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Abstract. Regularity of infinite dimensional Lie groups was defined by Hideki Omori et al. and John Milnor.
Up to now the only known sufficient conditions for regularity are analytic in nature and they are included in the
definition of strong ILB-Lie groups, since there are no existence theorems for ordinary differential equations on
non-normable locally convex spaces. We prove that regularity can be characterized by the existence of a family
of so called Lipschitz-metrics in all interesting cases of infinite dimensional Lie groups. On Lipschitz-metnizable
groups all product integrals converge to the solutions of the respective equations if some weak conditions satisfied
by all known Lie groups are given. Lipschitz-metrizable groups provide a framework to solve differential equations
on infinite dimensional Lie groups. Furthermore Lipschitz-metrics are the non-commutative generalization of the
concept of seminorms on a Fr\’echet-space viewed as abelian Lie group.

1. Introduction.

Convenient Lie groups as defined in [KM97] provide a useful basis for infinite-dimen-
sional geometry, but there is still a lack of methods how to handle analytic questions. Con-
venient Lie groups are smooth manifolds modeled on convenient vector spaces with smooth
group structures. The excellent approach of [KYMO81] and [Omo97] to infinite dimensional
Lie groups includes all necessary analytic a-priori-properties in the definition to solve some
differential equations on the Lie groups, however, the topological and metric space properties
of the object itself are not considered directly. We try to define a category of Lie groups,
where the existence of so called product integrals (see [KYMO81] and [Omo97]) is equiva-
lent to some conditions on the given Lipschitz-metrics. This category shall contain all strong
ILB-Lie groups (several subgroups of diffeomorphism groups on compact finite dimensional
manifolds, see [Omo97] for example, the strong ILH-Lie group of invertible Fourier-Integral-
Operators, see [ARS86]).

In the introduction we shall explain the convenient setting, the framework of a general
analytic Lie theory (see [KM97] for all details). In the second section we introduce Lipschitz-
metrics, state their fundamental properties and show, that they exist on all known Fr\’echet-

Lie-groups (which are up to now strong ILB-groups). In the third section the conditions
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equivalent to the existence of a smooth exponential map or a smooth right evolution operator
are developed. In the fourth section some generalizations of the method are discussed.

Convenient vector spaces are Mackey-complete locally convex vector spaces. They ap-
pear as those locally convex spaces where weakly smooth curves are the smooth curves (see
[KM97, Chapter 1]). The final topology with respect to the smooth curves is called the smooth
topology or $c^{\infty}$ -topology. Remark that the smooth topology does not commute with product,
i.e. the smooth topology on the product is finer than the product of the smooth topologies.

Smooth maps on $c^{\infty}$ -open sets are those which map smooth curves to smooth curves.
The important detection principle in the setting of convenient vector spaces is the following:

$c$ : $R\rightarrow U$ is smooth if and only if $\forall f\in C^{\infty}(U, R)$ : $foc$ is smooth
$f$ : $U\rightarrow F$ is smooth if and only if $\forall c\in C^{\infty}(R, U)$ : $foc$ is smooth

Multilinear mappings on convenient vector spaces are smooth if and only if they are bounded,
i.e. bounded sets are mapped to bounded sets. A convenient algebra is assumed to have
bounded algebra structures and in this context to be unital and associative. We denote by
$L(E)$ the main example of a convenient algebra, the bounded linear endomorphisms of a
convenient vector space $E$ with bounded sets those, which are bounded on bounded subsets
of $E$ . We have the following initial topology on spaces of smooth mappings:

$C^{\infty}(U, F)\rightarrow C^{\infty}(R, F)c^{*}$ for all $c\in C^{\infty}(R, U)$

where $C^{\infty}(R, F)$ camies the topology of uniform convergence in all derivatives on compact
subsets of the real numbers. The exponential law holds, i.e.

$i$ : $C^{\infty}(U, C^{\infty}(V, G))\cong C^{\infty}(U\times V, G)$

for $U,$ $Vc^{\infty}$ -open and $G$ a convenient vector space. Detailed information on convenient
calculus can be found in [KM97] and [FK88]. We shall need the following existence lemma
on smooth curves (see [KM97, 12.2]):

LEMMA 1.1 (special curve lemma). Let $E$ be a convenient vector space and $\{c_{n}\}_{n\geq 1}$

a sequence in $E$ converging fast to $0$ , then there is a smooth curve $c:R\rightarrow E$ with

$c(\frac{1}{n})=c_{n}$

for $ n\in N+\cdot$

All manifolds and Lie groups treated in the article will be convenient mamfolds and Lie
groups, i.e. they are modeled on convenient vector spaces and supposed to be smoothly reg-
ular with respect to the smooth topology on the manifold (in general one supposes smoothly
Hausdorff, i.e. the smooth functions on the manifold separate points). One can develop this
infinite dimensional setting surprisingly far (see [KM97] for details).

The last concept of the basics of convenient calculus on Lie groups is the right loga-
rithmic derivative: $\mu$ denotes the smooth product on the Lie group, $g$ the Lie algebra. Let
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$f$ : $M\rightarrow G$ be a smooth map, where $M$ is a convenient manifold. We define the right
logarithmic derivative $\delta^{r}f$ : $TM\rightarrow g$ by the formula

$\delta^{r}f(\xi_{X})$ $:=T_{f(x)}(\mu^{f(x)})^{-1}(T_{X}f(\xi_{X}))$

for $x\in M$ and $\xi_{X}\in T_{X}M$ . By definition we see that $\delta^{r}f\in\Omega^{1}(M, g)$ is a g-valued 1-
form on $M$ . A Lie group $G$ is called regular if there is a smooth (evolution) map $Evol^{r}$ :
$C^{\infty}(R, g)\rightarrow C^{\infty}(R, G)$ , such that Evol $(X)(0)=e$ and $\delta^{r}$ (Evol $(X)$ )$(t)=X(t)$ for all
$t\in R$, furthermore Evol $(\delta^{r}c)=c$ (see [KM97], [Mi183], [Omo97]). The right evolution
with respect to a constant curve is a smooth one-parameter subgroup. If in any direction there
exists a smooth one-parameter subgroup, then we can define the classical exponential map
$exp$ . Let $G$ be a simply connected Lie group and $H$ a regular Lie group with $f$ : $g\rightarrow \mathfrak{h}$

a bounded Lie algebra homomorphism, then there is a smooth Lie group homomorphism $\phi$

with $\phi^{\prime}=f$ (see [KM97, Theorem 40.3]).

The concept of regularity means that one can solve all non-autonomous Cauchy problems
on the Lie group $G$ , more precisely–given $X\in C^{\infty}(R, g)$–there is a smooth curve $ c:R\rightarrow$

$G$ with $c(O)=e$ and $c^{\prime}(t)=T_{e}\mu^{c(t)}(X(t))$ for $t\in R$ . Such non-autonomous problems can
sometimes be solved by so called product integrals (see for example [Omo97]).

Given a convenient manifold $N$ (see [KM97] for details) smooth regularity asserts that
the smooth topology on $N$ is initial with respect to the smooth functions in $C^{\infty}(N, R)$ , which
is not always the case, since there need not be enough globally defined smooth functions.
Smooth regularity is indeed a reasonable assumption for smooth manifolds, since otherwise
it is impossible to make the rarely possible conclusions from local to global in infinite dimen-
sions. If $N$ is smoothly regular, then each germ at a point has a global representative (see

[KM97, 27.21]). We shall assume that all convenient manifolds in this article are smoothly
regular, not only smoothly Hausdorff (see [KM97, 27.4]).

REMARK 1.2. Instead of convenient Lie groups one could work for our purposes with
so called smooth spaces, i.e. groups with a distinguished set of curves into and a distinguished
set of maps from the group to the real numbers, such that the detection principle is valid.
Smooth mappings between such spaces map smooth curves to smooth curves. Smooth groups
have smooth multiplication and inversion. Convenient Lie groups are smooth groups if they

are smoothly regular (see [KM97] and [FK88] for details on smooth spaces and [TeiOl] for
details on smooth groups).

LEMMA 1.3. Given a convenient smoothly regular mamfold N. Let $\{c_{n}\}_{n\geq 0}$ $\subset$

$C^{\infty}(M, N)$ be a sequence of smooth mappings from a finite dimensional compact manifold
$M$ to $N$ , such that for all $m\in M$ the sequence $\{c_{n}(m)\}_{n\geq 0}$ lies in a sequentially compact

set with respect to the topology $c^{\infty}N$ . Let furthemore $c_{n}^{*}$ : $C^{\infty}(N, R)\rightarrow C^{\infty}(M, R)$ be a
Mackey-Cauchy sequence:

Then for any $m\in M$ there is a chart $(u, U)$ around $c(m)$ such that almost all $c_{n}$ lie
locally around $m$ (at somefixed open neighborhood $V$ of $m$ ) in $U$ and all derivatives of $u\circ c_{n}$

converge Mackey umformly on $V$ to the derivatives of $u\circ c$ .
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PROOF. For any point $m$ there exists at least one adherence point of $\{c_{n}(m)\}_{n\geq 0}$ . By
assumption $c_{n}^{*}$ : $C^{\infty}(N, R)\rightarrow C^{\infty}(M, R)$ is Mackey-Cauchy convergent to some bounded
linear map $A$ . The adherence point has to be unique since smooth functions are continuous
with respect to $c^{\infty}N$ and they separate points by definition of a smooth manifold, we denote
the unique adherence point by $c(m)$ . Consequently there is a mapping $c$ : $M\rightarrow N$ which is
the pointwise limit of $\{c_{n}\}_{n\geq 0}$ . The limit of $\{foc_{n}\}_{n\geq 0}$ is a smooth functions and by continuity
equal to $foc$ for all $f\in C^{\infty}(N, R)$ , so $c$ is smooth by the detection principle. We need a
non-negative bump function $f$ with respect to a chart $(u, U)$ around $c(m)$ taking the value 1
at a small neighborhood of $c(m)$ . By uniform convergence of $foc_{n}$ to $foc$ on a small closed
neighborhood $V$ of $m$ we see that on $V$ almost all $c_{n}$ lie in $U$ . By multiplication of $fou^{-1}$ with
any linear functional $l$ on the model space we get global functions on $N$ representing locally
around $c(m)$ each linear functional. Consequently we obtain that all derivatives of $uoc_{n}$

converge at the point $m$ Mackey to the respective derivative of $uoc$ by $louoc_{n}\rightarrow louoc$

Mackey in all derivatives and a quali$ty$ independent of $l$ . $\square $

In the sequel of the article we shall need the following approximation theorem for product
integrals. They exist if their approximations lie uniformly on compact sets in bounded sets:

DEFINITION 1.4 (Product integral). Let $A$ be a convenient algebra. Given a smooth
curve $X$ : $R\rightarrow A$ and a smooth mapping $h$ : $R^{2}\rightarrow A$ with $h(s, 0)=e$ and $\frac{\partial}{\partial t}h(s, 0)=X(s)$ ,

then we define the following finite products of smooth curves

$p_{n}(a, t, h)$ $:=\prod_{i=0}^{n-1}h(a+\frac{(n-i)(t-a)}{n},$ $\frac{t-a}{n})$

for $a,$ $ t\in$ R. If $p_{n}$ converges in all derivatives to a smooth curve $c$ : $R\rightarrow A$ , then $c$ is
called the product integral of $X$ or $h$ and we write $c(a, t)=\prod_{a}^{t}\exp(X(s)ds)$ or $c(a, t)=$ :
$\prod_{a}^{t}h(s, ds)$ . The case $h(s, t)=c(t)$ with $p_{n}(0, t, h)=c(t/n)^{n}$ is referred to as simple
product integral.

THEOREM 1.5 (Approximation theorem). Let $A$ be convenient algebra. Given a smooth
curve $X$ : $R^{2}\rightarrow A$ anda smooth mapping $h$ : $R^{3}\rightarrow A$ with $h(u, r, O)=e$ and $\frac{\partial}{\partial t}h(u, r, 0)=$

$X_{u}(r)$ . Suppose thatfor everyfixed $s_{0}\in R$, there is $t_{0}>s0$ such that $p_{n}(u, s, t, h)$ is bounded
in $A$ on compact $(u, s, t)$ -sets andfor all $n\geq 1$ . Then theproduct integral $\prod_{s}^{t}h(u, r, dr)$ exists
and the convergence is Mackey in all derivatives on compact $(u, s, t)$ -sets. Furthermore the
product integral is the right evolution of $X_{u},$ $i.e$.

$\frac{\partial}{\partial t}\prod_{s}^{t}h(u, r, dr)=X_{u}(t)\prod_{s}^{t}h(u, r, dr)$

$\prod_{s}^{s}h(u, r, dr)=e$

REMARK 1.6. The hypothesis on the product integrals will be referred to as bounded-
ness condition. For the proof see $[Tei99a]$ and $[Tei99b]$ .
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2. Lipschitz-metrizable Lie groups.

The definition of product integrals on convenient Lie groups $G$ is done in the same way
as on convenient algebras:

DEFINITION 2.1. Let $G$ be a convenient Lie group with $c^{\infty}G$ a topological group.
Given a smooth mapping $h$ : $R^{2}\rightarrow G$ with $h(s, 0)=e$ , then we define the following finite
products of smooth curves

$p_{n}(s, t, h)$ $:=\prod_{i=0}^{n-1}h(s+\frac{(n-i)(t-s)}{n},$ $\frac{t-s}{n})$

for $s,$ $ t\in$ R. If $p_{n}$ converges in the smooth topology of $G$ uniformly on compact sets to

a continuous curve $c$ : $R\rightarrow G$ , then $c$ is called the product integral of $h$ and we write
$c(s, t)=:\prod_{s}^{t}h(u, du)$ . If $h(s, t)=c(t)$ , then the product integral $p_{n}(0, t, h)=c(t/n)^{n}$ is
called simple product integral.

REMARK 2.2. Here we need the assumption that $c^{\infty}G$ is a topological group, since
we want to apply the notions of uniform convergence and completeness with respect to the
uniform structure on $c^{\infty}G$ .

The left regular representation $\rho$ of a convenient Lie group $G$

$\rho$ : $G\rightarrow L(C^{\infty}(G, R))$

$g\mapsto\succ(f\rightarrow f(g.))$

in the bounded operators on $C^{\infty}(G, R)$ is initial (see [KM97]) and smooth. We shall apply
this ”linearization” in the following way several times in the article.

LEMMA 2.3. Let $G$ be a convenient Lie group, such that $c^{\infty}G$ is a topological
group and $G$ is smoothly regular, then each product $p_{n}(s, t, h)$ and the $limi\leftarrow\iota f$ it exists–
$\prod_{s}^{t}h(u, du)$ is smooth. The propagation condition $\prod_{t}^{r}h(u, du)\prod_{s}^{t}h(u, du)=\prod_{s}^{r}h(u, du)$

is satisfiedfor all $r,$ $s,$ $t$ .
PROOF. By the left regular representation $\rho$ on $G$ we get that the product integral

$\lim_{n\rightarrow\infty}p_{n}(s, t, \rho\circ h)$

exists in $C^{\infty}(R^{2}, L(C^{\infty}(G, R)))$ , since that image of a sequentially compact set under a
smooth mapping is bounded in the convenient algebra $L(C^{\infty}(G, R))$ . The set formed by
$p_{n}(s, t, h)$ and $\prod_{s}^{t}h(u, du)$ on compact $(s, t)$ -sets is sequentially compact due to uniform
convergence, so we can apply Theorem 1.5 to obtain Mackey-convergenc$e$ . Consequently we
are given the hypotheses of Lemma 1.4 ($N=G,$ $M$ is a compact manifold with boundary in
$R^{2}$ and we can evaluate $\rho(p_{n}(s, t, h))\cdot f$ at $e$), which allows the conclusion of smoothness
of $c$ . The propagation condition follows from the definition of the product integral and the
continuity of multiplication. $\square $
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LEMMA 2.4. Let $G$ be a smoothly regular Lie group, such that $c^{\infty}G$ is a topological
group. Given a smooth mapping $h$ : $R^{2}\rightarrow G$ with $h(s, 0)=e$ , such that the product integral
converges to $c(s, t)$ , then thefundamental theorem ofproduct integration or non-commutative
integration asserts that $\delta_{t}^{r}c(s, t)=\frac{\partial}{\partial t}h(s, 0)$ and the convergence is umform in all derivatives
in the sense ofLemma 1.4.

PROOF. By the previous lemma it suffices to apply Lemma 1.4. to get the result. Re-
mark that $\delta_{t}^{r}|_{t=s}p_{n}(s, t, h)=X(s)$ .

The main observation of the following two sections is based on a proof of the famous
Kakutani-Theorem (which was simultaneously and independently proved by Garett Birkhoft)
on the existence of a right (or left) invariant metric on a topological group with countable
basis of the neighborhood filter of the identity (for this proof see [MZ57]):

THEOREM 2.5 (Kakutani’s theorem). Let $G$ be a topological group with a countable
basis of the neighborhoodfilter of the identity, then there is a left (or right) invariant metric
on $G$ generating the topology.

PROOF. Given a sequence of open neighborhoods of the identity $\{Q_{n}\}_{n\in N}$ , then by
continuity of the multiplication we find $a$ sequence of symmetric open neighborhoods $\{U_{n}\}_{n\in N}$

with
$U_{n+1}^{2}\subset U_{n}\cap Q_{n}$ for $n\in N$

We define by induction on $1\leq k\leq 2^{n}$ and $n\geq 0$

$V_{1,\tilde{2}^{\tau}}=U_{n}$ ,
$V_{\frac{2k}{2^{n+1}}}=V_{k,\pi}$ ,

$V_{\frac{2k+1}{2^{n+1}}}=V_{\frac{1}{2^{n+1}}}V_{k,\overline{2}\pi}$

We obtain the property $V_{\pi^{1}}V_{\pi}m\subset V_{m_{2}1}+$ for $m<2^{n}$ . For $m=2k$ this is a consequence of the
above properties. For $m=2k+1$ the left hand side becomes

$V_{1,\overline{2}^{T}}V_{\pi}m=V_{1}V_{1}V\pi\pi\frac{k}{2^{n-1}}\subset V\frac{1}{2^{n-1}}V\frac{k}{2^{n-1}}=V\frac{k+1}{2^{n-1}}=V_{m_{2}1}+$

by induction on $n$ and $m$ . So we obtain $V_{r}\subset V_{r^{\prime}}$ for $r<r^{\prime}\leq 1$ . We choose in our case a
monotonic decreasing basis of open sets of the neighborhood filter denoted by $\{Q_{n}\}_{n\in N}$ . We
redo the presented construction and obtain a family $V_{r}$ for all dyadic rationals $0<r\leq 1$ .

$f(x, y)$ $:=\left\{\begin{array}{l}0y\in V_{r}V_{r}^{-1}xr\\\sup\{r|y\not\in V_{r}V_{r}^{-1}x\}\end{array}\right.$

By definiton $f$ is right invariant, since $f(xa, ya)=f(x, y)$ for all $a\in G.$ $V_{r}V_{r}^{-1}$ is sym-
metric, hence $f$ is symmetric $f(x, y)=f(y, x)$ . $V_{1,\pi}$ is symmetric, so $V\iota V_{1}^{-1}F_{\overline{2}}\pi\subset V_{1,\pi}^{2}=$

$V_{\frac{1}{2^{n-1}}}\subset Q_{n-1},$ but $\bigcap_{n\geq 1}Q_{n-1}=\{e\}$ , since we deal with a basis of neighborhoods, so
$f(x, y)=0$ if and only if $x=y$ .

$d(x, y)$
$:=\sup_{u\in G}|f(x, u)-f(y, u)|$
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$d(x, y)=d(y, x),$ $d(x, y)\geq f(x, y)\geq 0$ and $d(x, y)=0$ if and only if $x=y$ . Right
invariance is clear, too, and the triangle inequality follows from

$d(x, z)\leq\sup|f(x, u)-f(y, u)+f(y, u)-f(z, u)|$

$\leq d(x, y)+d(y, z)$

Finally we have to show that the metric reproduces the topology of the topological group. It
is sufficient to show this at $e$ by right invariance. We denote the open d-balls of radius $1/2^{n}$

by $B_{1,\overline{2}^{T}}$ . First we observe that $V_{\frac{1}{2^{n+1}}}\subset B_{\frac{1}{2^{n}}}$
for $n\geq 1$ , which is done by a subtle case for case

calculation:
Given $y\in V_{\frac{1}{2^{n+1}}}$

, then $f(y, e)<1/2^{n}$ .
1. $u\in V_{1,2^{\Gamma}\urcorner}$ , so $f(y, u)\leq 1/2^{n}$ , so $d(y, e)<1/2^{n}$ .
2. We can find $a$ number $1\leq k<2^{n+2}$ with $u^{-1}\not\in V_{\frac{s}{2^{n+2}}}V_{\frac{-1s}{2^{n+2}}}$ for $1\leq s\leq k$ and

$u^{-1}\in V_{\frac{s}{2^{n+2}}}V_{\frac{-1s}{2^{n+2}}}$ for $k<s<2^{n+2}$ . So $yu^{-1}\in V_{\frac{s+1}{2^{n+2}}}V_{\frac{-1s+1}{2^{n+2}}}$ for $k<s<2^{n+2}$ and

$yu^{-1}\not\in V_{\frac{s-1}{2^{n+2}}}V_{\frac{-1s-1}{2^{n+2}}}$ for $2\leq s\leq k$ , hence $(k-1)/2^{n+2}\leq f(y, u)\leq(k+1)/2^{n+2}$ and

$d(y, e)<1/2^{n}$ , since $k/2^{n+2}\leq f(e, u)\leq(k+1)/2^{n+2}$ .
If $x\in B_{\frac{1}{2^{n+1}}}$

, then $f(e, x)<1/2^{n+1}$ , finally $x\in V_{\frac{2\iota}{2^{n+1}}}\subset V_{1,\overline{2}\pi}\subset Q_{n}$
, so we obtain

$U_{n+1}\subset B_{1}\subset Q_{n-1}$ for $n\geq 1$ , which proves the desired assertion. $\square $

$\urcorner 2^{\Gamma}$

DEFINITION 2.6 (Lipschitz-metrizable groups). Let $G$ be a convenient Lie group,
such that $c^{\infty}G$ is $a$ topological group. $G$ is called Lipschitz-metrizable if there is $a$ family
of right invariant halfmetrics $\{d_{\alpha}\}_{\alpha\in\Omega}$ on $G$ with the following properties:

1. For all sequences $\{x_{n}\}_{n\in N}$ :
$\forall\alpha\in\Omega$ : $d_{\alpha}(x_{k}, x_{i})\rightarrow 0\Leftrightarrow\{x_{n}\}_{n\in N}$ is converging in $G$

2. For all smooth mappings $c$ : $R^{2}\rightarrow G$ with $c(s, 0)=e$ , there is on each compact
$(s, t)$ -set $a$ constant $M_{\alpha}$ such that

$d_{\alpha}(c(s, t),$ $e$) $<M_{\alpha}t$

REMARK 2.7. In contrary to good manners (see [KM97] for the useful applications
of this habit, e.g. 51.19) we omit the dependencies of the constants $M_{\alpha}$ . However, we declare
that $M_{\alpha}$ is independent of $t,$ $s$ on a fixed compact set and always independent of $m,$ $n$ . The
notion Lipschitz-metric” stems from the fact that $t\vdash+d(c(t), e)$ is a $Lip^{}$-curve for $c$ smooth
with $c(O)=e$ .

From the proof of Theorem 2.1, we observe that–given a Banach Lie group G–we
can find by the CBH-formula (see [BCR81] for functional analytic details) a basis of the
neighborhoods of identity of balls fitting in the above machinery such that we can construct a
metric satisfying the Lipschitz property explained in the next definition.

LEMMA 2.8. Let $G$ be a Banach-Lie-Group, then there is a metric $d$ on $G$ satisfying
properties 2.6.1 and 2.6.2, so $G$ is Lipschitz-metrizable.
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PROOF. On Banach-Lie algebras we can choose a norm $\Vert\cdot\Vert$ satisfying $\Vert[X, Y]\Vert\leq$

$||X||\cdot||Y||$ . The Campbell-Baker-Hausdorff Formula converges on a ball of radius 1/4 and we
have $||X*Y||\leq 1-\sqrt{1-4r}$ for $\Vert X\Vert,$ $||Y||\leq r$ and $r\leq 1/4$ (see [BCR81] for functional
analytic details). We define a sequence $\{s_{n}\}_{n\geq 1}$ with $s_{1}=1/4$ and $s_{n+1}=(2s_{n}-s_{n}^{2})/4$ , where
the formula stems from solving $s_{n}=1-\sqrt{1-4s_{n+1}}$. We obtain by induction the following
estimate

$\frac{1}{2^{n+1}}\geq s_{n}>\frac{1}{2^{n+3}}+\frac{1}{2^{2n+2}}$

since for $n=1$ the inequality is valid $td$ if it is valid for $n\geq 1$ then

$s_{n+1}=\frac{2s_{n}-s_{n}^{2}}{4}>\frac{1}{2^{n+4}}+\frac{1}{2^{2n+3}}-\frac{1}{2^{2n+4}}=\frac{1}{2^{n+4}}+\frac{1}{2^{2n+4}}$

which proves the assertion. Choosing $U_{n}=\exp(B(O, s_{n}))$ in the chart given by the expo-
nential map for $n$ large enough, then we can use the $U_{n}$ directly in the proof of the Kakutani
theorem to obtain a metric $d$ with the property

$U_{n+1}\subset\{x|d(x, e)<\frac{1}{2^{n}}\}\subset U_{n-1}$

for $n$ large enough, since $U_{n}^{2}\subset U_{n-1}$ and $U_{n}^{-1}=U_{n}$ . Given a curve $c$ : $R^{2}\rightarrow G$ with
$c(s, 0)=e$ , then we can find for a given compact s-set a number $M>0$ such that for $t$ in
$[0,1]$

$\exp^{-1}(c(t, s))\in tMB(O, 1)$

by Taylor’s formula. Consequently

$d(c(t, s),$ $e$) $<\frac{1}{2^{n}}$

if $s_{n+2}\leq tM<s_{n+1}$ , so $d(c(t, s),$ $e$) $/t<M/(2^{n}s_{n+2})$ for small $t$ . However, $s_{n+2}2^{n}>$

$2^{n}/2^{n+5}+2^{n}/2^{2n+6}>1/2^{5}$ . Hence for small $t$

$\frac{d(c(t,s),e)}{t}<32M$

and the supremum property is satisfied. $\square $

LEMMA 2.9. Let $G$ be a smoothly connected (pathwise connected by smooth curves),

complete (with respect to the right umfom structure), regular Fr\’echet-Lie-Group $G$ , such
that

Evol : $C^{\infty}([0,1], g)\cap C([0,1], g)\rightarrow C([0,1], G)$

is continuous with respect to the $C_{0}$ -topology on the spaces. Furthemore we assume that
there is a norm on $g$ , then $G$ is Lipschitz-metrizable.

PROOF. We construct the halfmetrics directly: Given two points $g,$ $h\in G$ we can join
them by a Lip1-curve $c$ on $[0,1]$ with $c(O)=g,$ $c(1)=h$ and $\delta^{r}c(t)\neq 0$ for $t\in[0,1]$ , which
will be denoted by $c$ : $g\rightarrow h$ .

$d_{k}(g, h)$ $:=\inf_{c:g\rightarrow h}\int_{0}^{1}p_{k}(\delta^{r}c(t))dt$
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for an increasing family of norms $p_{k}$ defining the topology on $g$ :
The Lipschitz-property is cle$ar$ by definition. The triangle inequality follows from join-

ing two Lip-curves.
Remark that for any Lip-map $\phi$ : $[0,1]\rightarrow[0,1]$ with $\phi(0)=0$ and $\phi(1)=1$ we have

$\delta^{r}(co\phi)=((\delta^{r}c)0\phi)\phi^{\prime}$ , so reparametrization doe $s$ not change the integral. Consequently
we can always assume that if we have a curve $c$ : $g\rightarrow h$ , then there is a Lip-function
$\phi$ : $[0,1]\rightarrow[0,1]$ with $\phi(0)=0$ and $\phi(1)=1$ such that

$\int_{0}^{1}p_{k}(\delta^{r}c(t))dt=\int_{0}^{1}p_{k}(\delta^{r}c(\phi(t)))\phi^{\prime}(t)dt$

$=\int_{0^{Pk(\delta^{r}(co\phi)(t))dt=\sup_{0\leq t\leq 1}p_{k}(\delta^{r}(co\phi)(t))}}^{1}$

$\phi$ is constru$c$ted by solving the differential equation

$p_{k}(\delta^{r}c(\phi(t)))\phi^{\prime}(t)=\int_{0}^{1}p_{k}(\delta^{r}c(t))dt$

with boundary values $\phi(0)=0$ and $\phi(1)=1$ . Th$e$ solution is given by

$F(\phi(t))=\int_{0}^{\phi(t)}p_{k}(\delta^{r}c(t))dt=t\int_{0}^{1}p_{k}(\delta^{r}c(t))dt$

where $F^{\prime}(s)=p_{k}(\delta^{r}c(t))\neq 0$ , so there is a Lip-solution. Given a sequence $\{g_{m}\}_{m\in N}$ with
$g_{n}^{n\rightarrow\infty}\rightarrow e$ in $G$ , then we can choose a chart $(u, U)$ around $e$ with $u(e)=0$ and straight lines
in the chart to join the $g_{m}$ with $e$ :

$d_{k}(e, g_{n})\leq\int_{0}^{1}p_{k}(\delta^{r}(u^{-1}(.u(g_{n}))(t))dt$

This yields the desired properties since $u(g_{m})$ converges Mackey to $0$ in the model space, so
we can look at the problem on $a$ unit ball in a Banach space $E_{B}$ , where smooth maps are
locally Lipschitz, consequently

$\int_{0}^{1}p_{k}(\delta^{r}(u^{-1}(.u(g_{n}))(t))dt\leq Cp_{B}(u(g_{n}))\rightarrow 0n\rightarrow\infty$

Given a sequence $\{g_{n}\}_{n\in N}$ with $d_{k}(g_{n}, g_{m})\rightarrow 0$ for $m,$ $ n\rightarrow\infty$ and $U$ an open
neighborhood of identity in $G$ , then $(Evol^{r})^{-1}(C([0,1], U))$ is open in $C([0,1], g)$ , saying
$C([0,1], (p_{k})<\mathcal{E})$ lies inside for $a$ fixed $k\geq 0$ . By assumption we can find curves $c_{n\rightarrow m}$ $:=$

$c$ : $e\rightarrow g_{m}g_{n}^{-1}$ with $ p_{k}(\delta^{r}c_{n\rightarrow m}(t))<\epsilon$ for $n,$ $m$ large enough applying the above method
of uniformizing the velocity. Consequently Evol $(\delta^{r}c_{n\rightarrow m}(t))=c_{n\rightarrow m}(t)$ lies in $U$ for $ t\in$

$[0,1]$ , so $g_{m}g_{n}^{-1}\in U$ for $m,$ $n$ large enough, which means that it is $a$ Cauchy sequence in $G$ .
By completeness we comclude. $\square $

COROLLARY 2.10. All strong ILB-Lie groups are Lipschitz-metrizable, so all known
Fr\’echet-Lie groups are Lipschitz-metrizable (see [KM97, p. 411]).
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PROOF. On ILB-groups the evolution map factors as continuous map

Evol : $C^{\infty}([0,1], g)\cap C([0,1], g)\rightarrow C([0,1], G)$

with respect to the $C_{0}$-topologies on the respective spaces, where from we conclude the re-
sult, since there are continuou $s$ norms on the associated Fr\’echet space to an ILB-chain. This
factorization can be seen as follows, we refer to [Omo97]: Given a strong ILB-group, then
even more general types of product integrals as provided converge without applying the no-
tion of Lipschitz-metrizabili$ty$, we only need the smoothness of the exponenti$a1$ map on the
underlying Fr\’echet-Lie group. Given $X_{n}\in C([0,1], g)$ converging uniformly to $X$ , then we
can associate $C^{1}$ -hairs $h_{n}(s, t)=\exp(sX_{n}(t))$ with $h_{n}\rightarrow h$ in the topology on $C^{1}$ -hairs
by smoothness of the exponential map. Consequently the associated product integrals con-
verge uniformly reproducing Evol $(X_{n})$ , which converges uniformly on $[0,1]$ to Evol (X) (see
[Omo97, Theorem 5.3]). $\square $

REMARK 2.11. The above result ju $s$tifies a posterio the setting of strong ILB-group $s$ ,

since we have to $res$trict to a class of Fr\’echet spaces, where the continuous norms exist.

REMARK 2. 12. Assuming that the Fr\’echet space is given by an inverse limit ofHilbert
spaces, so the construction of Lipschitz-metrics as in the proof of Lemma 2.9 is equally a
definition of a variational problem. Under the condition that $ad(X)$ has a bounded adjoint
with respect to the scalar product under consideration, the geodesic equation associated to the
variational problem is given through

$u_{t}=-ad(u)^{T}u$

where $u$ denotes the right logarithmic derivative of the geodesic (see [KM97, section 46.4]).

Only in the case, where $u\in ker(ad(u)^{T})$ for $u\in g$ the smooth one-parameter subgroups are
the geodesics. In view of interesting non-line$ar$ partial differential equations (for example the
Korteweg-De VrieB-equation) it is worth studying this situation in concrete cases. The ques-
tion arises if such naturally appearing differential equations can be solved on the given Lie
groups by intemal methods, for example by Lipschitz-metrics. If this were the case, some in-
teresting geometro-analytic progress in partial differenti$a1$ equations would be possible. To set
the program it is firs $t$ necessary to find some natural approximation procedure for variational
problem, then to apply the Lipschitz-methods to prove approximation.

The next proposition states that it is impossible to choose only one right invariant met-
ric with Lipschitz-property reproducing the topology on a regular Fr\’echet-Lie-Group beyond
Banach spaces. In the regular, abelian and simply connected case this means, that it is impos-
sible to choose an invariant metric with Lipschitz-property on Fr\’echet spaces. Consequently
we provide the non-abelian analogue to the assertion, that a Fr\’echet space with one norm
generating the topology is a Banach space. Hence Lipschitz-metrics are the right concept
replacing seminorms on convenient Lie groups in the non-commutative world.
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PROPOSITION 2.13. Let $G$ be a Fr\’echet-Lie-Group with (smooth) exponential map
and suppose that there is a right invariant metric $d$ on $G$ reproducing the topology in the
sense ofDefinition 2.6 and

$d(c(s, t),$ $e$) $<Mt$

for any smooth mapping $c$ : $R^{2}\rightarrow G$ with $c(s, 0)=e$ on compact $(s, t)$ -sets. Iffor any
sequence $\{X_{n}\}_{n\in N}$ with $\exp(tX_{n})\rightarrow e$ umformly on compact intervals the sequence $\{X_{n}\}_{n\in N}$

converges to $0$ in the Lie algebra $g$ , then $G$ is a Banach-Lie-group.

PROOF. We define $a$ seminorm $p$ on the Lie algebra $g$ of $G$ . The function $ t\vdash\rightarrow$

$d(exp(tX), e)$ is sublinear by right invariance, consequently the limit $\lim_{t\downarrow 0}d(\exp(tX), e)/t$

exists and equals the supremum $\sup_{t>0}d(\exp(tX), e)/t$ .

$p(X)$ $:=\lim_{t\downarrow 0}\frac{d(exp(tX),e)}{t}$

for $X\in g\cdot p$ is positively homogeneous and $p(O)=0$ . Given a smooth curve $c$ : $R\rightarrow G$

with $c(O)=e$ and $c^{\prime}(O)=X$ , then

$|\frac{d(exp(tX),e)}{t}-\frac{d(c(t)\exp(-tX),e)}{t}|\leq\frac{d(c(t),e)}{t}$

$\leq\frac{d(\exp(tX),e)}{t}+\frac{d(c(t)\exp(-tX),e)}{t}$

so the limit of the middle term exists since the limits of the other terms exist and are equal.
The limit of $a$ smooth curve $d$ passing at $0$ through $e$ with $d^{\prime}(O)=0$ is calculated at the
beginning of the proof of Theorem 3.1. as $0$ . Consequently $p(X)=\lim_{t\downarrow 0}d(c(t), e)/t$ . So
the triangle $ine$quality is satisfied since

$\frac{d(\exp(tX)\exp(tY),e)}{t}\leq\frac{d(exp(tX),e)}{t}+\frac{d(exp(tY),e)}{t}$

Given $a$ sequence $\{X_{n}\}_{n\in N}$ with $X_{n}\rightarrow X$ in $g$ . Convergence on the Fr\’echet space means
Mackey convergence, so there is a compact set $B\subset g$ with $X-X_{n}\in\mu_{n}B$ with $\mu_{n}\downarrow 0$ .

$ p(X-X_{n})\leq\sup_{0<t\leq 1}\frac{d(\exp(t(X_{n}-X)),e)}{t}\leq$

$d(\exp(t\mu_{n}Y), e)$ $d(\exp(t\mu_{n}Y), e)$

$\sup_{Y\in B}\sup_{0<t\leq 1}\overline{t}\leq\mu_{n}\sup_{Y\in B}\sup_{0<t\leq 1}\overline{t\mu_{n}}\leq\mu_{n}M$

since the last supremum is finite, so $p(X-X_{n})\rightarrow 0$ for $n\rightarrow\infty,$ $p$ is a continuous seminorm.
Finiteness of the supremum is proved via the following consideration:

$M(Y)$ $:=\sup_{0<t\leq 1}\frac{d(\exp(tY),e)}{t}$

Assume that there is a fast converging sequenc$eY_{n}\rightarrow Y$ in the compact set $B$ such that
$M(Y_{n})\geq n$ . Consequently there is a smooth curve $d$ : $R\rightarrow g$ with $d(1/n)=Y_{n}$ . We define
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$c(s, t)$ $:=exp(td(s))$ , but then

$\sup_{s\in[0,1]0}\sup_{<t\leq 1}\frac{d(c(s,t))}{t}=\infty$

a contradiction. Given a sequence $\{X_{n}\}_{n\in N}$ such that $p(X_{n}-X)\rightarrow 0$, then $d(exp(t(X_{n}-$

$X)),$ $e$) $\leq tp(X_{n}-X)$ by sublinearity. Consequently $\exp(t(X-X_{n}))\rightarrow e$ uniformly on
compact intervals in time for $ n\rightarrow\infty$ . This, however, means that $X-X_{n}\rightarrow 0$ in by
assumption. $\square $

LEMMA 2.14. Let $G$ be a convenient Lipschitz-metrizable Lie group, such that con-
vergence on the model space $E$ means Mackey-convergence (i.e. $c^{\infty}E=E$). If there is
fzrthemore a (smooth) exponential map andfor any sequence $\{X_{n}\}_{n\in N}$ with $exp(tX_{n})\rightarrow e$

umfomly on compact intervals the sequence $\{X_{n}\}_{n\in N}$ converges to $0$ in the Lie algebra $g$ ,

then $thefi\ell nctions$

$p_{\alpha}(X)=\lim_{t\downarrow 0}\frac{d_{\alpha}(exp(tX),e)}{t}$

are continuous seminoms on 9 generating the topology.

PROOF. The proof is built in the $same$ way as the previous one. Only indices have to
be carnied with along the lines. $\square $

The last result provides the already applied idea how the families of seminorms and right
invariant metrics are related: This relation $c$ould be read in the other direction explaining that
via integrating one obtains right invariant Lipschitz-metrics on $G$ .

3. Approximation theorems.

The following two proposition explain the interest in Lipschitz-metrizable Lie groups.

THEOREM 3.1. Let $G$ be a Lipschitz-metrizable convenient Lie group, $c^{\infty}G$ is a topo-
logical group. If there is a smooth exponential mapping, then for all smooth mappings
$c$ : $R^{2}\rightarrow G$ with $c(s, 0)=e$ the following estimates are valid for the given halfinetrics
$d_{\alpha},$ $\alpha\in\Omega$ : On each compact $(s_{1}, s_{2}, t)$ -sets there exists $M_{\alpha}$ such that

$d_{\alpha}(c(s_{1},$ $\frac{s_{2}}{m})^{m}c(s_{1},$ $\frac{t}{n})^{n}c(s_{1}, t)^{-1_{C}}(s_{1},$ $\frac{s_{2}}{m})^{-m},$ $e)\leq M_{\alpha}t^{2}$

for $m,$ $n\in N$.
PROOF. First we show a simple consequence of Property 2.6.1. Let $c$ : $R^{n+1}\rightarrow G$

with $c(s, 0)=e$ and $\frac{\partial}{\partial t}|_{t=0}c(s, t)=0$ for $s\in R^{n}$ be a smooth mapping, then we can choose a
chart $(U, u)$ around $e$ with $u(U)$ absolutely convex and $u(e)=0$ . On a small ball $B$ around $0$

in $R^{n+1}uoc$ is well-defined with first derivative zero. Consequently $u\circ c(s, \sqrt{t})$ makes sense
as $Lip^{}$-curve for positive $t$ and $s$ in a small ball around zeroin $R^{n+1},$ so $\frac{1}{t}(u\circ c)(s, \sqrt{t})$ is in a
compact set for $t>0$ and $s$ in a small ball around zero in $R^{n+1}$ . By some reparametrizations
we can assume that the compact set, where $\frac{1}{t}u\circ c(s, \sqrt{t})$ lies, is a subset of $u(U)$ . Let $B\subset E$
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be a compact subset in $u(U)$ , then the following $supre$mum is finite:

$\sup_{0<t\leq 1}(\sup_{x\in B}\frac{d_{\alpha}(u^{-1}(tx),e)}{t})<\infty$

for all $\alpha\in\Omega$ , since the function

$M^{\alpha}(x)$ $:=\sup_{0<t\leq 1}\frac{d_{\alpha}(u^{-1}(tx))}{t}$

for $x\in u(U)$ is bounded on compact subsets of $u(U)$ . If $M^{\alpha}$ were $u$nbounded $on$ a compact
subset $B$ of $u(U)$ , then there would exist a sequence $\{x_{n}\}_{n\in N+}$ in $B$ , converging fast to $x\in B$ ,

with $M^{\alpha}(x_{n})\geq n$ for $ n\in N+\cdot$ By the special curve lemma there is $a$ curve $d$ : $R\rightarrow F$ with
$d(\frac{1}{n})=x_{n}$ , so $c(s, t)$ $:=td(s)$ is $a$ smooth mapping with $c(s, 0)=0$ with values in $u(U)$ ,

which gives a contradiction by looking at $u^{-1}\circ c$ .
Reconsidering the original problem we obtain

$\sup_{0<t\leq 1}\frac{d_{\alpha}(c(s,\sqrt{t}),e)}{t}<M_{\alpha}$

on $a$ small set around zero in $s$ . This can easily be extended to all compact sets by $a$ translation.
We obtain finally

$(\#)$ $\sup_{0<t\leq 1}\frac{d_{\alpha}(c(s,t),e)}{t^{2}}<M_{\alpha}$

on $c$ompact s-sets. Now we apply the existence of a smooth exponential mapping. Let $T(X)$

denote a semigroup with generator $X$ . A smooth mapping $c$ : $R^{2}\rightarrow G$ with $c(s, 0)=e$ and
$\frac{\partial}{\partial t}|_{t=0}c(s, t)=X_{s}$ for $s\in R$ is given, too. We proceed indirectly to obtain the assertion: Let
$n\in N$ be given, then

$d_{\alpha}(c(s,$ $\frac{t}{m})^{m}T_{-t}(X_{s}),$ $e)$

$\leq\sum_{i=0}^{m-1}d_{\alpha}(T_{\frac{ti}{m}}(X_{s})_{C}(s,$ $\frac{t}{m})^{m-i}T_{-t}(X_{s}),$ $T_{\frac{t(i+1)}{m}}(X_{s})_{C}(s,$ $\frac{t}{m})^{m-i-\iota_{T_{-t}(X_{s}))}}$

$=\sum_{i=0}^{m-1}d_{\alpha}(T_{\frac{ti}{m}}(X_{s}),$ $T_{\frac{t(i+1)}{m}}(X_{s})_{C}(s,$ $\frac{t}{m})^{-1})$

$=\sum_{i=0}^{m-1}d_{\alpha}(T_{\frac{ti}{m}}(X_{s})c(s,$ $\frac{t}{m})T_{-\frac{ti}{m}}(X_{s}),$ $T_{\frac{t}{m}}(X_{s}))$

due to right invariance. Our uniformity result leads to the desired assertion by investigating
the smooth mapping

$d(s, t):=T_{s_{2}}(X_{s_{1}})c(s_{1},$ $\frac{t}{m})T_{-\frac{t}{m}}(X_{s_{1}})T_{-s_{2}}(X_{s_{1}})$
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by estimate $\#$ . Consequently we arrive at

$d_{\alpha}(c(s,$ $\frac{t}{m})^{m}T_{-t}(X_{s}),$ $e)\leq\sum_{i=0}^{m-1}M_{\alpha}\frac{t^{2}}{m^{2}}=M_{\alpha^{\frac{t^{2}}{m}\rightarrow 0}}^{m\rightarrow\infty}$

where $t$ can vary in a compact interval around zero preserving. Th$is$ estimate yields that

$c(s_{1},$ $\frac{s_{2}}{m})^{m}c(s_{1},$ $\frac{t}{n})^{n}c(s_{1}, t)^{-1_{C}}(s_{1},$ $\frac{s_{2}}{m})^{-m}$

$=c(s_{1},$ $\frac{s_{2}}{m})^{m}T_{-s_{2}}(X_{s_{1}})T_{s_{2}}(X_{s_{1}})c(s_{1},$ $\frac{t}{n})^{n}c(s_{1}, t)^{-1}T_{-s_{2}}(X_{s_{1}})T_{s_{2}}(X_{s_{1}})c(s_{1},$ $\frac{s_{2}}{m})^{-m}$

satisfies the desired estimate by applying $d(abc, e)\leq d(abc, bc)+d(bc, c)+d(c, e)=$

$d(a, e)+d(b, e)+d(c, e)$ due to right invarianc$e$ . $\square $

THEOREM 3.2 (Approximation Theorem). Let $G$ be a Lipschitz-metrizable regular
Lie group, such that $c^{\infty}G$ is a topological group. Furthemore for all smooth mappings
$c$ : $R^{2}\rightarrow G$ with $c(s, 0)=e$ the following estimates are valid for the given halfinetrics
$d_{\alpha},$ $\alpha\in\Omega$ : On each compact $(s_{1}, s_{2}, t)$ -sets there exists $M_{\alpha}$ such that

$d_{\alpha}(c(s_{1},$ $\frac{s_{2}}{m})^{m}c(S_{1},$ $\frac{t}{n})^{n_{C(s_{1},t)^{-1}c(s_{1},\frac{s_{2}}{m})^{-m},e}})\leq M_{\alpha}t^{2}$

for $m,$ $ n\in$ N. Given a smooth curve $c:R\rightarrow G$ with $c(O)=e$ , then the limit

$\lim_{n\rightarrow\infty}c(\frac{t}{n})^{n}=T_{t}$

exists uniformly on compact intervals of $R$ and gives a smooth group T. The convergence is
unifom in all derivatives in the sense ofLemma 1.4.

PROOF. Given a smooth curve $c$ : $R^{2}\rightarrow G$ with $c(s, 0)=e$ , we try to investigate the
above simple product integrals:

$d_{\alpha}(c(s,$ $\frac{t}{nm})^{nm},$ $c(s,$ $\frac{t}{n})^{n})$

$\leq\sum_{i=0}^{n-1}d_{\alpha}(c(s,$ $\frac{t}{n})^{i}c(s,$ $\frac{t}{nm})^{(n-i)m},$ $c(s,$ $\frac{t}{n})^{i+1}c(s,$ $\frac{t}{nm})^{(n-i-1)m})$

$\leq\sum_{i=0}^{n-1}d_{\alpha}(c(s,$ $\frac{t}{n})^{j}c(s,$ $\frac{t}{nm})^{m_{C}}(s,$ $\frac{t}{n})^{-1}c(s,$ $\frac{t}{n})^{-i},$ $e)$

$\leq\sum_{i=0}^{n-1}d_{\alpha}(c(s,$ $\frac{t}{n})^{\iota_{C}}(s,$ $\frac{t}{nm})^{m},$ $c(s,$ $\frac{t}{n})^{-i},$ $c(s,$ $\frac{t}{n})^{-1})$

$\leq n\frac{t^{2}}{n^{2}}M_{\alpha}\rightarrow 0$ for $ n\rightarrow\infty$
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which is possible by $a$ look at the $curve$

$d(s, t)=c(s_{1},$ $\frac{s_{2}}{i})^{j}c(s_{1},$ $\frac{t}{nm})^{m}c(s_{1}, t)^{-\iota_{C}}(s_{1},$ $\frac{s_{2}}{i})^{-i}$

and application of the given estimates. Consequently we obtain a Cauchy-property uni-
form in $s$ for the above sequences of curves, which lead $s$ to the desired limit. The limit
$\lim_{n\rightarrow\infty}c(s, t/n)^{n}=:T_{t}(X_{s})$ is continuous in $s,$ $t$ . By looking $at$ the left regul$ar$ representa-
tion in $L(C^{\infty}(G, R))$ we see that the limit has to be smooth and a group in $t$ , because sequen-
tially compact sets are mapped to bounded ones and the smooth functions detect smoothness:
$\rho oc$ gives a curve in $L(C^{\infty}(G, R))$ satisfying the boundedness condition, so we expect a
smooth limit group $T(s, t)$ by Theorem 1.5. Since we have convergence of $c(s, t/n)^{n}$ this
limit has to be a posterio equal to $\rho(\lim_{n\rightarrow\infty}c(s, t/n)^{n})$ . By initiality of $\rho$ we obtain the
$s$moothness of $\lim_{n\rightarrow\infty}c(s, t/n)^{n}$ as mapping to $G$ . The limit exists uniformly in all deriva-
tives, which means in particular that the $ge$nerator of $T$ is $c^{\prime}(O)$ by the Lemma 1.4. since we
can evaluate at $e$ to obtain $(foc)(s, t/n)^{n}\rightarrow f(\lim_{n\rightarrow\infty}c(s, t/n)^{n})$ in all derivatives with
respect to $s$ and $t$ . $\square $

REMARK 3.3. We have proved that the existence of an exponential map can be char-
acterized on “all” Lie groups in the $fr$amework of Lipschitz-metrizability. In the abelian case
the situation is simpler, we can reformulate the proposition and define in a simpler $way$ the
Lipschitz-metric $s$ .

COROLLARY 3.4. Let $G$ be an abelian Lie group, such that $c^{\infty}G$ is a topological
group, then $G$ is regular if and only $\iota fG$ is Lipschitz-metrizable. In particular (due to regu-
larity or Lipschitz-metrizability) for all $c$ : $R^{2}\rightarrow G$ with $c(s, O)=e$ the following estimates
are valid: On each compact $(s, t)$ -set there is a constant $M_{\alpha}$ such that

$d_{\alpha}(c(s,$ $\frac{t}{n})^{n}c(s, t)^{-1},$ $e)\leq M_{\alpha}t^{2}$

for all $n\geq 1$ .
PROOF. The addition$a1$ comment is a corollary of the theorem. Let $G$ be a Lipschitz-

metrizable abelian Lie group, then we have to show the stated estimate: Given $c$ : $R^{2}\rightarrow G$

with $c(s, 0)=e$ we can write by commutation and right invariance

$d_{\alpha}(c(s,$ $\frac{t}{n})^{n}c(s, t)^{-1},$ $e)\leq\sum_{i=1}^{n}d_{\alpha}(c(s,$ $\frac{t}{n})c(s,$ $\frac{it}{n})c(s,$ $\frac{(i-1)t}{n})^{-1},$ $e)$

$\leq\sum_{i=1}^{n}M_{\alpha}\frac{t^{2}}{n^{2}}=M_{\alpha}\frac{t^{2}}{n}$

for $n\geq 1$ . This estimate is obtained via
$d_{\alpha}(c(s, ut)c(s, vt),$ $c(s, (u+v)t))\leq M_{\alpha}t^{2}$

Let $G$ be a regular abelian Lie group. Then $G$ is locally $is$omorphic to its Lie algebra by
[MT98], consequently the topology on $G$ is given by the bomological topology on $g$ . We



54 JOSEF TEICHMANN

denote by $\Omega$ the set of bounded seminorms on $g$ .

$d_{k}(g, h)$ $:=\inf_{c\in C^{\infty}([01],G)},\int_{0}^{1}p(\delta^{r}c(t))dt$

is a well-defined right invariant halfmetric on $G$ for $ p\in\Omega$ . Right-invariance is clear by
definition, symmetry, too. Taking two curve$sc,$ $d\in C^{\infty}([0,1], G)$ with $c(O)=g,$ $c(1)=$

$d(O)=h$ and $d(1)=l$ , then $b$ $:=c\mu_{h^{-1}}d$ defines a smooth curve with $b(O)=g$ and
$b(1)=l$ , furthermore $\delta^{r}b(t)=\delta^{r}c(t)+\delta^{r}d(t)$ on $[0,1]$ due to commutativity (the adjoint
map is trivial). The Lipschitz-property is cle$ar$ by the following argument: Let $c$ : $R^{2}\rightarrow G$

be smooth mapping with $c(O, s)=e$ for $s\in R$, then

$d_{k}(c(u, s),$ $e$) $\leq\int_{0}^{1}p_{k}(\delta^{r}c(u, s)(t))dt=u\int_{0}^{1}p_{k}([\delta^{r}c](ut, s)])dt$

and consequently the supremum exists uniformly for $s$ in a compact interval. The rest follows
by regularity from the lemma. It remains to prove the topological property, but this is cle$ar$

due to the possibility to choose an exponenti$a1ch$art (see [MT98]). So we constructed the
essentials for Lipschitz-metrizability. $\square $

THEOREM 3.5. Let $G$ be a Lipschitz-metrizable convenient Lie group with $c^{\infty}G$ a
topological group, $h$ : $R^{2}\rightarrow G$ a smooth mapping with $h(s, O)=e$ and $\frac{\partial}{\partial t}|_{r=0}h(s, t)=X(s)$

and $c$ with $c(O)=e$ a smooth curve with $\delta^{r}c=X$ , then the product integral $\prod_{0}^{t}h(s, ds)$

exists and equals $c(t)$ . If $G$ is regular, then thefollowing estimates are validfor the Lipschitz-
metrics $d_{\alpha}$ :

$d_{\alpha}(p_{i}(s_{3}, t, c)(s_{1})p_{n}(s_{2}, t+s_{2}, c)(s_{1})c(s_{1}, s_{2}, t)^{-1}p_{i}(s_{3}, t, c)(s_{1})^{-1}, e)\leq M_{\alpha}t^{2}$

for all $i,$ $n\in N_{+}on$ compact $(s_{1}, s_{2,3}s, t)$ -sets given the smooth mapping $d$ : $R^{3}\rightarrow G$ with
$c(s_{1}, s_{2},0)=e$ .

PROOF. First we prove the convergence result to establish the estimate. Given a smooth
mapping $h$ : $R^{3}\rightarrow G$ with $h(s_{1}, s_{2}, O)=e$ , then we look at the product integral

$p_{n}(s_{2}, t, h)(s_{1})=\prod_{i=0}^{n-1}h(s_{1},$ $s_{2}+\frac{(n-i)(t-s_{2})}{n},$ $\frac{t-s_{2}}{n})$

at $s_{2}=0$ . Let $c:R^{2}\rightarrow G$ be a curve with $c(s_{1},0)=e$ and $\delta^{r}c_{s_{1}}(s_{2})=\frac{\partial}{\partial t}h(s_{1}, s_{2},0)$ .

$d_{\alpha}(\prod_{i=0}^{n-1}h(s_{1},$ $\frac{(n-i)t}{n},$ $\frac{t}{n}),$ $c(s_{1}, t))$

$\leq\sum_{i=0}^{n-1}d_{\alpha}(\prod_{j=1}^{i}c(s_{1},$ $\frac{(n-j+1)t}{n})c(s_{1},$ $\frac{(n-j)t}{n})\prod_{j=i}^{-1n-1}h(s\iota\frac{(n-j)t}{n},$ $\frac{t}{n})c(s_{1}, t)^{-1}$ ,

$\prod_{j=1}^{i+1}c(s_{1},$ $\frac{(n-j+1)t}{n})c(s_{1},$ $\frac{(n-j)t}{n})^{-1}\prod_{j=i+1}^{n-1}h(s_{1},$ $\frac{(n-j)t}{n},$ $\frac{t}{n})c(s_{1}, t)^{-1})$
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$\leq\sum_{i=0}^{n-1}d_{\alpha}(c(s_{1}, t)c(s_{1},$ $\frac{(n-i)t}{n})^{-1}h(s_{1},$ $\frac{(n-i)t}{n},$ $\frac{t}{n})c(s_{1},$ $\frac{(n-i-1)t}{n})$

$c(s_{1},$ $\frac{(n-i)t}{n})^{-1},$ $c(s_{1}, t)c(s_{1},$ $\frac{(n-i)t}{n})^{-1})\leq n\frac{t^{2}}{n^{2}}M_{\alpha}$

for $n\in N$ on compact $s_{1}$ -sets. The last step of the proof is done by the same arguments as in
the proof of Theorem 3.1. $\square $

THEOREM 3.6. Let $G$ be a Lipschitz-metrizable convenient Lie group with $c^{\infty}G$ a
topological group. For all smooth mappings $c$ : $R^{3}\rightarrow G$ with $c(s_{1}, s_{2},0)=e$ the following
estimate is valid

$d_{\alpha}(p_{i}(s_{3}, t, c)(s_{1})p_{n}(s_{2}, t+s_{2}, c)(s_{1})c(s_{1}, s_{2}, t)^{-1}p_{i}(s_{3}, t, c)(s_{1})^{-1}, e)\leq M_{\alpha}t^{2}$

for all $n\in N$ on compact $(s_{1}, s_{2}, s_{3}, t)$ -sets. Then all product integrals exist, furthemore the
right evolution operator given through these product integrals is smooth, so $G$ is regular.

PROOF. We shall apply the following abbreviation

$p_{i}(\frac{n-i}{n}t,$ $t,$ $c)(s_{1})=p_{n,i}(t, c)(s_{1})=\prod_{j=0}^{i}c(s_{1},$ $\frac{(n-j)t}{n},$ $\frac{t}{n})$

We can proceed directly to obtain the result by our methods. Given a smooth mapping
$c:R^{3}\rightarrow G$ with $c(s_{1}, s_{2},0)=e$ , we shall look at the product integral

$p_{n,i}(t, c)(s_{1})=\prod_{j=0}^{i}c(s_{1},$ $\frac{(n-j)t}{n},$ $\frac{t}{n})$

at $s_{2}=0$ . The notion allows to shorten the product: $0\leq i\leq n-1,$ $p_{n,n-1}=p_{n}$ .

$d_{\alpha}(p_{nm}(t, c)(s_{1}),$ $p_{n}(t, c)(s_{1}))$

$\leq\sum_{i=0}^{n-1}d_{\alpha}(p_{n,i}(t, c)(s_{1})\prod_{j=mi}^{nm-1}c(s_{1},$ $\frac{(nm-j)t}{nm},$ $\frac{t}{nm})p_{n}(t, c)(s_{1})^{-1}$ ,

$p_{n,i+1}(t, c)(s_{1})\prod_{j=m(i+1)}^{nm-1}c(s_{1},$ $\frac{(nm-j)t}{nm},$ $\frac{t}{nm})p_{n}(t, c)(s_{1})^{-1})$

$\leq\sum_{i=0}^{n}d_{\alpha}(p_{n,i}(t, c)(s_{1})\prod_{j=mi}^{m(i+1)-1}c(s_{1},$ $\frac{(nm-j)t}{nm},$ $\frac{t}{nm}),$ $p_{n,i+1}(t, c)(s_{1}))$
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$=\sum_{i=0}^{n-1}d_{\alpha}(p_{n,i}(t, c)(s_{1})\prod_{j=mi}^{m(i+1)-1}c(s_{1},$ $\frac{(nm-j)t}{nm},$ $\frac{t}{nm})$

. $c(s_{1},$ $\frac{(n-i-1)t}{n},$ $\frac{t}{n})^{-1}$ $p_{n,i}(t, c)(s_{1}))$

$=\sum_{i=0}^{n-1}d_{\alpha}(p_{n,i}(t, c)(s_{1})\prod_{j=0}^{m-1}c(s_{1},$ $\frac{(n-i-1)t}{n}+\frac{(m-j)t}{nm},$ $\frac{t}{nm})$

. $c(s_{1},$ $\frac{(n-i-1)t}{n},$ $\frac{t}{n})^{-1}p_{n,i}(t, c)(s_{1})^{-1},$ $e)\leq\sum_{i=0}^{n-1}M_{\alpha}\frac{t^{2}}{n^{2}}$

for $n\in N$ and compact $(s_{1}, t)$ -intervals due to given estimate. Furthermore by Theorem 1.5
and Lemma 1.4 we obtain the smoothness of these solution families. $\square $

COROLLARY 3.7. Let $G$ be a Lipschitz-metrizable convenient Lie group with $c^{\infty}G$ a
topological group, then thefollowing assertions are equivalent:

1. A smooth exponential map $exp:g\rightarrow G$ exists (a smooth right evolution map exists)

2. All simple product integrals converge in $C^{\infty}(R^{2}, G)$ (all product integrals converge
in $C^{\infty}(R^{3}, G)$ in th sense ofLemma 1.4).

COROLLARY 3.8. Let $G$ be a regular, smoothly connected Lipschitz-metrizable Lie
group, then the closure of the nomal subgroup generated by the image of the exponential
map is the whole group $G$ .

PROOF. Regularity implies the existenc$e$ of product integrals $\prod_{0}^{a}\exp(X(s)ds)$ , which
reach any point in the smoothly connected Lie group, consequently the closure of the normal
subgroup generated by the image of the exponenti$a1$ map is the whole group. $\square $

4. Product integration via linearization.

THEOREM 4.1. Let $G$ be a smoothly regular Lie group. Iffor each smooth mapping
$c$ : $R^{3}\rightarrow G$ with $c(r_{1}, r_{2},0)=e$ the approximations $p_{n}(s_{2}, t, c)(r_{1})$ lie in a sequentially
$c^{\infty}$ -compact set on compact $(r_{1}, s_{2}, t)$ -sets, then $G$ is regular.

THEOREM 4.2. Let $G$ be a smoothly regular Lie group. Iffor each smooth mapping
$c$ : $R^{2}\rightarrow G$ with $c(r_{1},0)=e$ the approximations $c(r_{1}, t/n)^{n}$ lie in a sequentially $c^{\infty}-$

compact set on compact $(r_{1}, t)$ -sets, then $G$ admits a smooth exponential map.

PROOF. The proofs for the theorems are identic $a1$ : A sequentially $c^{\infty}$ -compact set is
mapped by $\rho$ to a sequentially $c^{\infty}$ -compact set, which is bounded in any compatible locally
convex topology. Consequently we obtain the existence of the image product integral, but this
$im$age product integral stems pointwisely from $G$ via $\rho$ , because there are adherenc$e$ points
in the squentially $c^{\infty}$ -compact set, which have to be the unique limit points of the respective
sequences. $\rho$ is initial, so the limit curve has to be smooth and the uniform convergence in
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all derivatives in $L(C^{\infty}(G, R))$ implies uniform convergence in all derivatives in th$e$ sense of
Lemma 1.4. of the pro$ducts$ to the product integral. $\square $

PROPOSITION 4.3. Let $G$ be a smoothly regular Lipschitz-metrizable Lie group: Fur-
themore for all sets $K\subset G$ lying in a given fixed neighborhood of identity, such that
$d_{\alpha}(K, e)\leq N_{\alpha}$ for all $\alpha\in\Omega\iota f$ and only $\iota fK$ is relatively sequentially compact in the
topology of G. Then $G$ is regular, $i.e$. a smooth right evolution exists.

PROOF. Given a smooth mapping $c:R^{3}\rightarrow G$ with $c(s_{1}, s_{2},0)=e$ , then the products
$p_{n}c$an be estimated in the following $w$ay:

$d_{\alpha}(p_{n}(s_{2}, t)(s_{1}),$ $e$) $\leq\sum_{j=0}^{n-1}d_{\alpha}(c(s_{1},$ $\frac{(n-j)t}{n},$ $\frac{t}{n}),$ $e)\leq n\frac{t}{n}M_{\alpha}$

on compact $(s_{1}, s_{2}, t)$ -sets. Consequentl$y$ the approximations lie in a compact set for $t$ and $s$

small enough. If all approximations of product integral $s$ lie in $a$ sequentially compact set for
compact parameter sets, we can apply the regularity theorem of 1.5 to conclude regularity as
in the previous proof. $\square $

REMARK 4.4. This property can be viewed as a non-line$ar$ version of Arzela-Ascoli’s
theorem.

CONJECTURE 4.5. Let $G$ be a strong ILB-group, such that the associated Fr\’echet

space is Montel. $G$ is seen to be Lipschitz-metrizable and regular by the above considera-
tions. It is reasonable to expect that for all sets $K\subset G$ lying in a small neighborhood of
identity $U$ .

$d_{n}(K, e)\leq N_{n}$ for all $n$ if and only if $K$ is relatively $co$mpact in the topology of $G$ .
This would provide a simple procedure to solve non-autonomous differenti$a1$ equations of the
type $\delta^{r}c(t)=X(t)$ for $t\in R$ on the Lie group by “intrinsic methods”.
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