An Estimate for the Bochner-Riesz Operator on Functions of Product Type in \mathbf{R}^{2}

Hitoshi TANAKA
Gakushuin University
(Communicated by T. Kawasaki)

Abstract

In this paper we shall give $L^{p}\left(\mathbf{R}^{2}\right)$-boundedness of the Bochner-Riesz operator S_{δ} for $2<p<\infty$ and $\delta>0$, restricting it to functions of product type. In this range, $2<p<\infty$ and $\delta>0$, the strong L^{p}-estimate is valid for functions of product type but not for general functions.

1. Introduction and main theorem.

In this paper we shall prove a certain estimate for the Bochner-Riesz summing operator $S_{\delta}, \delta>0$, for functions of product type. We first recall definitions and state the main theorem.

For a function f on the d-dimensional Euclidean space $\mathbf{R}^{d}, d \geq 2$, the Bochner-Riesz operator $S_{\delta} f$ is defined by

$$
\left(S_{\delta} f\right)(x)=\int_{\mathbf{R}^{d}} e^{2 \pi i\langle x, \xi\rangle}\left(1-|\xi|^{2}\right)_{+}^{\delta} \hat{f}(\xi) d \xi
$$

Here, $t_{+}^{\delta}=t^{\delta}$ for $t>0$ and zero otherwise, and \hat{f} is the Fourier transform of f :

$$
\hat{f}(\xi)=\int_{\mathbf{R}^{d}} e^{-2 \pi i\langle\xi, x\rangle} f(x) d x
$$

$\mathcal{S}\left(\mathbf{R}^{d}\right), d \geq 1$, will denote the set of all Schwartz-class functions on \mathbf{R}^{d}.
ThEOREM 1. Let $d=2$. If $\delta>0$ and $2<p<\infty$, then the inequality

$$
\begin{equation*}
\left\|S_{\delta} f\right\|_{L^{p}\left(\mathbf{R}^{2}\right)} \leq C_{p, \delta}\|f\|_{L^{p}\left(\mathbf{R}^{2}\right)} \tag{1}
\end{equation*}
$$

holds for all f in $\mathcal{S}\left(\mathbf{R}^{2}\right)$ of the form $f(x)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$ with a constant $C_{p, \delta}$.
REMARK 2. By a standard approximation argument based on (1) we see that $S_{\delta} f$ can be defined for $f(x)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$ with $f_{j} \in L^{p}(\mathbf{R})$ and (1) holds for such f.

Before proceeding we shall make some remarks on the relation between known results and the above theorem. Early history of the boundedness problem for the Bochner-Riesz operator is summarized in $[\mathrm{Fe}]$. In [Fe] C. Fefferman suggested a possible connection with the Kakeya maximal operator. For the dimension two A. Córdoba [Co1], [Co2] gave a proof
of $L^{4}\left(\mathbf{R}^{2}\right)$-boundedness of S_{δ} using a boundedness estimate for the Kakeya maximal operator. The method of the proof in the present paper is based on the idea of [Ta2] combined with an idea of Córdoba developed in [Co1], [Co2]. However, the Kakeya maximal operator itself does not appear explicitly in this work.

We shall now review some more recent results which are relevant to our work. (See [So] and $[\mathrm{St}]$.)

The critical index $\delta(p)$ for $L^{p}\left(\mathbf{R}^{d}\right)$ is defined by

$$
\delta(p)=\max \left\{d\left|\frac{1}{2}-\frac{1}{p}\right|-\frac{1}{2}, 0\right\}, \quad 1 \leq p \leq \infty
$$

Note that $\delta(p)>0 \Leftrightarrow p \notin[2 d /(d+1), 2 d /(d-1)]$. It is known that a necessary condition in order that $f \rightarrow S_{\delta} f$ is bounded in $L^{p}\left(\mathbf{R}^{d}\right), p \neq 2$, is that $\delta>\delta(p)$. When $\delta(p)=0$ this is a theorem of C. Fefferman. In other cases it follows from the fact that the kernel of S_{δ} is in $L^{p}\left(\mathbf{R}^{d}\right)$ only when $\delta>\delta(p)$ for $1 \leq p \leq 2 d /(d+1)$. Indeed, the kernel of S_{δ} has the asymptotic form

$$
K_{\delta}(x)=|x|^{-(d+1) / 2-\delta} a(x)+O\left(|x|^{-(d+3) / 2-\delta}\right)
$$

with

$$
a(x)=C_{\delta} \cos (2 \pi|x|-(\pi / 2)(d / 2+\delta)-\pi / 4) .
$$

Choose f in $C_{0}^{\infty}\left(\mathbf{R}^{d}\right)$ as an approximation of Dirac function. Then for $1 \leq p \leq 2 d /(d+1)$

$$
\begin{equation*}
S_{\delta} f \in L^{p}\left(\mathbf{R}^{d}\right) \Rightarrow d<p\left(\frac{d+1}{2}+\delta\right) \Longleftrightarrow \delta>d\left(\frac{1}{p}-\frac{1}{2}\right)-\frac{1}{2}=\delta(p) \tag{2}
\end{equation*}
$$

REMARK 3. We note that f in (2) can be choosen in the form $f(x)=\prod_{l=1}^{d} f_{l}\left(x_{l}\right)$. This shows that Theorem 1 cannot be extended to the range $p \in[1,4 / 3)$.

As for sufficient conditions we quote the following theorem which is due to Carleson and Sjölin [CS] in the two-dimensional case and Tomas [To] in the higher-dimensional case.

Theorem 4 ([So, Theorem 2.3.1]). If
(i) $d \geq 3$ and $p \in[1,(2 d+1) /(d+3)] \cup[2(d+1) /(d-1), \infty]$ or
(ii) $d=2$ and $1 \leq p \leq \infty$,
it follows that

$$
\left\|S_{\delta} f\right\|_{L^{p}\left(\mathbf{R}^{d}\right)} \leq C_{p, \delta}\|f\|_{L^{p}\left(\mathbf{R}^{d}\right)}
$$

when $\delta>\delta(p)$.
J. Bourgain and T. Wolff improved the range of (i) (see [Bo] and [Wo]).

For functions of product type the following theorem is known.
THEOREM 5 ([Ig, Theorem 6]). If $\delta>0$ and $p \in[2 d /(d+1), 2]$, then the inequality

$$
\left\|S_{\delta} f\right\|_{L^{p}\left(\mathbf{R}^{d}\right)} \leq C_{p, \delta}\|f\|_{L^{p}\left(\mathbf{R}^{d}\right)}
$$

holds for all f in $L^{p}\left(\mathbf{R}^{d}\right)$ of the form $f(x)=\prod_{l=1}^{d} f_{l}\left(x_{l}\right)$.
Thus, the really new part of Theorem 1 is the case of $d=2,4<p<\infty$, and $0<$ $\delta \leq \delta(p)$ with f being of product type. We might emphasize, however, that this range of p,
δ is outside the range of necessary condition for the L^{p}-boundedness of S_{δ}. In this range the strong L^{p}-estimate is valid for functions of product type but not for general functions.

This paper is a part of the thesis of the doctor of science [Ta1] Chapter 6 submitted to Gakushuin university.

2. Reduction of the proof of Theorem 1.

In this section we shall reduce the proof of Theorem 1 to Theorem 6 below. This type of argument is essentially known and we basically follow [Mi].

In the following \breve{f} will denote the inverse Fourier transform of f.
Consider $\zeta(\xi)$ in $C^{\infty}\left(\mathbf{R}^{2}\right)$ such that $\zeta(\xi)$ equals 0 in some neighborhood of 0 and equals 1 in some neighborhood of $|\xi|=1$. If we can prove that for one such ζ the inequality

$$
\begin{equation*}
\left\|\left(\zeta(\xi)(1-|\xi|)_{+}^{\delta} \hat{f}(\xi)\right)^{\vee}\right\|_{p} \leq C_{p, \delta}\|f\|_{p} \tag{3}
\end{equation*}
$$

holds for all f in $\mathcal{S}\left(\mathbf{R}^{2}\right)$ of product type with a constant $C_{p, \delta}$ which is independent of f, then we will obtain the boundedness of S_{δ} in $L^{p}\left(\mathbf{R}^{2}\right)$ for such f by decomposing the multiplier as

$$
\left(1-|\xi|^{2}\right)_{+}^{\delta}=(1-\zeta(\xi))\left(1-|\xi|^{2}\right)_{+}^{\delta}+(1+|\xi|)^{\delta} \cdot \zeta(\xi)(1-|\xi|)_{+}^{\delta}
$$

Let $\alpha(t)$ in $C^{\infty}(\mathbf{R})$ be

$$
\alpha(t)= \begin{cases}1, & t \leq 1 \\ 0, & t>2\end{cases}
$$

Put $\beta(t)=\alpha(t)-\alpha(2 t)$. Note that $\operatorname{supp} \beta \subset[1 / 2,2]$ and

$$
\sum_{k=k_{0}}^{\infty} \beta\left(2^{k} t\right)=\alpha\left(2^{k_{0}} t\right)= \begin{cases}1, & 0<t \leq 2^{-k_{0}}, \\ 0, & t>2^{-k_{0}+1}\end{cases}
$$

It follows from this equality that

$$
\begin{aligned}
\alpha\left(2^{k_{0}}(1-|\xi|)\right)(1-|\xi|)_{+}^{\delta} & =\sum_{k=k_{0}}^{\infty} \beta\left(2^{k}(1-|\xi|)\right)(1-|\xi|)^{\delta} \\
& =\sum_{k=k_{0}}^{\infty} 2^{-k \delta} \beta\left(2^{k}(1-|\xi|)\right)\left(2^{k}(1-|\xi|)\right)^{\delta}
\end{aligned}
$$

Put $\varphi(t)=\beta(t) t^{\delta}$. If we can prove that for every $\varepsilon>0$ there exist $k_{0} \geq 2$ and a constant $C=C_{\varepsilon, \varphi, p}$ such that

$$
\begin{equation*}
\left\|\left(\varphi\left(2^{k}(1-|\xi|)\right) \hat{f}(\xi)\right)^{\vee}\right\|_{p} \leq C 2^{k \varepsilon}\|f\|_{p}, \quad \forall k \geq k_{0} \tag{4}
\end{equation*}
$$

holds for all f in $\mathcal{S}\left(\mathbf{R}^{2}\right)$ of product type, then we obtain

$$
\begin{equation*}
\left\|\left(\alpha\left(2^{k_{0}}(1-|\xi|)\right)(1-|\xi|)_{+}^{\delta} \hat{f}(\xi)\right)^{\vee}\right\|_{p} \leq C \sum_{k=k_{0}}^{\infty} 2^{(\varepsilon-\delta) k}\|f\|_{p} \leq C_{p, \delta}\|f\|_{p} \tag{5}
\end{equation*}
$$

by choosing $\varepsilon<\delta$. Thus, by (3) and (5) the proof of Theorem 1 is reduced to proving (4) $\left(\right.$ choose $\zeta(\xi)=\alpha\left(2^{k_{0}}(1-|\xi|)\right)$).

We introduce the operator $T_{a}, 0<a<1 / 4$, as follows. Let φ be a function in $C_{0}^{\infty}(\mathbf{R})$ with support in [1/2, 2]. For a function f in $\mathcal{S}\left(\mathbf{R}^{2}\right)$ define $T_{a} f$ by

$$
\left(T_{a} f\right)(x)=\int_{\mathbf{R}^{2}} e^{2 \pi i\langle x, \xi\rangle} \varphi\left(\frac{1-|\xi|}{a}\right) \hat{f}(\xi) d \xi
$$

Then (4) follows from the next theorem. In fact, take $a=2^{-k}$ in (6) and choose k_{0} so that $2^{k_{0} \varepsilon}>\sqrt{k_{0}}$.

THEOREM 6. Let $d=2$. For every $2<p<\infty$ there exists a constant C_{p} independent of f and a such that

$$
\begin{equation*}
\left\|T_{a} f\right\|_{L^{p}\left(\mathbf{R}^{2}\right)} \leq C_{p}\left(\log \left(\frac{1}{a}\right)\right)^{1 / 2}\|f\|_{L^{p}\left(\mathbf{R}^{2}\right)} \tag{6}
\end{equation*}
$$

holds for all f in $\mathcal{S}\left(\mathbf{R}^{2}\right)$ of the form $f(x)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$.
In the following C 's will denote constants independent of f and a. It will be different in each occasion.

3. Proof of Theorem 6.

3.1. Decomposition of T_{a} by an angular partition of unity. Hereafter, we denote by $[x]$ the largest integer not greater than x.

Fix $a, 0<a<1 / 4$. We shall consider a decomposition of T_{a}.
For the integers

$$
k \in\left[1,\left[\frac{\pi}{2 \sqrt{a}}\right]-1\right]
$$

and $m=0,1,2,3$ let the sequence $\left\{p_{k, m}\right\}$ on the unit circle S^{1} be

$$
p_{k, m}=\left(\cos \left(\frac{\pi m}{2}+\sqrt{a} k\right), \sin \left(\frac{\pi m}{2}+\sqrt{a} k\right)\right) .
$$

Choose $\psi \geq 0$ in $C_{0}^{\infty}(\mathbf{R})$ which equals 1 for $0 \leq t \leq 4$. Define the function $\psi_{k, m}(\omega)$ on S^{1} as

$$
\psi_{k, m}(\omega)=\psi\left(\frac{\left|\omega-p_{k, m}\right|^{2}}{a}\right)
$$

If $\omega \in S^{1}$, then $\psi_{k, m}(\omega) \neq 0$ for some k, m and the number of such k, m is uniformly bounded. If we put $\Psi_{k, m}(\omega)=\psi_{k, m}(\omega) /\left(\sum_{k^{\prime}, m^{\prime}} \psi_{k^{\prime}, m^{\prime}}(\omega)\right)$ where denominator does not vanish, then $\left\{\Psi_{k, m}\right\}$ is a partition of unity on S^{1}.

Let $\varphi_{k, m}(\xi)$ be

$$
\varphi_{k, m}(\xi)=\varphi\left(\frac{1-|\xi|}{a}\right) \Psi_{k, m}\left(\frac{\xi}{|\xi|}\right) .
$$

Let $\tau_{k, m}$ be

$$
\left(\tau_{k, m} f\right)(x)=\left(\varphi_{k, m}(\xi) \hat{f}(\xi)\right)^{\vee}(x)
$$

Thus, we have reduced the problem to the estimate

$$
\begin{equation*}
\left\|\sum_{k, m} \tau_{k, m} f\right\|_{L^{p}\left(\mathbf{R}^{2}\right)} \leq C_{p}\left(\log \left(\frac{1}{a}\right)\right)^{1 / 2}\|f\|_{L^{p}\left(\mathbf{R}^{2}\right)} \tag{7}
\end{equation*}
$$

Let N_{0} be $N_{0}=[\pi / 4 \sqrt{a}]$. Then without loss of generality we may restrict k and m to $1 \leq k \leq N_{0}$ and $m=0$. For simplicity we will write $\tau_{k, 0}, \varphi_{k, 0}$ and $p_{k, 0}$ as τ_{k}, φ_{k} and p_{k}, respectively.
3.2. What product type implies, 1. Let $I=\chi_{(-11,11)}$. For every $\varepsilon>0$ and an integer $j \in \mathbf{Z}$ the partial sum operator $P_{\varepsilon, j}$ is defined by

$$
\begin{equation*}
\left(P_{\varepsilon, j} f\right)(x)=\int_{\mathbf{R}} e^{2 \pi i x \xi} I\left(\frac{\xi}{\varepsilon}-j\right) \hat{f}(\xi) d \xi, \quad f \in \mathcal{S}(\mathbf{R}) \tag{8}
\end{equation*}
$$

Then we have the following lemma, where our assumption $2<p<\infty$ is essential.
Lemma 7. Suppose that $2<p<\infty$. There exists a constant C_{p} depending only on p such that

$$
\left\|\left(\sum_{j \in \mathbf{Z}}\left|P_{\varepsilon, j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(\mathbf{R})} \leq C_{p}\|f\|_{L^{p}(\mathbf{R})} .
$$

Proof. By a dilation argument it suffices to consider only the case $\varepsilon=1$. Then this lemma is a special case of Theorem 2.16 in Chapter V of [GR] (p489).

Let $N_{1}=\left[\log N_{0} / \log 2\right]$. For every k with $2^{l} \leq k<2^{l+1}, l=0,1, \cdots, N_{1}$, and $k \leq N_{0}$ let the integer γ_{1}^{k} be

$$
\gamma_{1}^{k}=\left[\frac{\cos \sqrt{a} k}{2^{l+1} a}\right]
$$

For $1 \leq k \leq N_{0}$ let the integer γ_{2}^{k} be

$$
\gamma_{2}^{k}=\left[\frac{\sin \sqrt{a} k}{\sqrt{a}}\right] .
$$

Then the following proposition holds.
Proposition 8. Fix $0 \leq l \leq N_{1}$. For every k with $2^{l} \leq k<2^{l+1}$ and $k \leq N_{0}$ the operator P_{1}^{k} is defined by

$$
\left(P_{1}^{k} f\right)(x)=\left(P_{2^{l+1} a, \gamma_{1}^{k}} f\right)(x), \quad f \in \mathcal{S}(\mathbf{R})
$$

where $P_{\varepsilon, j}$ is defined in (8). For every k with $1 \leq k \leq N_{0}$ the operator P_{2}^{k} is defined by

$$
\left(P_{2}^{k} f\right)(x)=\left(P_{\sqrt{a}, \gamma_{2}^{k}} f\right)(x), \quad f \in \mathcal{S}(\mathbf{R})
$$

Then, if f in $\mathcal{S}\left(\mathbf{R}^{2}\right)$ is of the form $f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$, we have

$$
\left(\tau_{k} f\right)(x)=\left(\tau_{k}\left(P_{1}^{k} f_{1} P_{2}^{k} f_{2}\right)\right)(x)
$$

Proof. It suffices to show that

$$
I\left(\frac{\xi_{1}}{2^{l+1} a}-\gamma_{1}^{k}\right) I\left(\frac{\xi_{2}}{\sqrt{a}}-\gamma_{2}^{k}\right)=1, \quad \forall \xi \in \operatorname{supp} \varphi_{k}
$$

Fix $\xi \in \operatorname{supp} \varphi_{k}$. It suffices to show that

$$
\begin{align*}
\left|\frac{\xi_{1}}{2^{l+1} a}-\gamma_{1}^{k}\right| \leq 11 \tag{9}\\
\left|\frac{\xi_{2}}{\sqrt{a}}-\gamma_{2}^{k}\right| \leq 11 \tag{10}
\end{align*}
$$

We prove only (9). (10) can be proved similarly.
Proof of (9). It follows that

$$
\begin{equation*}
\left|\xi_{1}-2^{l+1} a \gamma_{1}^{k}\right| \leq\left|\xi_{1}-\frac{\xi_{1}}{|\xi|}\right|+\left|\frac{\xi_{1}}{|\xi|}-\cos \sqrt{a} k\right|+\left|\cos \sqrt{a} k-2^{l+1} a \gamma_{1}^{k}\right| \tag{11}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|\xi_{1}-\frac{\xi_{1}}{|\xi|}\right|=\frac{\left|\xi_{1}\right|}{|\xi|}| | \xi|-1| \leq 2 a \tag{12}
\end{equation*}
$$

because $a / 2 \leq 1-|\xi| \leq 2 a$ for $\xi \in \operatorname{supp} \varphi_{k}$, and

$$
\begin{equation*}
\left|\cos \sqrt{a} k-2^{l+1} a \gamma_{1}^{k}\right|=2^{l+1} a\left|\frac{\cos \sqrt{a} k}{2^{l+1} a}-\gamma_{1}^{k}\right| \leq 2^{l+1} a \tag{13}
\end{equation*}
$$

by the definition of γ_{1}^{k}. Define θ as $\xi_{1} /|\xi|=\cos \theta$. Then we have $|\theta-\sqrt{a} k|<3 \sqrt{a}$ for $\xi \in \operatorname{supp} \varphi_{k}$. It follows from this inequality that

$$
\begin{align*}
\left\lvert\, \frac{\xi_{1}}{|\xi|}\right. & -\cos \sqrt{a} k \mid \leq \cos \sqrt{a} k-\cos \sqrt{a}(k+3) \tag{14}\\
& =\int_{\sqrt{a} k}^{\sqrt{a}(k+3)} \sin t d t \leq 3 \sqrt{a} \sin \sqrt{a}(k+3) \leq 3(k+3) a \leq 9 \cdot 2^{l+1} a
\end{align*}
$$

Here, the last inequality follows from $k<2^{l+1}$. From (11)-(14) we have proved (9).
3.3. Analysis in the x-space. Let U_{k} be the orthogonal transformation in \mathbf{R}^{2} defined by

$$
U_{k}=\left(\begin{array}{cc}
\cos \sqrt{a} k & -\sin \sqrt{a} k \\
\sin \sqrt{a} k & \cos \sqrt{a} k
\end{array}\right)
$$

Then $U_{k}^{-1} p_{k}=(1,0)$. Let the rectangle R_{a} be

$$
R_{a}=\left\{\left.\left(x_{1}, x_{2}\right)| | x_{1}\left|\leq \frac{1}{a}, \quad\right| x_{2} \right\rvert\, \leq \frac{1}{\sqrt{a}}\right\}
$$

Let $R_{a, k}$ be $R_{a, k}=U_{k} R_{a}$. Then we have the following basically known lemma (cf. [Co2]).

Lemma 9. In the situation above we have

$$
\begin{equation*}
\left|\stackrel{\vee}{\varphi_{k}}(x)\right| \leq C \sum_{m=1}^{\infty} 2^{-m} \frac{1}{\left|2^{m} R_{a, k}\right|} \chi_{2^{m} R_{a, k}}(x) \equiv K_{k}(x) \tag{15}
\end{equation*}
$$

The proof of this lemma can be found in [Mi] and is reproduced in Section 4.
Let $F_{k}(x)$ and $G_{k}(x)$ be

$$
F_{k}(x)=\left(P_{1}^{k} f_{1}\right)(x), \quad G_{k}(x)=\left(P_{2}^{k} f_{2}\right)(x)
$$

Then it follows from Proposition 8, Lemma 9 and $K_{k} \in L^{1}$ that

$$
\begin{equation*}
\left|\left(\tau_{k} f\right)(x)\right|=\left|\left(\tau_{k}\left(F_{k} G_{k}\right)\right)(x)\right|=\left|\left(\stackrel{\vee}{\varphi_{k}} *\left(F_{k} G_{k}\right)\right)(x)\right| \leq\left(K_{k} *\left(\left|F_{k}\right|\left|G_{k}\right|\right)\right)(x) \tag{16}
\end{equation*}
$$

3.4. What product type implies, 2. Using the same idea as in [Ta2], we shall prove the following proposition.

Proposition 10. Put $R=2^{m} R_{a, k}, N=1 / \sqrt{a}, \alpha=2^{m} / \sqrt{a}$ and $\left(\omega_{1}, \omega_{2}\right)=$ $(\cos \sqrt{a} k, \sin \sqrt{a} k)$. If $h(x) \geq 0$ is a locally integrable function of the form $h(x)=h_{1}\left(x_{1}\right) h_{2}\left(x_{2}\right)$, then we have

$$
\begin{aligned}
& \frac{1}{|R|} \int_{R} h(y) d y \\
& \quad \leq C\left\{\frac{1}{6 \omega_{1} N \alpha} \int_{-3 \omega_{1} N \alpha}^{3 \omega_{1} N \alpha} h_{1}\left(y_{1}\right)^{2} d y_{1}\right\}^{1 / 2}\left\{\frac{1}{6 \omega_{2} N \alpha} \int_{-3 \omega_{2} N \alpha}^{3 \omega_{2} N \alpha} h_{2}\left(y_{2}\right)^{2} d y_{2}\right\}^{1 / 2} .
\end{aligned}
$$

Proof. By Fubini's theorem we can select $s, 0 \leq|s| \leq \alpha$, such that

$$
\int_{R} h(y) d y \leq 2 \alpha \int_{-N \alpha}^{N \alpha} h\left(s\left(\omega_{2},-\omega_{1}\right)+t\left(\omega_{1}, \omega_{2}\right)\right) d t .
$$

By the Schwarz inequality we have

$$
\begin{aligned}
\text { RHS } & =2 \alpha \int_{-N \alpha}^{N \alpha} h_{1}\left(s \omega_{2}+t \omega_{1}\right) h_{2}\left(-s \omega_{1}+t \omega_{2}\right) d t \\
& \leq 2 \alpha\left(\int_{-N \alpha}^{N \alpha} h_{1}\left(s \omega_{2}+t \omega_{1}\right)^{2} d t\right)^{1 / 2}\left(\int_{-N \alpha}^{N \alpha} h_{2}\left(-s \omega_{1}+t \omega_{2}\right)^{2} d t\right)^{1 / 2} \\
& =2 \alpha\left(\frac{1}{\omega_{1}} \int_{-\omega_{1} N \alpha}^{\omega_{1} N \alpha} h_{1}\left(s \omega_{2}+t\right)^{2} d t\right)^{1 / 2}\left(\frac{1}{\omega_{2}} \int_{-\omega_{2} N \alpha}^{\omega_{2} N \alpha} h_{2}\left(-s \omega_{1}+t\right)^{2} d t\right)^{1 / 2} .
\end{aligned}
$$

Note that for $1 \leq k \leq N_{0}$ we have $1 / 2 N \leq \omega_{2} \leq \omega_{1}$. Hence we have

$$
\left|s \omega_{2}\right|+\left|\omega_{1} N \alpha\right| \leq 2 \omega_{1} N \alpha \quad \text { and } \quad\left|s \omega_{1}\right|+\left|\omega_{2} N \alpha\right| \leq 3 \omega_{2} N \alpha
$$

Thus, we obtain

$$
\frac{1}{|R|} \int_{R} h(y) d y \leq C\left\{\frac{1}{6 \omega_{1} N \alpha} \int_{-3 \omega_{1} N \alpha}^{3 \omega_{1} N \alpha} h_{1}\left(y_{1}\right)^{2} d y_{1}\right\}^{1 / 2}\left\{\frac{1}{6 \omega_{2} N \alpha} \int_{-3 \omega_{2} N \alpha}^{3 \omega_{2} N \alpha} h_{2}\left(y_{2}\right)^{2} d y_{2}\right\}^{1 / 2}
$$

It follows that

$$
\frac{1}{\left|2^{m} R_{a, k}\right|}\left(\chi_{2^{m} R_{a, k}} *\left(\left|F_{k}\right|\left|G_{k}\right|\right)\right)(x)=\frac{1}{\left|2^{m} R_{a, k}\right|} \int_{2^{m} R_{a, k}}\left|F_{k}\left(x_{1}-y_{1}\right)\right|\left|G_{k}\left(x_{1}-y_{1}\right)\right| d y .
$$

By putting $h(y)=\left|F_{k}\left(x_{1}-y_{1}\right)\right|\left|G_{k}\left(x_{1}-y_{1}\right)\right|$ in Proposition 10, we obtain

$$
\begin{align*}
& \frac{1}{\left|2^{m} R_{a, k}\right|}\left(\chi_{2^{m} R_{a, k}} *\left(\left|F_{k}\right|\left|G_{k}\right|\right)\right)(x) \\
& \quad \leq C\left\{\frac{1}{6 \frac{2^{m}}{a} \cos \sqrt{a} k}\left(\chi_{\left[-3 \frac{2^{m}}{a} \cos \sqrt{a} k, 3 \frac{2^{m}}{a} \cos \sqrt{a} k\right]} *\left|F_{k}\right|^{2}\right)\left(x_{1}\right)\right\}^{1 / 2} \\
& \quad\left\{\frac{1}{6 \frac{2^{m}}{a} \sin \sqrt{a} k}\left(\chi_{\left[-3 \frac{2^{m}}{a} \sin \sqrt{a} k, 3 \frac{2^{m}}{a} \sin \sqrt{a} k\right]} *\left|G_{k}\right|^{2}\right)\left(x_{2}\right)\right\}^{1 / 2} \\
& \quad \equiv C X_{k, m}\left(x_{1}\right)^{1 / 2} Y_{k, m}\left(x_{2}\right)^{1 / 2} . \tag{17}
\end{align*}
$$

Using Hölder's inequality and the Schwarz inequality, we have from (16), (15) and (17) that

$$
\begin{aligned}
\left|\sum_{k=1}^{N_{0}} \tau_{k} f(x)\right|^{p} & \leq\left(\sum_{k}\left|\left(\tau_{k}\left(F_{k} G_{k}\right)\right)(x)\right|\right)^{p} \\
& \leq C\left(\sum_{k} \sum_{m=1}^{\infty} 2^{-m} X_{k, m}\left(x_{1}\right)^{1 / 2} Y_{k, m}\left(x_{2}\right)^{1 / 2}\right)^{p} \\
& \leq C^{\prime} \sum_{m} 2^{-m}\left(\sum_{k} X_{k, m}\left(x_{1}\right)^{1 / 2} Y_{k, m}\left(x_{2}\right)^{1 / 2}\right)^{p} \\
& \leq C^{\prime} \sum_{m} 2^{-m}\left\{\left(\sum_{k} X_{k, m}\left(x_{1}\right)\right) \cdot\left(\sum_{k} Y_{k, m}\left(x_{2}\right)\right)\right\}^{p / 2}
\end{aligned}
$$

Hence we obtain

$$
\begin{align*}
\int_{\mathbf{R}^{2}} & \left|\sum_{k=1}^{N_{0}} \tau_{k} f(x)\right|^{p} d x \\
& \leq C^{\prime} \sum_{m=1}^{\infty} 2^{-m} \int_{\mathbf{R}}\left(\sum_{k} X_{k, m}\left(x_{1}\right)\right)^{p / 2} d x_{1} \cdot \int_{\mathbf{R}}\left(\sum_{k} Y_{k, m}\left(x_{2}\right)\right)^{p / 2} d x_{2} \tag{18}
\end{align*}
$$

Fix $w \geq 0$ in $L^{p /(p-2)}(\mathbf{R})$ (conjugate exponent of $p / 2$). Let M be the Hardy-Littlewood maximal operator. Then we have

$$
\begin{aligned}
\int_{\mathbf{R}}(& \left.\sum_{k=1}^{N_{0}} X_{k, m}(x)\right) w(x) d x \\
& =\int_{\mathbf{R}} \sum_{k}\left|F_{k}(y)\right|^{2}\left\{\frac{1}{6 \frac{2^{m}}{a} \cos \sqrt{a} k}\left(\chi_{\left[-3 \frac{2^{m}}{a} \cos \sqrt{a} k, 3 \frac{2^{m}}{a} \cos \sqrt{a} k\right]} * w\right)(y)\right\} d y \\
& \leq\left\{\int_{\mathbf{R}}\left(\sum_{k}\left|F_{k}(y)\right|^{2}\right)^{p / 2} d y\right\}^{2 / p} \cdot\left\{\int_{\mathbf{R}}((M w)(y))^{p /(p-2)} d y\right\}^{(p-2) / p} \\
& \leq C\left\{\int_{\mathbf{R}}\left(\sum_{k}\left|F_{k}(y)\right|^{2}\right)^{p / 2} d y\right\}^{2 / p}\|w\|_{L^{p /(p-2)}(\mathbf{R})} .
\end{aligned}
$$

Here, the last inequality follows from $L^{p /(p-2)}$ boundedness of M. Allowing $w \geq 0$ to vary in $L^{p /(p-2)}(\mathbf{R})$ freely, we obtain

$$
\begin{equation*}
\int_{\mathbf{R}}\left(\sum_{k=1}^{N_{0}} X_{k, m}(x)\right)^{p / 2} d x \leq C \int_{\mathbf{R}}\left(\sum_{k}\left|F_{k}(x)\right|^{2}\right)^{p / 2} d x \tag{19}
\end{equation*}
$$

Obviously, the same inequality holds for $Y_{k, m}$.
In the process of estimating the RHS of (19) and similar one for G_{k} we need a property of γ_{j}^{k}.

3.5. A property of γ_{j}^{k}.

Proposition 11. (i) Fix $0 \leq l \leq N_{1}$. For every $m, 2^{l} \leq m<2^{l+1}$, the number of n such that

$$
\gamma_{1}^{m}=\gamma_{1}^{n}, \quad 2^{l} \leq n<2^{l+1}
$$

is at most 7.
(ii) For every $m, 1 \leq m \leq N_{0}$ the number of n such that

$$
\gamma_{2}^{m}=\gamma_{2}^{n}, \quad 1 \leq n \leq N_{0}
$$

is at most 3.
Proof OF (i). Note that γ_{1}^{k} is a non-increasing sequence. We first assume that $m \leq n$. Then we have

$$
\begin{aligned}
& \gamma_{1}^{m} 2^{l+1} a \leq \cos \sqrt{a} m<\left(\gamma_{1}^{m}+1\right) 2^{l+1} a, \\
& \gamma_{1}^{m} 2^{l+1} a \leq \cos \sqrt{a} n<\left(\gamma_{1}^{m}+1\right) 2^{l+1} a
\end{aligned}
$$

and hence

$$
0 \leq \cos \sqrt{a} m-\cos \sqrt{a} n<2^{l+1} a .
$$

We see that

$$
\cos \sqrt{a} m-\cos \sqrt{a} n=\int_{\sqrt{a} m}^{\sqrt{a} n} \sin t d t \geq(n-m) \sqrt{a} \sin \left(\sqrt{a} 2^{l}\right) .
$$

Note that $\sin \left(\sqrt{a} 2^{l}\right) \geq \sqrt{a} 2^{l-1}$ because $\sqrt{a} 2^{l}<\pi / 2$. Therefore, we have

$$
(n-m) 2^{l-1} a<2^{l+1} a
$$

and hence n must satisfy $m \leq n \leq m+3$. Exchanging the role of m, n, we have $m-3 \leq n \leq m$ if $n \leq m$.

Proof of (ii). Note that γ_{2}^{k} is a non-decreasing sequence. We first assume that $m \leq n$. Proceeding as above we have

$$
0 \leq \sin \sqrt{a} n-\sin \sqrt{a} m<\sqrt{a} .
$$

We see that

$$
\sin \sqrt{a} n-\sin \sqrt{a} m=\int_{\sqrt{a} m}^{\sqrt{a} n} \cos t d t \geq(n-m) \frac{\sqrt{a}}{\sqrt{2}}
$$

Therefore, we have

$$
(n-m) \frac{\sqrt{a}}{\sqrt{2}}<\sqrt{a}
$$

and hence n must satisfy $m \leq n \leq m+1$. Exchanging the role of m, n, we have $m-1 \leq n \leq m$ if $n \leq m$.
3.6. Completion of the proof. Now, using Propositions 11 and Lemma 7, the RHS of (19) is estimated as

$$
\begin{align*}
& \int_{\mathbf{R}}\left(\sum_{k=1}^{N_{0}}\left|F_{k}(x)\right|^{2}\right)^{p / 2} d x \tag{20}\\
& \leq \int_{\mathbf{R}}\left(\sum_{l=0}^{N_{1}} \sum_{k=2^{l}}^{2^{l+1}-1}\left|F_{k}(x)\right|^{2}\right)^{p / 2} d x \\
& \leq C\left(N_{1}+1\right)^{p / 2-1} \sum_{l=0}^{N_{1}} \int_{\mathbf{R}}\left(\sum_{j \in \mathbf{Z}}\left|P_{2^{l+1} a, j} f_{1}(x)\right|^{2}\right)^{p / 2} d x \\
& \quad \leq C\left(N_{1}+1\right)^{p / 2}\left\|f_{1}\right\|_{p}^{p} \leq C\left(\log \left(\frac{1}{a}\right)\right)^{p / 2}\left\|f_{1}\right\|_{p}^{p}
\end{align*}
$$

The same inequality, but not including the logarithm factor, holds for $\boldsymbol{G}_{\boldsymbol{k}}$.
Thus, combining estimates (18), (19) and (20) we have finally proved (7) and proved Theorem 6.

4. Proof of Lemma 9.

The argument basically follows [Mi, p. 109-110].

Put $\kappa(\xi)=\psi\left(\frac{\left(\xi_{1}-|\xi|\right)^{2}+\xi_{2}^{2}}{|\xi|^{2} a}\right) \varphi\left(\frac{1-|\xi|}{a}\right)$ for $\xi \in\left\{1-2 a \leq|\xi| \leq 1-\frac{a}{2},\left|\xi_{2}\right| \leq\right.$ $\sqrt{5 a}\}$. If we can prove

$$
\begin{equation*}
|\stackrel{\vee}{\kappa}(x)| \leq C \sum_{m=0}^{\infty} 2^{-m} \frac{1}{\left|2^{m} R_{a}\right|} \chi_{2^{m} R_{a}}(x) \tag{21}
\end{equation*}
$$

then by the rotation argument everything reduces to this inequality.
Now, for every $N \in \mathbf{N}$ we shall prove

$$
\begin{equation*}
|\stackrel{\vee}{\kappa}(x)| \leq C_{N} a^{3 / 2}\left(1+a\left|x_{1}\right|+\sqrt{a}\left|x_{2}\right|\right)^{-N} \tag{22}
\end{equation*}
$$

If this can be done, (21) follows from the following observation.

$$
\begin{aligned}
& a^{3 / 2}\left(1+a\left|x_{1}\right|+\sqrt{a}\left|x_{2}\right|\right)^{-N} \leq a^{3 / 2}\left(1+\max \left(a\left|x_{1}\right|, \sqrt{a}\left|x_{2}\right|\right)\right)^{-N} \\
& \quad \leq a^{3 / 2} \sum_{m=0}^{\infty} \chi_{\left\{\max \left(a\left|y_{1}\right|, \sqrt{a}\left|y_{2}\right|\right) \leq 2^{m}\right\}}(x) 2^{-m N}=a^{3 / 2} \sum_{m=0}^{\infty} 2^{-m N} \chi_{2^{m} R_{a}}(x) \\
& \quad=\sum_{m=0}^{\infty} 2^{-m(N-2)} \frac{1}{\left|2^{m} R_{a}\right|} \chi_{2^{m} R_{a}}(x)
\end{aligned}
$$

Putting $N=3$, we have (21).
PROOF OF (22). By the elementary computations for every multi-indices $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ we see that

$$
\left|\left(\frac{\partial}{\partial \xi_{1}}\right)^{\alpha_{1}}\left(\frac{\partial}{\partial \xi_{2}}\right)^{\alpha_{2}} \kappa(\xi)\right| \leq C_{\alpha} a^{-\alpha_{1}-(1 / 2) \alpha_{2}}
$$

It follows from this inequality and $|\operatorname{supp} \kappa| \leq C a^{3 / 2}$ that

$$
\left|\left(a x_{1}\right)^{\alpha_{1}}\left(\sqrt{a} x_{2}\right)^{\alpha_{2}} \stackrel{\vee}{\kappa}(x)\right| \leq C_{\alpha} a^{3 / 2}
$$

Therefore, we obtain

$$
|\stackrel{\vee}{\kappa}(x)| \leq C_{N} a^{3 / 2}\left(\left(1+a\left|x_{1}\right|\right)\left(1+\sqrt{a}\left|x_{2}\right|\right)\right)^{-N} \leq C_{N} a^{3 / 2}\left(1+a\left|x_{1}\right|+\sqrt{a}\left|x_{2}\right|\right)^{-N}
$$

Thus, we have proved (22).

References

[Bo] J. Bourgain, Besicovitch type maximal operators and applications to Fourier analysis, Geom. Funct. Anal. 1 (1990), 147-187.
[Col] A. Córdoba, The Kakeya maximal function and the spherical summation multiplier, Amer. J. Math. 99 (1977), 1-22.
[Co2] A. Córdoba, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), 505-511.
[CS] L. Carleson and P. Sjölin, Oscillatory integrals and a multiplier problem for the disk, Studia Math. 44 (1972), 287-299.
[Fe] C. Fefferman, A note on the spherical summation multiplier, Israel J. Math. 15 (1973), 44-52.
[GR] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, NorthHolland Math. Stud. 116 (1985).
[Ig] S. IGARI, Interpolation of operators in Lebesgue spaces with mixed norm and its applications to Fourier analysis, Tôhoku Math. J. 38 (1986), 469-490.
[Mi] A. MiYaCHI, Oscillatory Integral Operators (in Japanese), Gakushuin University Lecture Notes in Mathematics 1.
[So] C. D. Sogge, Fourier Integrals in Classical Analysis, Cambridge Tracts in Math. 105 (1993).
[St] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press (1993).
[Ta1] H. Tanaka, The Kakeya maximal operator and the Riesz-Bochner operator on functions of special type, Gakushuin university (1998).
[Ta2] H. Tanaka, Some weighted inequalities for the Kakeya maximal operator on functions of product type, J. Math. Sci. Univ. Tokyo 6 (1999), 315-333.
[To] P. A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc. 81 (1978), 477-478.
[Wo] T. Wolff, An improved bound for Kakeya type maximal functions, Rev. Mat. Iberoamericana 11 (1995), 451-473.

Present Address:

Department of Mathematics, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588 Japan.
e-mail: hitoshi.tanaka@gakushuin.ac.jp

