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$0$. Introduction.

In this part, we will prove that the roots of a symmetric space $M$ defined with the curva-
ture (by using the Jacobi equation) make a root system $R(M)$ and determine their multiplic-
ities. Thus we reestablish the known facts in a more geometric way (including the fact that
the roots of a simple Lie algebra make a root system). Conversely, $R^{m}(M),$ $R(M)$ with the
information of the multiplicity, allows one to recover the curvature of $M$ ; that is, $R^{m}(M)$ is a
simple and complete description of the curvature tensor (although we will not give a prool).

In our geometric method of determining the multiplicity, we use the classification of the
Hopf fibrations by Adams in case the rank $r(M)$ is 1. In case $r(M)=2$ , we use that of
the homogeneous isoparametric hypersurfaces of spheres [M2] (or, equivalently, that of the
compact Lie groups $K\subset SO(n)$ acting linearly on $R^{n}$ whose principal orbits have codimen
$=2$ by Hsiang-Lawson [HL] and others). The results in these cases are by and large enough
to finish the job in the other case of $r(M)>2$ . To complete the job, we have studied the
(adjoint) action of $k(O)$ , the centralizer of $a$ in $k$ , in 2.2, which will give a deeper isnsight into
the symmetric space.

In the final section, we will characterize a (local) Kahlerian symmetric space in terms of
$R^{m}(M)$ (Theorem 4.1) and in terms of centniole (see 1.9) (Theorem 4.5).

SYMBOLS. The symmetric spaces are denoted by standard notations (as in [H]) with
minor exceptions such as $G_{p}(K^{n})$ denoting the Grassmann manifold of the $p$ dimensional
subspaces of a linear space $K^{n}$ and $AI(n)$ $:=SU(n)/SO(n)$ , etc. $\mathcal{L}G$ $:=the$ Lie algebra
of G. $m^{2}$ $:=[m, m]$ for a linear subspace of a Lie algebra. See [B] for the symbols and
numberings of the roots and weights; in particular, $(\epsilon_{1}, \cdots , \epsilon_{n})$ is an orthonormal system.

1. Basic concepts of symmetric spaces.

1.0 DEFINITION. A connected smooth manifold $M$ is a symmetric space if (1) there
is assigned an involutive diffeomorphism $s_{X}$ : $M\rightarrow M$ of which $x$ is an isolated fixed point
and
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(2) there is a linear connection $\nabla$ on $M$ which is left invariant by every point symmetry
$s_{X}$ .

1.1 LEMMA. The symmetry $s_{X}$ induces $ds_{X}=-1$ on the tangent space $T_{X}M$ .
PROOF. $s_{X}$ permutes the geodesics with affine parameters of $\nabla$ . $\square $

1.2 COROLLARY. (i) The invariant connection $\nabla$ is unique and it has no torsion. (ii)

Ifall the point symmetries are isometries ofa Riemannian metric $g$ on $M$ , then $\nabla$ is the Levi-
Civita connection of $g$ . (iii) If $M$ is compact, then $M$ is Riemannian symmetric; $i.e$. $\nabla$ is the
Levi-Civita connection ofan invariant metric $g$ .

1.3 DEFINITION. A morphism (or a homomorphism): $M\rightarrow N$ of a symmetric space
$M$ into another one $N$ is a smooth map which commutes with every point symmetry; namely,
$fos_{X}=s_{f(x)}\circ f$ for every $x\in M$ .

The symmetric spaces and their morphisms form a category, which is a subcategory of
that of the smooth manifolds and their smooth maps.

1. $3a$ DEFINITION. When a smooth manifold $M$ is not connected, we call it symmetric
if $M$ satisfies (1) and (2) in 1.0 together with the condition: (3) every symmetry $s_{X}$ is an
automorphism of $M$ (in the sense of 1.3).

1. $3b$ REMARK. In case $M$ is connected, the condition (3) follows from (1) and (2).
(3) is also satisfied if $M$ is a Lie group with the symmetries $s_{X}$ defined by $s_{X}(y)=xy^{-1}x$ .
Thus the category of the symmetric spaces contains that of Lie groups.

We call $M$ a subspace of $N$ if the inclusion map: $M\rightarrow N$ is a morphism. For example,
the fixed point set $F(a, M)$ of an automorphism $a\in Aut(M)$ is a subspace along with each
connected component $F(a, M)_{(p)}$ (through a point $p$). For a morphism $f$ : $M\rightarrow N$ of a
connected $M$ , the image $f(M)$ and the “kernel” $f^{-1}(f(x)),$ $x\in M$ , are subspaces. And $f$ is
the composite of an epimorphism and a monomorphism.

Every geodesic in $M$ is its subspace, as the next lemma states.

1.4 LEMMA. A smooth map of $a$ euclidean line $R$ into a symmetric space $M$ is a
morphism $\iota f$ and only $\iota f$ it is a geodesic in $M$ with an affine parameter. Thus, in case $M$ is
connected, a morphism: $M\rightarrow N$ is nothing but a totally geodesic map.

1.5 COROLLARY. (i) The transfomation group generated by the point symmetries of
$M$ is transitive on $M$ if $M$ is connected. (ii) If $M$ is compact firthemore, then that group
contains the identity component of the automorphism group $Aut(M)$ . (iii) $Aut(M)$ is a Lie
group.

1. $5a$ REMARK. The morphisms are affine maps basically. For example, two tori are
isomorphic if and only if they have equal dimension, whether or not they are isometric. For
another example, $Aut(E^{n})$ of the euclidean space $E^{n}$ is its affine transformation group.

One knows Cartan’s mapping $C$ : $G\rightarrow G$ : $b\mapsto b\sigma(b)^{-1}$ defined for a group $G$ and its
involution $\sigma$ and that its image $C(G)$ is a symmetric space; the inclusion map: $C(G)\rightarrow G$ is
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the Cartan embedding. Since $C$ is not a morphism, we proposed in [N] to use the morphism
$Q=Q_{0}$ : $M=G/K\rightarrow G$ : $x\mapsto s_{X}os_{o}$ , which is essentially the same as $C$ as the next
theorem states. ( $Q_{0}$ is defined for the pointed space $(M,$ $0).$ )

1.6 THEOREM (cf. 1.9 and 1.12, [N-II]). (i) $C$ is the composite $ Qo\pi$ of $Q$ and the
projection $\pi$ : $G\rightarrow G/K$ if $ad(s_{o})=\sigma$ . (ii) $C(G)$ is thus a symmetric space $Q(M)$ . (iii) The
“kernel” $C^{-1}(1_{G})$ is thefixedpoint set $F(\sigma, G)$ , while the “kernel” $Q^{-1}(1_{G})$ is the subspace
$\{p\in M|s_{p}=s_{o}\}$ , which is the totality ofwhat we call the poles $p$ of $0$ in M. (iv) $Ther\phi oreQ$

is a covering morphism and $Q^{-1}(1_{G})$ may be regarded as the subspace $F(\sigma, G)/K$ .
PROOF. (i) Given $b\in G$ , we write $x$ for $\pi(b)$ and obtain $Q(x)=bs_{o}b^{-1}s_{o}=C(b)$ .

(ii) Since $Q$ is a morphism, $C(G)=Q(M)$ is a symmetric space. (iii) Clearly $C(b)=1_{G}$ if
and only if $b=\sigma(b)$ , while $Q(x)=1_{G}$ if and only if $s_{X}=s_{o}$ . (iv) must be obvious, since
the poles are isolated. $\square $

1. $6a$ NOTE. If $b$ satisfies $\sigma(b)=b^{-1}$ (like $Q(x)$ ), then it does $Q(x)=C(b)=b^{2}$ ;
this is why we called the morphism $Q$ quadratic.

Hereafter we assume that $M$ is compact and connected (unless otherwise mentioned).
We now recall important subspaces of compact $M$ .

1.7 DEFINITION. Each connected component $F(s_{o}, M)_{(p)}\ni p$ of the fixed point set
$F(s_{o}, M)$ of the symmetry at $0$ is called a polar of $0$ in $M$ , denoted by $M^{+}(p),$ $M^{+}(p;0)$ or
$M^{+}$ . A pole $p$ is a polar $M^{+}(p)$ which is a singleton.

Every polar in $M$ is a subspace of $M$ . Here are a few examples of known theorems which
illustrate the relevance of the polars.

1. $7a$ EXAMPLE 1. The harmonic maps of $S^{2}$ into a compact simple group $ G(\neq$

$E_{8},$ $F_{4},$ $G_{2}$ ) are factored into the product of a constant map and maps into polars in $G$ , as was
proved by Uhlenbeck and others $[EL1\cdot$

1. $7b$ EXAMPLE 2. The (simple) H-K\"ahlerian spaces are the polars of $1_{G}$ in the 1-
connected simple groups $G$ that are the closest to $1_{G}$ .

1. $7c$ EXAMPLE 3. The cut locus of $0\in M$ is the union of disc bundles over the
$polars\neq 0$ in $M$ if $M$ is a l-connected R-space (see [T79]).

1.8 DEFINITION. A meridian $M^{-}(p)$ is $F(s_{o}os_{p}, M)_{(p)}$ , the connected component
of the fixed point set of $s_{o}os_{p}$ for a point $p$ on a polar $M^{+}(p)$ of $0$ in M. $M^{-}(p)$ and $M^{+}(p)$

are said to correspond to each other at $p$ . $M^{-}(p)$ is c-orthogonal to $M^{+}(p)$ at $p$ ; that is,
the tangent space $T_{p}M^{-}(p)$ is the orthogonal complement of $T_{p}M^{+}(p)$ in $T_{p}M$ , since the
involution $s_{o}$ commutes with $s_{p}$ .

1. $8a$ $M$ is determined by a pair $(M^{-}(p), M^{+}(p))$ of the corresponding polar and
meridian (1.15 in $[N-\Pi]$ ). One sees $M^{+}(p)=K/K^{+}$ and $M^{-}(p)=G^{-}/K^{+}$ , where
$K(0)=\{0\},$ $G^{-}$ $:=F(ad(s_{o}\circ s_{p}), G)_{(1)}$ , and $K^{+}:=K\cap G^{-}$
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1. $8b$ The natural homomorphism $\pi_{1}(M^{-})\rightarrow\pi_{1}(M)$ of the fundamental group, in-
duced by the inclusion: $M^{-}\rightarrow M$ , is surjective.

1.9 A covering morphism $f$ : $M\rightarrow M^{\prime\prime}$ carnies a polar in $M$ onto one in $M^{\prime\prime}$ . If a
polar $M^{\prime\prime+}$ of $f(0)$ in $M^{\prime\prime}$ is not the image of one in $M$ and if the covering degree of $f$ is
two (which we assume for simplicity without losing generality), then there is a pole $p$ of $0$ ,

$f(p)=f(0)$ , in $M$ , such that some connected component, called a centriole for $(0, p)$ , of
the subspace $\{x\in M|s_{X}(0)=p\}$ , called the centrosome of $(0, p)$ , is camied onto $M^{\prime\prime+}$ . The
union of the polars of $f(0)$ is the image of that of the polars of $0$ in $M$ and the centrosome of
$(0, p)$ .

2. The root system $R(M)$ .
Let $M$ be a compact connected symmetric space $G/K,$ $G$ locally effective on $M$ and

$K(0)=\{0\}$ . Then the Lie algebra $g=\mathcal{L}G$ is decomposed into the eigenspaces of $ad(s_{o})$ ;

$g=k+m$ . By using the Jacobi equations along geodesics through $0$ in $M$ , we defined the
roots (with respect to a Cartan subalgebra $a$) in [N-II]. We recall them briefly.

Given a member $H$ of $a$ , consider the geodesic $c$ with $c(O)=0$ and $c^{\prime}(O)=H=H(0)$ .
The Jacobi equation along the geodesic $c$ in $M$

2.1 $\nabla_{H}\nabla_{H}V+R(V, H)H=0$

is converted to the ordinary differential equation $V^{\prime\prime}+R_{H}V=0$ on the pullback of $TM$ by $c$ ,

where $R_{H}$ is the linear map: $V\mapsto R(V, H)H$ , which is constant by $\nabla R=0$ and symmetric
by the known properties of the curvature tensor $R$ . The eigenvalues $\alpha(H)^{2}$ are nonnegative
by compactness of M. $\alpha$ is a linear form on $ a;\alpha$ is called a root if it is not zero. Since
the members of $g$ (restricted to c) are solutions of the Jacobi equation which $s_{o}$ leaves the
equation invariant, one obtains the decompositions

2.2 $m=a+\sum m(\alpha)$ and $k=k(0)+\sum k(\alpha)$ ,

where the summation runs over the roots of $M$ and $g(\alpha)=m(\alpha)+k(\alpha)$ is the eigenspace for
$\alpha(H)^{2},$ $a=m(0)$ and $m(-\alpha)=m(\alpha)$ (except that, in case $\alpha=0,$ $g(O)$ does not equal the
eigenspace of $R_{H}$ for $0$). The main difference of $M$ from the compact Lie group is that the
multiplicity $m(\alpha)$ $:=\dim m(\alpha)=\dim k(\alpha)$ is not a universal constant and $k(O)$ also reflects
the individuality of $M$ . Thus $m(\alpha)$ and $k(O)$ will be our concem. In terms of the Lie algebra
structure of $g$ , the decompositions 2.2 are explained as follows. Given an arbitrary member
$X$ of $m(\alpha)$ , there is a unique member $Y$ of $k(\alpha)$ which satisfies

2. $2a$ $[H, X]=\alpha(H)Y$ and $[H, Y]=-\alpha(H)X$

for every $H$ in $a$ . $k(O)$ is the centralizer of $a$ in $k$ . Thus ad $H$ is alinear isomorphism of $m(\alpha)$

onto $k(\alpha)$ if $\alpha(H)\neq 0$ .
The rank $r(M)$ of $M$ is $r(a)$ $:=\dim a$ . Let $R^{m}(M)$ denote the set of the pairs $(\alpha, m(\alpha))$

of the roots and their multiplicities. $r(M)$ and $R^{m}(M)$ are determined by the curvature $R$ .
Conversely, $R$ is recovered by them; indeed, two spaces $M$ and $N$ are locally isomorphic if
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$r(M)=r(N)$ and $R^{m}(M)=R^{m}(N)$ (see [H] for related facts). For example, if $r(M)=1$
and $R(M)=\{\pm\alpha\}$ with $m(\alpha)=m$ , then $M$ is locally isomorphic with the sphere $S^{m+1}$ ; thus
$k(O)$ is isomorphic with the Lie algebra $\mathcal{L}0(m)$ acting on $m(\alpha)$ and $k(\alpha)$ as such.

As to $k(O)$ , its rank $r(k(O))$ equals $r(g)-r(M)$ . $k(O)$ was determined in every case
by Tamaru [Tm]. We will find its action on each $g(\alpha)$ , which is relevant to determining the
multiplicity.

2.3 THEOREM. If$M=G/K$ is semisimple ( $i.e$. $G$ is semisimple), then the set $R(M)$

of the roots (with respect to a) is a root system in $a$ ; that is, (i) $R(M)$ does not contain $0$ but
space a (which is identified with the dual space $a^{*}with$ the metric); (ii) $R(M)$ is a finite set
and the number

$n(\alpha, \beta)$ $:=2\langle\alpha, \beta\rangle/(\beta,$ $\beta\rangle$

is an integerfor any $\alpha,$ $\beta\in R(M)$ ; and (iii) $R(M)$ is mirror-symmetric: the reflection: $ a\rightarrow$

$ a:\alpha\mapsto\alpha-n(\alpha, \beta)\beta$ preserves $R(M)$ for every root $\beta$ .
PROOF. (i) must be obvious. We will prove that $n(\alpha, \beta)$ is an integer. One sees that $X$

and $Yin2.2b$ generate a subalgebra $g_{X}\cong \mathcal{L}0(3)$ of $g$ ; in fact, the inner product $\langle H,$ $[X, Y]$ ) $=$

\langle $[H, X],$ $Y$ ) $=\{\alpha(H)Y,$ $Y$ ) $=\alpha(H)\Vert Y\Vert^{2}$ , which implies [X, $Y$ ] $=\Vert Y\Vert^{2}\alpha(\in a)$ . Thus $S^{2}$

is a covering space of Exp $g_{X}$ of degree 1 or 2. We normalize the basis (X, $Y,$ $H$) for $g_{X}$

so that $\Vert X||^{2}=||Y\Vert^{2}=||\alpha\Vert^{-2}$ and $ H=||\alpha\Vert^{-2}\alpha$ . Then we have $[H, X]=Y,$ $[H, Y]=$

-X, and [X, $Y$ ] $=H$ . With this, the geodesic $c$ : $t\mapsto Exp(tH)$ satisfies $c(2\pi)=c(O)$ .
Hence every member of $k(\beta)$ , a solution of the Jacobi equation along $c$ , vanishes at $ t=2\pi$ .
Therefore $n(\beta, \alpha)=2\beta(H)$ is an integer. Now ad $\exp(\pi Y)$ acts trivially on the vectors
$H^{\prime}\in a$ satisfying $\alpha(H^{\prime})=0$ and carries $\alpha$ into $-\alpha$ . Thus ad $\exp(\pi Y)$ acts on $a$ as the
reflection: $\beta\mapsto\beta-n(\beta, \alpha)\alpha$ on $a$ , while the automorphism ad $\exp(\pi Y)$ which stabilizes $a$

permutes the roots. $\square $

2. $3a$ The root systems. We recall them for every simple $M$ . First fix an orthonormal
basis $(\epsilon_{1}, \epsilon_{2}, \cdots , \epsilon_{r})$ for a metric vector space. $D_{r}=R(\mathcal{L}0(2r))$ consists $of\pm\epsilon_{i}\pm\epsilon_{j}$ ,
$1\leqq i<j\leqq r,$ $r\geqq 3$ . The lower index $r$ in $D_{r}$ denotes the rank of the root system $D_{r}$

as is always. $A_{r-1}=R(\mathcal{L}SU(r))$ consists $of\pm(\epsilon_{i}-\epsilon_{j}),$ $1\leqq i<j\leqq r,$ $r\geqq 2$ ; that is,
the subsystem consisting of those which are orthogonal to $\varpi_{r}(D_{r})=(\epsilon_{1}+\epsilon_{2}+\cdots+\epsilon_{r})/2$

(by the method to obtain a meridian in $SO(2r)$ , [N-II] 2.15). $B_{r}=R(\mathcal{L}0(2r+1))$ is the
union $D_{r}\cup(\pm\epsilon_{j}|1\leqq j\leqq r)$ , which is the minimal mirror-symmetnic set that contains
$D_{r}\cup\{\varpi_{1}(D_{r})=\epsilon_{1}\}$ , denoted by $MSS(D_{r}\cup\{\varpi_{1}(D_{r})\})$ . $C_{r}=R(\mathcal{L}Sp(r))$ is dual to $B_{r}$ ;
i.e. it is $MSS(D_{r}\cup\{2\varpi_{1}(D_{r})\})$ . Formally, this gives the correct $B_{2}\cong C_{2}$ . $BC_{r}=B_{r}\cup C_{r}$ ;
i.e. $BC_{r}$ consists $of\pm\epsilon_{i}\pm\epsilon_{j},$ $\epsilon_{k}$ and $2\epsilon_{k},$ $1\leqq i<j\leqq r,$ $1\leqq k\leqq r,$ $r\geqq 1$ . $E_{8}=$

$MSS(D_{8}\cup\{\varpi_{8}(D_{8})\})$ . $E_{7}=MSS(A_{7}\cup\{\varpi_{4}(A_{7})\})$ . $E_{6}=MSS(D_{5}\cup\{\varpi_{5}(D_{5})+(\epsilon_{6}+$

$\epsilon_{7}-\epsilon_{8})/2\})$ . $F_{4}=MSS(B_{4}\cup\{\varpi_{4}(B_{4})\}$ . And $G_{2}=MSS(A_{2}\cup\{\varpi_{2}(A_{2})\})$ . The lower
indices in $D_{r},$ $\cdots$ , $G_{2}$ mean the rank of each root system.

2. $3b$ We owe the concept of the mirror-symmetric set to O. Ikawa and H. Tasaki. (Later

they found that C. T. C. Wall had used a similar concept.)
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2. $3c$ Our root system $R(M)$ happens to coincide with the restricted root system ([H])

essentially, which was proved in [OS] to be a root system. Since our category of symmetric
spaces contains that of compact semisimple Lie groups as a subcategory, Theorem 2.3 gives
another proof of the existence of the root system in the subcategory.

3. The root system with multiplicity.

In this section, we will determine the possible multiplicity of each root of the compact
simple space $M$ , beginning with more basic spaces. (Certain partial works were done in [N-
II], but we will start from scratches, observing $k(O).)$

3.0 PROPOSITION. The multiplicity $m(\alpha)\geqq m(\beta)$ if the length $||\alpha||\leqq||\beta||$ and $M$ is
simple ([N-II], 2.$4c$).

A proof will be given later (3. $2b$ after the Case $2^{o}$ ).

3. $0a$ As a matter of notation, in the symbols $F_{4}(a, b),$ $BC_{r}(a, b, c)$ , etc. the multiplici-
ties of shorter roots precede those of longer ones; that is, $a=m(\alpha),$ $b=m(\beta)$ and $c=m(\gamma)$

are the multiplicites of the roots with length in the order $||\alpha||<||\beta||<||\gamma||$ .
3.$0b$ REMARK. The following fact will be used below explicitly (in the proof of

Corollary 3. $6a$) or implicitly. If $M^{-}$ is a meridian in a simple space $M$ , then $R^{m}(M)$ con-
tains $R^{m}(M^{-})$ , the multiplicity map: $\alpha\mapsto m(\alpha)$ restnicts to $R(M^{-})$ and the Dynkin diagram
of $R(M^{-})$ is obtained either from that of $R(M)$ by removing $\alpha_{j}$ for $n^{j}=1$ or from the
extended Dynkin diagram of $R(M)$ by removing $\alpha_{j}$ for $n^{j}=2$ , where $n^{j}$ is the coefficient
which appears in $\alpha^{\sim}=\sum n^{j}\alpha_{j}$ for the highest root $\alpha^{\sim}$ . The converse is true if $M$ is the
bottom space $M^{\%}$ (cf. Theorem 2.15 in [N-II]).

Case 1o $R(M)=A_{1}$ . $R^{m}(M)=A_{1}(m)$ . Then $M$ is a space ofpositive constant
curvature such as the sphere $S^{m+1}$ . One has $m=a+m(\alpha)$ and $k=k(O)+k(\alpha)(2.2)$ ,

dim$a=1$ and dim $m(\alpha)=m$ . Thus $k(O)=m(\alpha)^{2}$ $:=[m(\alpha), m(\alpha)]\cong \mathcal{L}0(m)$ acts on $m(\alpha)$

as $\mathcal{L}0(m)$ . Also one sees $k\cong \mathcal{L}0(m+1)$ . This is true in a more general case as the next
lemma states (cf. Lemma 2.25 in [N-II]).

3.1 LEMMA. $ If\alpha$ is a root in $R(M)$ but $ 2\alpha$ is not, then $R\alpha+m(\alpha)$ is the tangent space
to a subspace as in case 1’, denoted by $S(\alpha)$ . In particular, $m(\alpha)^{2}\subset k(O)$ acts on $m(\alpha)$ as
$\mathcal{L}0(m(\alpha))$ (just as $k(O)$ itself does). And $m(\alpha)^{2}=k(\alpha)^{2}$ is an ideal in $k(O)$ . Moreover
$k\{\alpha\}^{2}$ $:=k(\alpha)+k(\alpha)^{2}$ is isomorphic with $\mathcal{L}0(m(\alpha)+1)$ and acts on $R\alpha+m(\alpha)$ as such.
Hence $S(\alpha)$ has a positive constant curvature.

3. $1a$ REMARK and a DEFINITION. If the length of $\alpha$ equals that of another root $\beta$ ,
then $S(\alpha)$ is congruent with $S(\beta)$ ; i.e. a member of $G$ will carry one onto the other. If $\alpha$

is the longest, then we call $S(\alpha)$ a Helgason sphere, abbreviated to an H-sphere, which is a
maximal connected subspace with the greatest sectional curvature in M. $S(\alpha)$ is isomorphic
with a sphere (unless $M$ is a real projective space), as Helgason discovered [H]. If the simple
$M$ is l-connected, a Helgason sphere $S(\alpha)$ has the smallest volume among the submanifolds
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in the non-zero homology class which $S(\alpha)$ represents (whether or not the class is a torsion)
[L]. One also knows that $M$ is $(m(\alpha)-1)$ -connected then.

Case 2’ $R(M)=BC_{1}$ . If $R^{m}(M)=BC_{1}(a, b)$ for some space $M$, then one has
$(a, b)=(pq, p-1)$ , where $p=2,4$ or 8 and, in case $p=8,$ $q=1$ (otherwise $q$ can be
any positive integer). Geometrically, $M$ is a complex (or quatemionic) projective space or the
Cayley projective plane.

PROOF. By $r(M)=1(2.1a)$ , the H-spheres are determined by any one of its tangent
vectors $\neq 0$ , and the isotropy subgroup $K$ at $0$ is transitive on the geodesics through $0$ . Thus
any one, $c$ , of them meets the unique polar $M^{+}$ of $0$ at a unique point $x$ . Hence the map $ c\mapsto$

$x\mapsto M^{-}(x)\equiv the$ H-sphere $S(2\alpha)$ is bijective and one has a fibration $S^{p-1}\rightarrow S^{n-1}\rightarrow M^{+}$ ,
$n$ $:=\dim M$ and $p:=the$ dimension of $m_{-}$ $:=a+m(2\alpha);S(2\alpha)\cong S^{p}$ . One can rotate a unit
tangent vector in $T_{o}(S(2\alpha))$ around $0$ into $T_{o}(m_{+}),$ $m+;=m(\alpha)$ , to see the whole $S(2\alpha)$ is
camied onto an H-sphere $S$ in $Exp(m_{+})$ which is congruent with the polar $M^{+}$ by a parallel
translation (or displacement) along the geodesic $Exp(a)$ .

Assume $S=Exp(m_{+})(\equiv M^{+})$ for the moment. To visualize a projective plane, call
an H-sphere a line. Then two distinct points lie on a single line. Dually, two distinct lines
meet at a single point, as one easily sees by using the double fibration $S\leftarrow M\rightarrow M^{+}$ (cf.
[NT-III]). Hence $M$ is a projective plane. Altematively, one verifies the conclusion by using
Adams’ theorem: the (Hopb fibration $S^{p-1}\rightarrow S^{2p-1}\rightarrow S^{p}$ exists only for $p=1,2,4$ or
8. For another proof, one can observe that $S^{p-1}$ is parallelizable to apply another theorem of
Adams. One could also use the classification of the compact transitive Lie groups acting on
the spheres.

Back to the general case, one observes $R(M^{+})=BC_{1}$ and moreover $R^{m}(M^{+})=$

$BC_{1}(p(q-1), p-1)$ by $M^{+}\supset S$ and induction on $q$ . One now knows $q=1$ for $p=8$ ,

since the Cayley algebra is not associative and hence the Desargues theorem does not obtain,
for example. $\square $

SUMMARY. If $R(M)=BC_{1},$ $M$ is a projective space whose lines through $0$ are the
meridians corresponding to the polar $M^{+}$ of $0$ . And the polar $M^{+}$ is the dual hyperplane to
$o$ . The lines are exactly the H-spheres. Finally, $M$ is globally determined by $R^{m}(M)$ in this
case 2’; $M$ is $G_{1}(C^{2+q}),$ $G_{1}(H^{2+q})$ or $FII$ .

3.2 As to $k(O)$ and its action of on $m(\alpha)$ in $2^{o}$ , one observes $m(\alpha)$ is a module with inner
product over the complex, quatemion or Cayley algebra according as $p=2,4$ or 8. Since
$r(M)=1$ , the principal orbits $K/K(0),$ $\mathcal{L}K(0)=k(0)$ , are spheres $S^{n-1},$ $n$ $:=\dim M$ , which
admit generalized Hopf-fibrations $S^{p-1}\rightarrow S^{n-1}\rightarrow M^{+}$ . Thus $k(O)$ is isomorphic with
$\mathcal{L}U(q),$ $\mathcal{L}(Sp(1)\times Sp(q))$ or $\mathcal{L}0(7)$ respectively and $k(O)$ acts on $m(\alpha)$ as such; $\mathcal{L}0(7)$ acts
on it through the spin representation. We will improve Corollary 2.$26a$ in [N-II] and correct
an error in it. Easy computations show $m(\alpha)^{2}+k(\alpha)^{2}=k(0)+k(2\alpha)$ and $m(\alpha)^{2}\cap k(\alpha)^{2}=$

$\mathcal{L}SU(q)$ or $\mathcal{L}Sp(q)$ for $p=2$ or 4. For $p=8$ , one sees $ m(\alpha)^{2}=k(\alpha)^{2}=k(0)+k(2\alpha)\cong$

$\mathcal{L}0(8)$ , since there is no intermediate Lie algebra in the sequence $ k(O)\cong \mathcal{L}0(7)\subset \mathcal{L}0(8)\subset$
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$\mathcal{L}0(9)\cong k$ . Note that $\mathcal{L}0(8)$ acts on $m-,$ $m(\alpha)$ and $k(\alpha)$ through the three inequivalent
representations $\varpi_{1},$ $\varpi_{3}$ and $\varpi_{4}$ , since otherwise it is impossible to have the bracket product
of any two of $m-,$ $m(\alpha)$ and $k(\alpha)$ equal to the third (cf. 3.3). Therefore $q$ must equal 1 if $p=8$
(for a second prooD The monomorphisms $G_{1}(C^{2+q})\rightarrow G_{1}(H^{2+q})$ and $G_{1}(H^{3})\rightarrow FII$ are
$k(O)$ -equivariant (for the corresponding $k(O)$ ); these maps are obtained by finding that each
space is the fixed point set of an involution (an analog of the complex conjugation) of the
target space (as well as the monomorphisms to be mentioned below).

3. $2a$ LEMMA. Assume three roots $\alpha,$ $\beta$ and $\gamma$ satisfy these conditions: (1) $\alpha+\gamma=\beta$ ,
(2) $\alpha+2\gamma$ is not a root, (3) $\gamma\wedge\beta\neq 0$, and (4) the innerproduct $(\gamma, \beta)\neq 0$ . (See examples
belowfor these conditions.) Then $[Z, X]\neq 0$ for every nonzero $Z\in k(\gamma)$ and every nonzero
$X\in m(\beta)$ . That is, the map ad $Z$ : $m(\beta)\rightarrow m(\alpha)$ is injective.

PROOF. Assume some pair $(Z, X)$ satisfies the equality $[Z, X]=0$ . Choose $H$ in
$a$ such that $\gamma(H)=0$ but $\beta(H)\neq 0$ . Then one has $0=[H, [Z, X]]=[Z, [H, X]]=$
$[Z, \beta(H)Y],$ $Y\in k(\beta)$ . Thus $0=[Z, Y]$ ; hence $0=[Z, [X, Y]]=[Z$ , nonzero scalar
multiple of $\beta$ ] $=nonzero$ member of $m(\gamma)$ , a contradiction. $\square $

EXAMPLES. The assumption is $s$atisfied if the pair $(\alpha, \gamma)$ is any one of $(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\epsilon_{3})$ ,
$(\epsilon_{1}, \epsilon_{2})$ and $(\epsilon_{1}-\epsilon_{2}, -\epsilon_{2}+\epsilon_{3})$ in $A_{2},$ $B_{2}$ and $G_{2}$ respectively.

3. $2b$ PROOF OF 3.0. We may assume $||\alpha||<\Vert\beta\Vert$ , since the Weyl group acts transi-
tively on the roots of equal length. 3.0 is obvious in the case of $BC_{1}$ from the result in the
Case $2^{o};pq>p-1$ . We may asume $\alpha+\gamma=\beta$ for some root $\gamma$ by using the Weyl group,
while $\alpha+2\gamma$ is not a root. If $R(M)$ is not $BC_{r}$ , these roots satisfy the assumption of 3. $2a$,
from which 3.0 follows immediately. In case $R(M)$ is $BC_{r},$ $\beta$ can happen to equal $ 2\alpha$ ; other-
wise the above argument works. If $\beta=2\alpha$ and $r>1$ , then one can find a fourth root $\delta$ such
that one can apply the above argument for $(\alpha, \gamma)$ to the cases of $(\alpha, \delta)$ and $(\alpha+\delta, \alpha-\delta)$ to
reach the conclusion. $\square $

For the spaces of rank 2, the multiplicities of the roots are immediately determined with
a theorem of Hsiang-Lawson [HL] to verify the next proposition; see $[\Pi]$ or [Y] for its more
detailed proofs. A topological proof is found in [As].

3. $2c$ PROPOSITION. Let $M$ be a simple space of rank 2. Then $R^{m}(M)$ is one of the
following: (1) $A_{2}(m)$ with $m=1,2,4$ or 8; (2) $B_{2}(a, b)$ with $(a, b)=(m, 1),$ $m\geqq 1,$ $(2,2)$

or $(4, 3)$ (cf. $Case4^{o}$ )$;(3)BC_{2}(a, b, c)$ with $(a, b, c)=(2m, 2,1),$ $m\geqq 1,$ $(4m, 4,3),$ $m\geqq 1$ ,
(4, 4, 1) or (8, 6, 1); and (4) $G_{2}(a, b)$ with $(a, b)=(1,1)$ or $(2, 2)$ .

PROOF. We make the isotropy subgroup $K$ act on the tangent space $T_{o}M,$ $K(0)=\{0\}$

and $M=G/K$ ; the so-called s-representation is considered. Then the principal orbits
have codimension$=2$ in $T_{o}M$ by the formulas 2.2. Conversely, under the assumption on
codimension$=2$ of the principal orbits of a compact Lie $group\subset SO(n)$ acting on $R^{n}$ , Theo-
rem 5 in [HL] asserts that $M$ is exactly one of the known symmetric spaces (described above).
And a geometric proof is finished. $\square $
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Case 3’ $R(M)=A_{2}$ . $R^{m}(M)=A_{2}(m)$ . Then $m$ is 1, 2, 4 or 8.

ANOTHER PROOF. Assume $m>1$ . Decompose $m$ into the direct sum $m+\oplus m_{-}$ of
$m+:=m(\alpha)+m(\gamma)$ and $m-;=a+m(\beta),$ $\alpha+\gamma=\beta$ . And $m+is$ the tangent space to a
subspace $M+=Expm_{+}$ at $0;[m(\alpha), m(\gamma)]=k(\beta)$ . $M_{+}$ has rank$=1$ by 3.1 and 3. $2a$ . Since
$m>1$ , one sees $R(M_{+})=BC_{1}$ . $R^{m}(M_{+})=BC_{1}(m, m-1)$ with $m=2,4$ or 8, in view of
2’. $\square $

3.3 The action of $k(O)$ in 3’; $R^{m}(M)=A_{2}(m)$ for $m=1,2,4$ and 8. One knows
$k(O)=\{0\},$ $\mathcal{L}U(1)^{2},$ $\mathcal{L}Sp(1)^{3}$ , and $\mathcal{L}0(8)$ respectively. If $m=2$ , it acts on each root space
as the Lie algebras of $SO(2)$ and sort of Spin(2). In case $m=4,$ $k(O)$ acts on $m(\epsilon_{j}-\epsilon_{k})$ as
$S_{j}+S_{k}$ , where $S_{j}\cong S_{k}\cong \mathcal{L}Sp(1);k(O)=\sum S_{j}$ . Thus the natural map: $ k(\alpha)\otimes k(\gamma)\rightarrow$

$[k(\alpha), k(\gamma)]=k(\beta)$ is just $H\otimes_{H}H\cong H\rightarrow H$ . (These facts $arevalidforA_{r}(4),$ $r\geqq 1$ ,
that is, for every $AII(n),$ $n\geqq 2.$ ) In case $m=8,$ $k(O)=\mathcal{L}0(8)$ acts on $k(\alpha),$ $k(\gamma)$ and
$k(\beta)$ through the three representations with the highest weights, say, $\varpi_{3},$ $\varpi_{4}$ and $\varpi_{1}$ of $D_{4}$

respectively; then $k(\alpha)\otimes k(\gamma)$ is the direct sum of the $\mathcal{L}0(8)$ -module for $\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=\varpi_{3}+\varpi_{4}$

and the one for $\varpi_{1}$ . Thus it is crucial that $\mathcal{L}0(8)$ admits an outer automorphism of order three,
suggesting that there could not exist any $M$ with $R^{m}(M)=A_{r}(8)$ for $r>2$ (cf. 5’).

3. $3a$ The monomorphisms $SU(3)\subset SU(3)\times SU(3)\subset SU(6)\subset E_{6}$ restrict to the
inclusions $AI(3)\subset SU(3)\subset AII$ (3) $\subset EIV$ . This sequence cannot be continued without
changing the root system as we have just proved. Restricting them to their polars one obtains
the sequence of projective planes (2’) plus the polar $G_{1}(R^{3})$ in $AI(3)$ .

3. $3b$ COROLLARY. One sees R $(M)=F_{4}(a, 1)onlyforais1,2,4or8$ .
These numbers are possible as shown by the inclusions $FI\subset EII$ $\subset EVI$ $\subset EIX$ of

H-Kaehlerian spaces.

Case 4’ $R(M)=B_{2}=C_{2}$ . $R^{m}(M)=B_{2}(a, b)$ meaning $R(M)$ consists of $\epsilon_{1},$ $\epsilon_{2}$ and
$\epsilon_{1}\pm\epsilon_{2}$ with $m(\epsilon_{j})=a$ and $m(\epsilon_{1}\pm\epsilon_{2})=b$ . Then $(a, b)=(m, 1),$ $m\geqq 1,$ $(2,2)$ or $(4, 3)$ ;
let us notice $B_{2}(4,3)=R^{m}(G_{2}(H^{4}))$ .

PART OF ANOTHER PROOF. One has

3.4 $[k(\epsilon_{1}\pm\epsilon_{2}), m(\epsilon_{j})]=m(\epsilon_{k}),$ $j+k=3$ , by 3. $2a$, and

3.$4a$ $[k(\epsilon_{1}), m(\epsilon_{2})]\subset m(\epsilon_{1}+\epsilon_{2})+m(\epsilon_{1}-\epsilon_{2})$ .
$k(O)$ acts on $k(\epsilon_{1}\pm\epsilon_{2})$ as $\mathcal{L}0(b)$ and on $m(\epsilon_{j})$ as $\mathcal{L}0(a)$ by Lemma (3.1).

Assume $b>1$ . Observe the action of $\mathcal{L}(0(b)\times 0(a))$ on $R^{b}\otimes R^{a}$ .
If $a>b$ , then the action is irreducible generally (for example, provided both $0(b)$ and

$0(a)$ are simple), contrary to 3.4. $(a, b)=(4,3)$ is thus the only possibility.
Now suppose $a=b$ . First consider the case in which a single $\mathcal{L}0(a)\subset k(0)$ acts on both

$k(\epsilon_{1}+\epsilon_{2})$ and $m(\epsilon_{j})$ as such. The natural module $R^{a}\otimes R^{a}$ is the direct sum $R^{a}\vee R^{a}\oplus R^{a}\wedge R^{a}$

of the symmetric and the altemating products, and $R^{a}\vee R^{a}$ is the direct sum of $R$ and its
orthogonal complement $R^{\perp}$ which is simple. $R^{a}\wedge R^{a}$ is simple unless $a=1,2$ or 4. Thus
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3.4 cannot be valid unless $a\leqq 3$ . In case $a=3$ , we do not have a good proof and leave it to
Proposition 3. $2c$ . $\square $

Case $5^{o}$ $R(M)=A_{3}$ . $R^{m}(M)=A_{3}(m)$ . Then $m=1,2$ or 4.

PROOF. $\dot{M}$ contains a polar $M^{+}$ with $R^{m}(M^{+})=C_{2}(m, m-1)$ if $m>1$ . Thus one
has the conclusion in view of $3^{o}$ and $4^{o}$ . Altematively, one can use 3.3 again to exclude the
case $m=8$ . $\square $

Case 6’ $R(M)=B_{3}$ . $R^{m}(M)=B_{3}(a, b)$ . Then $(a, b)=(a, 1),$ $a\geqq 1$ , or $(2, 2)$ .

PROOF. By 4’, $(a, b)=(a, 1),$ $a\geqq 1,$ $(2,2)$ or $(4, 3)$ . In case $(a, b)$ is $(4, 3)$ , $M$

contains a subspace with $R^{m}(N)=A_{2}(3)$ , contrary to $5^{o}$ . $\square $

3.6 COROLLARY. (i) If $R^{m}(M)=B_{r}(a, b),$ $r\geqq 3$ , then $(a, b)=(a, 1),$ $a\geqq 1$ , or
$(2, 2)$ . (ii) If $R^{m}(M)=F_{4}(a, b)$ , then $(a, b)=(2,2)$ or $(a, 1)$ , for $a=1,2,4$ or 8 (see 3. $3b$
and $3^{o}$ ).

3. $6a$ COROLLARY. (i) If $R^{m}(M)=C_{r}(b, c),$ $r\geqq 3$ , then either $R^{m}(M)=C_{3}(8,1)$

or $(b, c)$ is one of $(1, 1)$ , $(2, 2)$ , $(2, 1)$ , $(4, 1)$ and $(4, 3)$ . (ii) If $R^{m}(M)=BC_{r}(a, b, c),$ $r\geqq 3$ ,

then $(a, b, c)$ is one of $(2m, 2,1),$ $(4,4,1)$ and $(4m, 4,3),$ $m\geqq 1$ .
PROOF. The root system $BC_{r}(a, b, c)$ contains $C_{r}(b, c)$ (corresponding to a meridian),

which contains $A_{r-1}(b)$ (corresponding to the simple factor of a meridian). And $C_{r}(b, c)$

contains $C_{r-1}(b, c)$ similarly. Thus (i) follows from the facts in the cases 3’, 4’ and 5’. And
so does (ii) from (i) and Proposition 3. $2c$ . $\square $

3.$6b$ REMARK. Although $C_{r}$ contains $D_{r}$ , the multiplicity map: $\alpha\mapsto m(\alpha)$ does nol
restrict; for example, $C_{r}(2p, 1)$ contains $D_{r}(p)$ but not $D_{r}(2p)$ for $p=1,2$ or 4 (the case
$p=4$ occurs only if $r=3$).

Case $7^{o}$ $R(M)=D_{4}$ . $R^{m}(M)=D_{4}(m)$ . Then $m=1$ or 2.

PROOF. $D_{4}$ consists of the roots $\{\epsilon_{j}\pm\epsilon_{k})|1\leqq j<k\leqq 4\}$ . It contains three rool
$systems\cong A_{3}$ with bases $(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\epsilon_{3}, \epsilon_{3}-\epsilon_{4}),$ $(\epsilon_{1}-\epsilon_{2}, \epsilon_{2}-\epsilon_{3}, \epsilon_{3}+\epsilon_{4})$ , and $(\epsilon_{3}-$

$\epsilon_{4},$ $\epsilon_{2}-\epsilon_{3},$ $\epsilon 3+\epsilon_{4}$). Hence we have only to exclude the case $m=4$, in view of $5^{o}$ . Suppose
$m=4$ . Then $k(O)$ acts on each root space $m(\alpha)$ as $\mathcal{L}0(4)\cong m(\alpha)^{2}$ by 3.1. By 3.3 applied tc
the above root systems, one sees that $S_{3}$ in $m(\epsilon_{3}-\epsilon_{4})^{2}$ must act nontrivially on $m(\epsilon 3+\epsilon 4)$

contrary to the fact that these roots are strongly orthogonal to each other. $\square $

3.7 COROLLARY. (i) If $R^{m}(M)=D_{r}(m),$ $r\geqq 4$, then $m=1$ or 2. (ii) If $R^{m}(M)=$

$E_{r}(m),$ $6\leqq r\leqq 8$ , then $m=1$ or 2.

Case $8^{o}$ $R(M)=G_{2}$ . $R^{m}(M)=G_{2}(a, b)$ . Then $(a, b)=(1,1)$ or $(2, 2)$ .
ANOTHER PROOF. A principal orbit of $K$ acting on $T_{o}M$ is an isoparametric hyper$\cdot$

surface of the sphere which contains it (see [M]). Since $R(M)$ has 6 roots, one can appl}
Abresch’s theorem [A] to conclude that $a=b$ and equals 1 or 2; the theorem is proven b)
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topological methods in [A]. A few years earlier, a topological proof appeared in [As], how-
ever. $\square $

3.8 REMARK. A simple algebraic proof was given by O. Ikawa before us.
We have determined the multiplicities of the roots of all the simple spaces.

4. The Kahlerian space.

First we will show a new characterization of the K\"ahlerian space in terms of $R^{m}$ , the root
system with multiplicity, and l-connectedness (Theorem 4.1). Secondly we will do it in terms
of a geometric position, i.e. as a centriole in a group (Theorem 4.5). This is analogous to the
characterization of a simple $H-(quatemionic)$ K\"ahlerian space as the nearest polar of $1_{G}$ of a
simple l-connected group $G$ .

Here is a well known fact which characterizes the K\"ahlerian space (Theorem 6.1, p. 381
in [H], e.g.):

4.0 FACT. A simple space $G/K$ has a Kahlerian structure if and only if $K$ has a one-
dimensional normal subgroup (and $G$ is simple). We do not need this in proving our theorems
but we rather give another proof thereof.

4.1 THEOREM. A simple space $M$ is Kahlerian $lf$and only if(i) the root system $R(M)$

is $BC_{r}$ or $C_{r},$ $r\geqq 1$ $(C_{1} :=A_{1})$ ; (ii) the multiplicity $m(\alpha^{\sim})$ of the highest root equals one;
and (iii) $M$ is l-connected.

PROOF. We first prove the if-part. The idea is to use what we call the Helgason product
$P$ $:=\prod_{j}S(2\epsilon_{j})=S(2\epsilon_{1})\times\cdots\times S(2\epsilon_{r})\cong S^{2}\times\cdots\times S^{2}=a$ product of $r$ Riemann
spheres (in this case) to define an invariant complex structure on $M$ in such a way that the
monomorphism of $P$ into $M$ is holomorphic. By (i) and (ii), $P$ is locally embedded into $M$ .
$P$ contains a maximal torus $A\ni 0$ of $M$ .

If $R(M)=C_{r}$ , then the geodesic $c$ from $0$ in the direction of $\sum_{j}\epsilon_{j}$ is the shortest one
to the pole $0^{\prime}$ of $0$ in $M$ which lies on $P$ as the shortest one to the remotest pole of $0$ in $A$ .
Thus the local monomorphism of $P$ into $M=G/K$ extends to a global one.

To define an appropriate complex structure on $P$ , we use the action of the Weyl group $W$

of $(M, A)$ ; we consider the normalizer $W^{\prime}$ of $A$ in $K,$ $K(0)=0$ . $W^{\prime}$ acts on $A$ as $W$ which
is, by (i), known to be generated by the permutations of $(\epsilon_{1}, \cdots \epsilon_{j}, \cdots , \epsilon_{r})$ and the trans-
formations which carry this into $(\pm\epsilon_{1}, \cdots \pm\epsilon_{j}, \cdots , \pm\epsilon_{r})$ . Therefore $P$ has a unique (up to
$\pm 1)$ W’-invariant complex structure $J_{p}$ by (ii) and by the fact that an H-sphere is determined
by any one of its tangent vector $\neq 0;J_{p}$ carnies $a$ onto its c-orthogonal complement in $T_{o}P$ .

If a member $b\in K$ preserves $P$ , then the composite $a\circ b$ preserves $A$ as well for some
$a\in K_{p}$ , the isotropy subgroup for $P=G_{p}/K_{p}$ at $0$ , since $K_{p}$ acts transitively on the unit
sphere in $T_{o}P$ and $K_{p}$ is naturally a subgroup of $K$ . Since $a\circ b\in W^{\prime}$ is holomorphic on
$P$ , so is $b$ . Thus we have defined a K-invariant complex structure $J$ on $T_{o}M$ . In terms of
the Lie algebra, $J$ is a member of $\sum_{j}k(2\epsilon_{j})$ which defines a complex structure on $T_{o}P=$
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$a+\sum_{j}m(2\epsilon_{j})$ through the s-representation and which has tumed out to be K-invariant. Note
that $J$ may be thought of as a member of the group $K$ also.

The complex structure $J$ extends to a G-invariant almost complex structure $J_{M}$ on $M$ ,

which defines a Kahlerian structure by the known fact, or altematively, $J_{M}$ is invariant under
the point symmetries ($s_{o}=J^{2}$ on $T_{o}P$ , e.g.) and hence $\nabla J_{M}=0$ .

Finally we take care of the case of $R(M)=BC_{r}$ . Then $M$ contains a meridian $M^{-}$ with
$R(M^{-})=C_{r}$ . $P$ in $M^{-}$ is a Helgason product in $M$ which shares the Weyl group with this
$M^{-}$ Hence the constructed invariant complex structure extends to one on M. (Let us add
that, in case $R(M)=BC_{r},$ $J\in k$ is not contained in $\sum_{j}k(2\epsilon_{j})$ but in $k(0)+\sum_{j}k(2\epsilon_{j}).)$

In passing, note that $M$ has exactly $r$ polars $(\neq 0)$ of $0,$ $r=r(M)$ .
Now we will prove the converse by inducting on dim $M$ . We assume that $M$ is Kahlerian.

If $M$ has dim $M=2$, then $M$ is the Riemann sphere, which satisfies (i) through (iii). Assume
dim $M>2$ . The meridian $M^{-}$ is of course K\"ahlerian. Thus $M^{-}$ satisfies (i), (ii) and (iii) by
the induction assumption. Hence $M$ is l-connected by 1. $8b$. If $M$ has the rank $r(M)=1$ , then
$M^{-}$ is $S^{2}$ and $M$ is a complex projective space $s$atisfying (i) and (ii) (Case $2^{o}$ ). If $r(M)>1$ ,

$R(M)$ contains $2\epsilon_{j}$ and $\epsilon_{j}\pm\epsilon_{k}$ ; that is, $R(M)$ is one of $BC_{r},$ $C_{r}$ and $F_{4}$ . If $R(M)$ were $F_{4}$ ,
$M$ would have 4 polars $(\neq 0)$ as the reader has noted in the above, while $M$ does have 2 of
them. (Altematively, if $R(M)=F_{4}$ , then $M$ contains a meridian $M^{-}$ with $R(M^{-})=B_{4}$ ,

contrary to the induction assumption. For a third proof, we note that every meridian contains
a Helgason product $\prod_{j}S(2\epsilon_{j})$ of rank $=r(M)$ ; the point is that the roots $\epsilon_{1},$ $\cdots$ , $\epsilon_{j},$

$\cdots$ , $\epsilon_{r}$

are strongly orthogonal and hence $F_{4}$ is excluded.) Therefore $M$ satisfies (i) and (ii). $\square $

4.2 COROLLARY. Asimple K\"ahlerian spaceM contains CI (r)asasubspace\mbox{\boldmath $\iota$}fr (M)

is $r$ There is $a$ one-to-one correspondence between the polars of $0$ in CI $(r)\ni 0$ and those in
$M$, which is defined by the inclusion map. Thus every simple connected Kahlerian space $Mo$]

rank $r$ has exactly $r$ polars $\neq 0$ of $0$ in $M$.
4.3 HISTORICAL NOTE. Takeuchi [T68] used the Helgason product to determine the

L-orbits in a K\"ahlerit space $M$ , where $L$ is the group for the noncompact form $L/K$ of $M$ .
(Since $L/K$ is an open subspace of $M,$ $L$ acts on $M.$ )

4.4 REMARK. A maximal torus $A$ in a Kahlerian simple symmetric space $M$ is not a
Kahlerian subspace, but its complexification is exactly a Helgason product $P=\prod_{j}S(2\epsilon_{j})$ .
$P$ is thus the minimal Kahlerian subspace that contains $A$ . Thus $P$ could play a fundamental
role in the category of the semisimple K\"ahlerian symmetric spaces (whose morphisms are
holomorphic besides) as $A$ does in the category of the compact symmetric spaces. For in-
stance, if $M$ has rank $r$ , then $M$ has exactly $r$ polars $\neq\{0\}$ of $0$ . If $M$ is simple furthermore,
$M$ contains CI $(r)$ . In this subcategory a morphism of $M$ into another one, $N,$ $r(N)=r(M)$ .
thus gives rise to a bijection of the polars of $0$ in $M$ with those of the image of $0$ in $N$ which
assigns each of them the polar it contains. And so forth.

4.5 THEOREM. (i) Every simple Kahlerian space $M$ is a subspace ofa group $L,$ $con$ .

tained as a centriole for a pair $(1_{L}, p)$ which meets a minimum geodesic from $1_{L}$ to the pole
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$p$ in L. (ii) Every centriole in $L$ is, conversely, a simple Kahlerian space $\iota\beta it$ has this minimum
property.

PROOF. (i) First assume $R(M)=C_{r}$ . The complex structure $J_{o}$ at $0$ is regarded as a
member of $\sum_{j}k(2\epsilon_{j})$ . $J_{o}$ and the member $\sum_{j}\epsilon_{j}$ of $a$ $ge$nerate a 3-dimensional subalgebra
$\mathcal{L}S$ of $g,$ $S\cong SU(2)$ in $G=G^{\sim},$ $0=1_{G}$ . $G^{\sim}$ contains $M$ (by the lifted Cartan immersion).
The tangent vector $\sum_{j}\epsilon_{j}$ at $1_{G}$ is tangent to a minimal geodesic $c$ to the pole $p$ of $1_{G}$ in $S$ ,
hence in $M$ too. $p$ is also the pole in $M$ . Since the group $C_{J}$ generated by $J_{o}$ is the center of
the isotropy subgroup $K\subset G$ and $p\in S$ lies on $C_{J}$ also, $p$ is a pole of $1_{G}$ in $G^{\sim}$ . Therefore
the midpoint $m$ of the segment $[1_{G}, p]$ on $C_{J}$ carries $M$ into the desired position, say, by the
left translation; the position is the orbit $ad(G^{\sim})(m)$ through $m$ . We are done if we just write $L$

for $c^{\sim}$ . Now we assume $R(M)=BC_{r}$ , the other case in view of 4.1. $M$ is then 1o $G_{p}(C^{n})$ ,
$2^{o}$ DIII $(2r+1)$ or 3’ EIII. In the case 1’, $M$ is a centriole in $L$ $:=U(n)$ which is the
$ad(L)$ -orbit through the midpoint of the minimal geodesic from $1_{L}$ to the pole with the initial
tangent $J_{o}\in \mathcal{L}U(n)$ whose eigenvalues $are\pm i,$ $i^{2}=-1$ , the multiplicity $of-i$ being $p$ .
In 2’, $M$ is a centriole in $L$ $:=SO(4r+2)$ which is the $ad(L)$ -orbit through the midpoint
of a minimal geodesic from $1_{L}$ to the pole. In 3’, $M$ is a subspace of the Kahlerian space
EVII, $R(EVII)=C_{3}$ . EVII is a centriole in $E_{7}$ as shown above. Its c-orthogonal space
is $U(1)\cdot E_{6}$ , which meets EVII at a single point, its pole in EVII and two copies of the
centriole EIII in $U(1)\cdot E_{6}$ . We are done for $3^{o}$ , omitting certain details; although EIII is
not the nearest polar in $E_{6}$ , it is in $U(1)\cdot E_{6}$ . (ii) The converse must be obvious; the basic
reason is that a minimal geodesic arc $c$ to the pole (which extends to a subgroup $C_{J}$ of $L$ ) lies
in the center of the isotropy subgroup $K\subset ad(L)$ at the midpoint $m$ of $c$ , making Kahlerian
the orbit $ad(L)(m)$ through $m$ . $\square $
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