURE 4.1. l-complex $\Gamma^{*}$ .

[figure in $S^{3}$ ]

FIGURE 4.2. $\phi(\ell^{*})$ and $\pi(\ell)$ .
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(i) Take a base point $P_{0}$ on the plane $\{r=0\}$ so that it has t-coordinate less than any
point on $\Lambda^{*}$ .

(ii) For each vertical component $\ell*$ ( $=\lambda_{i}^{*}$ or $\sigma_{k}^{*}$ or $\tau_{k}^{*}$ ), take an arc $\rho(\ell^{*})$ on $\{r=0\}$

which connects the bottom point of $\ell^{*}$ down to the base point $P_{0}$ .
(iii) For each horizontal component $x_{[q,j]}^{*}$ , there is a unique vertical component $\ell*$

$\ell^{*}1inking$
with $x_{[q,j]}^{*}$ . We take an arc $\rho(x_{[q,j]}^{*})$ on $\{r=0\}$ which connects $x_{[q,j]}^{*}$ horizontally to

FIGURE 4.3. A localizing arc for $\mathcal{L}$ .
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Adding all the above defined arcs $\rho(\kappa^{*})$ , we obtain a l-complex $\Gamma^{*}$ as in Figure 4.1. It can
be easily seen that the exterior $H_{1}\equiv E(\Gamma^{*}, S^{3})$ is a handle body. Hence, as is noticed above,

this l-complex $\Gamma^{*}$ determines a Heegaard splitting of $M$ with genus $g(\mathcal{H})=n_{0}+2n_{1}+2n_{2}$ .
Now we shall give a generalized core of $H_{1}$ , namely a link $\mathcal{L}$ in the handle body $ H_{1}fo\iota$

which there exists a l-complex $T\subset H_{1}$ such that $\mathcal{L}\subset T$ and $H_{1}\searrow T$ (see [2] for the precise
definition). For a component $\kappa$ of a very special framed link $\Lambda$ , we denote by $\pi(\kappa)$ a meridian
of $N(\kappa^{*}, S^{3})$ , and by $\phi(\kappa^{*})$ a framing curve of the dual component $\kappa^{*}$ (cf. Figure 4.2). We
may assume that $\pi(\kappa)$ is included in the interior of $H_{1}$ , and that $\phi(\kappa^{*})$ lies on the boundary
$\partial H_{1}$ . Define a link $\mathcal{L}$ in $H_{1}$ so that it consists of $g(\mathcal{H})$ components

FIGURE 4.4. Another localizing arc for $\mathcal{L}$ .
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$\pi(\lambda_{i})$ $(i=1,2, \cdots, n_{0})$ , $\pi(\sigma_{k})$ , $\pi(\tau_{k})$ $(k=1,2, \cdots n_{1})$ ,

$\phi(x_{[q,j]}^{*})$ $(q=1,2, j=1,2, \cdots n_{2})$ ,

where $\pi(\ell)$ ($\ell=\lambda$ ; or $\sigma_{k}$ or $\tau_{k}$ ) is taken at the top of the vertical component $p*$ .
Using the results in \S 1 of [2], we can see that the above defined $\mathcal{L}$ is a generalized core

of $H_{1}$ . It is shown in [2] that a localizing arc system for $\mathcal{L}$ plays an important role to see how
extent the Heegaard splitting can be reduced. Hence we investigate on alocalizing arc system
for $\mathcal{L}$ in the next subsection.

4.2. A localizing arc system for the generalized core $\mathcal{L}$ . Let $\mathcal{L}_{0}$ be the sublink of $\mathcal{L}$

consisting of the components
$\pi(\lambda_{i})$ $(i=1,2, \cdots n_{0})$ , $\pi(\sigma_{k}),$ $\pi(\tau_{k})$ $(k=1,2, \cdots n_{1})$ .

Since $\pi(\kappa)$ is parallel to $\kappa$ within $M$ for any component $\kappa$ of $\Lambda,$ $\mathcal{L}_{0}$ is isotopic to the vertical
part $\Lambda_{v}$ within $M$ . On the other hand, $\Lambda_{v}$ has alocalizing arc system $\vec{\theta}$ whose k-th localizing
arc $\theta_{k}$ runs within $S^{3}$ as in Figure 4.3. Hence $\mathcal{L}_{0}$ has a localizing arc system $\vec{\theta}^{\prime}$ with the k-th
arc $\theta_{k}^{\prime}$ as in Figure 4.3. Because the framing curve $\phi(x_{[q,j]}^{*})$ bounds a 2-disk in $M$ which is
disjoint from the other components of $\mathcal{L}$ , also $\mathcal{L}$ has $\vec{\theta}^{\prime}$ as its localizing arc system.

An isotopic deformation of $\vec{\theta}^{\prime}$ within $M-\mathcal{L}$ yields again a localizing arc system of $\mathcal{L}$ .
For example, the arcs $\theta_{k}^{\prime\prime}$ as in Figure 4.4 form a localizing arc system of $\mathcal{L}$ . This example
shows that there is some flexibility in a choice of a localizing arc system for $\mathcal{L}$ . An adequate
choice of a localizing system might lead us to a Heegaard splitting of a homotopy 3-sphere
which can be sufficiently reduced.
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