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Introduction.

This paper is a continuation of [5]. As well known, a continuous map $\varphi$ on a metric space
is considered as a chaotic map if $\varphi$ has the following properties.

(1) The set of all periodic points for $\varphi$ is dense.
(2) $\varphi$ is one-sided topologically transitive.
(3) $\varphi$ depends sensitively on initial conditions.

These properties are concemed with the orbit of a given initial point and the interesting re-
lation among these three conditions was shown in [1]. Moreover, the chaotic property of the
orbit of a point for the logistic map $\lambda(x)=4x(1-x)$ has been pointed out since old times
(cf. [8]). In [5], we considered how a probability density function changed by the iteration
of a unimodal chaotic map and more generally we studied the behavior of a state changed by
the iteration of the transposed map $\alpha_{V(\varphi)}^{*}$ of $the*$-endomorphism $\alpha_{V(\varphi)}$ of a von Neumann
algebra associated with a chaotic map $\varphi$ . In the present paper, we develop this study into the
study in the case of a family of maps which includes not only unimodal maps but also those
measurable maps which have $n$ laps for $n\geq 1$ . We call each of those maps on a measure space
$X$ a map with $n$ laps ($MWnL$ for short, Definition 2.1) and show some results conceming the
limit of the orbit of a state. The following is one of the statements concerning our main sub-
ject, which is considered as an important property of chaotic maps in addition to the above
three properties.

(4) For any state, its orbit determined by an $MWnL\varphi$ satisfying some conditions con-
verges to a unique state with respect to a norm topology.

We express Property (4) more precisely. The following is the most familiar form of (4)

for some chaotic maps $\varphi’ s$ , which are $MWnL’ s$ defined on a measure space (X, $m$);

(4-1) $\lim_{k\rightarrow\infty}\int_{X}f(\varphi^{k}(x))\eta(x)dm=\int_{X}f(x)|e(x)|^{2}dm$
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for any $f$ in $L^{\infty}(X)$ and $\eta\geq 0$ with $\int_{X}\eta(x)dm=1$ , where $e$ is a function in $L^{2}(X)$ with
$\int_{X}|e(x)|^{2}dm=1$ . In the context of the duality between $L^{1}(X)$ and $L^{\infty}(X)$ , the equality in
(4.1) is written as follows:

(4-2) $\lim_{k\rightarrow\infty}\int_{X}((A_{\varphi}^{*})^{k}f)(x)\eta(x)dm=\lim_{k\rightarrow\infty}\int_{X}f(x)(A_{\varphi}^{k}\eta)(x)dm=\int_{X}f(x)|e(x)|^{2}dm$ ,

where $A_{\varphi}$ is Perron Frobenius operator on $L^{1}(X)$ . This means that the sequence $\{A_{\varphi}^{k}\eta\}$ con-
verges to $|e|^{2}$ in $L^{1}(X)$ with respect to the a $(L^{1}(X), L^{\infty}(X))$ -topology, and it is our important
purpose to show that this convergence holds with respect to the norm topology in $L^{1}(X)$ . By
considering $\eta$ as a vector state $\omega\sqrt{\eta}$ ’ the equality is formally written as follows:

(4-3) $\lim_{k\rightarrow\infty}(A_{\varphi}^{k}(\omega_{\sqrt{\eta}}))(f)=\omega_{\sqrt{e}}(f)$ .

The operator $A_{\varphi}$ is extended to the transposed map $\alpha_{V(\varphi)}^{*}$ , on the predual $M_{*}$ of a von Neu-
mann algebra $M$ on $L^{2}(X)$ , if $M$ is invariant for $\alpha_{V(\varphi)}$ . Moreover (4-3) is extended to the
following form: for any $\xi$ in some Hilbert subspace $L^{2}(X)_{e}$ of $L^{2}(X)$ , we have

(4-4) $\lim_{k\rightarrow\infty}(aV(\varphi)*)^{k}(\omega_{\xi})=\omega_{e}$

with respect to the nom topology in the predual $M_{*}$ of a sufficiently large von Neumann
algebra $M$ on $L^{2}(X)$ .

In Section 1, we discuss the theorems which yield Property (4). Though those theorems
were studied in [5], we show in the present paper some more precise and generalized results
and give them complete proofs. Furthermore, in the first part of Section 2 until Example
2.10, we show Property (4) conceming $MWnLs$ by applying the theorems in Section 1 and
giving some concrete examples. In this discussion, the families of isometries associated with
$MWnL’ s$ play an important role. In the remainder of Section 2, we discuss the relation between
the functional analytical property of the isometries associated with a given $MWnL$ and the
measure theoretical property of th$e$ map. As mentioned above, Property (4) is closely related
to the property of strong-mixing about measurable maps. Of course, in the case of (4.4), if
the considering Hilbert space $L^{2}(X)_{e}$ coincides with the whole space $L^{2}(X)$ , the former is
stronger than the latter and in general the latter does not imply the former, that is, the property
of strong-mixing do not imply norm convergence. In Section 3, we discuss the property of
norm convergence of the orbit of a state for the case of MWIL ($MWnL$ for $n=1$ ), and
analyze the difference between property of strong-mixing and norm convergence for the case
of Baker’s transformation.

Finally, we note that the notation $N$ and $C$ denote the set of all positive integers and the
set of all complex numbers respectively.
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1. $The*$-endomorphism of a von Neumann algebra associated with a family of
isomorphisms.

Let $\mathcal{H}$ be a separable complex Hilbert space with inner product $\langle\xi, \eta\rangle$ and norm $||\xi||=$

$\sqrt{(\xi,\xi\rangle}$. Moreover let $\{V_{i}\}_{i=1}^{n}$ be a family of isometries on $\mathcal{H}$ satisfying the following prop-
erty.

(A-1) $\{V_{i}V_{i}^{*}\}_{i=1}^{n}$ is a set of mutually orthogonal projections and $\sum_{i=1}^{n}V_{i}V_{i}^{*}=I$ .

Of course, this family $\{V_{i}\}_{i=1}^{n}$ on $\mathcal{H}$ is the generators of the image of a representation of
Cuntz-algebra $\mathcal{O}_{n}$ (cf. [3]) and thus we call it a family of isometries satisfying Cuntz property
(f.i. $c$ . for short). Moreover we can define $a*$ -endomorphism $\alpha_{V}$ of the full operator algebra
$B(\mathcal{H})$ as follows:

(A-2) $\alpha_{V}(T)=\sum_{i=1}^{n}V_{i}TV_{i}^{*}$ $(T\in B(\mathcal{H}))$ .

For positive integers $n$ and $k$ , we denote by $I(n)$ the set $\{$ 1, 2, $\cdots$ , $n\}$ and $I(n)^{k}$ the set of all
k-tuples $\mu=$ $(i_{1}, \cdots , i_{k})$ with $i_{j}$ in $I(n)$ . For $\mu$ in $I(n)^{k}$ we denote by $V(\mu)$ the isometry
$V_{i_{1}}V_{i_{2}}\cdots V_{i_{k}}$ on $\mathcal{H}$ . Then {V $(\mu)|\mu\in I(n)^{k}$ } is a family of isometries whose final projections
are mutually orthogonal and $\alpha_{V}^{k}$ is written as follows:

(A-3)
$\alpha_{V}^{k}(T)=\sum_{\mu\in I(n)^{k}}V(\mu)TV(\mu)^{*}$

$(T\in B(\mathcal{H}))$ .

Here we show an important property conceming unit vectors which are fixed by $V_{1}$ .

LEMMA 1.1. $Let\{V_{i}\}_{i=1}^{n}$ be anfi.c. $on\mathcal{H}andeaunitvectorin\mathcal{H}suchthatV_{1}e=e$ .
We put

$ONS(e, V)=\bigcup_{k=1}^{\infty}\{V(\mu)e|\mu\in I(n)^{k}\}$ .

Then $ONS(e, V)$ is an orthonormal system.

PROOF. First, let $k$ and $\ell$ are positive integers such that $ k<\ell$ . For $\mu=$ $(i_{1}, \cdots , i_{k})$ in
$I(n)^{k}$ , we put $\mu^{\prime}=(i_{1}, \cdots , i_{k}, 1, \cdots , 1)$ in $I(n)^{\ell}$ . Then, since $V_{1}e=e$ , we have $V(\mu^{\prime})e=$

$V(\mu)e$ . Next, suppose that $V(\mu_{1})e\neq V(\mu_{2})e$ for $\mu_{1}$ in $I(n)^{k_{1}},$
$\mu_{2}$ in $I(n)^{k_{2}}$ and $k_{1}\leq k_{2}$ .

By the first mention we can assume that $k_{1}=k_{2}$ , because, if necessary, we can take $\mu_{1}^{\prime}$ in
$I(n)^{k_{2}}$ such that V $(\mu_{1}^{\prime})e=V(\mu_{1})e$ . Therefore we have $\mu_{1}\neq\mu_{2}$ in $I(n)^{k_{2}}$ . Hence the final
projections of $V(\mu_{1})$ and $V(\mu_{2})$ are orthogonal, and thus we have the conclusion. q.e. $d$ .

In the case of $n\geq 2$ , an orthonormal system $ONS(e, V)$ in the above lemma is regarded
as a sequence { $e\ell 1_{\ell=1}^{\infty}$ which is inductively defined as follows:

(B) $e_{1}=e$ and $ e_{(\ell-1)n+i}=V_{i}e\ell$ , $(i\in I(n), \ell\in N)$ .
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REMARK. (1) In the case where $V_{i}e=e$ for $i\neq 1$ , the set $ONS(V, e)$ is also an
orthonormal system and canonically ordered as $e_{1}=V_{i}e$ and so on in the same fashion as in
the case of $i=1$ .

(2) $ONS(V, e)$ is a function system of order $n$ in the sense of [2: Definition 2.1].

(3) Let $e$ and $f$ be two orthogonal unit vectors in $\mathcal{H}$ such that $V_{i}e=e$ and $V_{j}f=f$ .
Then if $i\neq j,$ $ONS(e, V)$ and $ONS(f, V)$ are orthogonal. However if $i=j,$ $ONS(e, V)$

and $ONS(f, V)$ are not necessarily orthogonal (cf. Examples 2.19, 2.20).

(4) In the case of $n=1,$ $ONS(e, V)$ consists of only one vector $\{e\}$ .
The following is a key lemma in the present paper, so we give a complete proof.

LEMMA 1.2. Let $ONS(e, V)=\{e\ell 1_{\ell=1}^{\infty}$ be as in Lemma 1.1 and suppose $n\geq 2$.
Then, for a fixed positive integer $k$ and an arbitrary positive integer $\ell\leq k$ , there exists a
unique k-tuple $(i_{1}, \cdots , i_{k})$ in $I(n)^{k}$ such that

$V(\mu)^{*}e\ell=\left\{\begin{array}{ll}e_{1} & if \mu=(i_{1}, \cdots i_{k}),\\0 & otherwise,\end{array}\right.$

where $\mu$ is in $I(n)^{k}$ .
PROOF. First we write $\ell=(\ell_{1}-1)n+i_{1}\leq k$ and obtain inductively a finite decreasing

sequence { $\ell_{j}I_{j=1}^{k^{\prime}}(k^{\prime}\leq k)$ such that

$\ell_{j}=(\ell_{(j+1)}-1)n+i_{(j+1)}$ and $\ell_{k^{\prime}}=1$ .

By Definition (B) of $e_{\ell}’ s$ we have $V_{i_{tJ+1)}}e\ell_{(J+1)}=e\ell_{j}$ and thus $V_{i_{(j+1)}}^{*}e\ell_{j}=e\ell_{(j+1)}$ . Put

$\mu_{0}=$
$(i_{1}, \cdots , i_{k^{\prime}}, 1, \cdots , 1)\in I(n)^{k}$ . Then we have

$V(\mu_{0})^{*}e\ell=V_{1}^{*}\cdots V_{1}^{*}V_{i_{k}}^{*},$ $\cdots V_{i_{1}}^{*}e\ell=e_{1}=e$ .

Furthermore, for $\mu$ in $I(n)^{k}$ with $\mu\neq\mu_{0}$ , we have $V(\mu)^{*}e\ell=V(\mu)^{*}(\mu_{0})e_{1}=0$ . q.e.d.

Let $M$ be a von Neumann algebra on $\mathcal{H}$ which is invariant for $\alpha_{V}$ . Then $\alpha_{V}^{k}$ is also a
$*$-endomorphism of $M$ for any positive integer $k$ . We denote by $M_{*}$ the predual of $M$ with
norm $||\cdot||_{1}$ and by $\alpha_{V}^{*}$ the transposed map of $\alpha_{V}$ with respect to the duality $M$ and $M_{*}$ , that
is, $\alpha_{V}^{*}(\omega)(T)=\omega(\alpha_{V}(T)),$ $(T\in M, \omega\in M_{*})$ . Then we have that, for any positive element
$\omega$ in $M_{*}$ ,

$\Vert\alpha_{V}^{*}(\omega)\Vert_{1}=\Vert\alpha_{V}^{*}(\omega)(I)\Vert=|\omega(\alpha_{V}(I))|=|\omega(I)|=\Vert\omega\Vert_{1}$ ,

where $I$ is the identity operator on $\mathcal{H}$ . In particular, if $\omega$ is a state, then $\alpha_{V}^{*}(\omega)$ is also a state
in $M_{*}$ . For a vector $\xi$ in $\mathcal{H}$ , we denote by $\omega\xi$ a positive linear functional of $M$ defined by
$\omega_{\xi}(T)=(T\xi, \xi),$ $(T\in M)$ . Especially, in the case of $||\xi\Vert=1,$ $\omega_{\xi}$ is a state and called a
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vector state in $M_{*}$ associated with the unit vector $\xi$ , and it follows that

$\alpha_{V}^{*}(\omega_{\xi})(T)=\langle\alpha_{V}(T)\xi,$ $\xi$ ) $=\omega_{\xi}(\alpha_{V}(T))=\omega_{\xi}(\sum_{i=1}^{n}V_{i}TV_{i}^{*)}$

$=\sum_{i=1}^{n}$ . T $V_{i}^{*}\xi,$ $ V_{i}^{*}\xi$ ) $=\sum_{i=1}^{n}\omega_{V_{i}^{*}\xi}(T)$ .

Hence we have

(C-1) $\alpha_{V}^{*}(\omega_{\xi})=\sum_{i=1}^{n}\omega_{V_{i}^{*}\xi}$ ,

(C-2)
$(\alpha_{V}^{*})^{k}(\omega_{\xi})=\sum_{\mu\in I(n)^{k}}\omega_{V(\mu)^{*}\xi}$

.

Hence we are interested in the behavior of the sequence { $\sum_{\mu\in I(n)^{k}(\mu)\xi}\omega_{V}*1_{k=1}^{\infty}$ . Now, in the
case where $e$ is a unit vector such that $V_{1}e=e$ , that is, it is an eigenvector for the eigenvalue
1 of $V_{1}$ , we denote by $\mathcal{H}_{e}$ the subspace of $\mathcal{H}$ spanned by $ONS(e, V)$ . Then $\mathcal{H}$ is decomposed
to the subspaces $\mathcal{H}_{e}$ and $\mathcal{H}_{e}^{\perp}$ , which are invariant for $\{V_{i}V_{i}^{*}\}_{i=1}^{n}$ . Needless to say, when
$\mathcal{H}=L^{2}(X)$ for a measure space (X, $m$ ), the notation $L^{2}(X)_{e}$ means $\mathcal{H}_{e}$ .

PROPOSITION 1.3. Let $\{V_{i}\}_{i=1}^{n}$ be an $fi.c$ . on $\mathcal{H}$ . If there exists a unit vector $e$ such
that $V_{1}e=e$ , then for any unit vector $\xi$ in the subspace $\mathcal{H}_{e}$ itfollows that

$\lim_{k\rightarrow\infty}(\alpha_{V}^{*})^{k}(\omega_{\xi})=\omega_{e}$ $(w.r.t. thenormtopologyinB(\mathcal{H})_{*})$ .

PROOF. In the case of $n=1$ , we have $\mathcal{H}_{e}=$ { $ce|c$ is a complex number}, and thus
$\alpha_{V}^{*}(\omega_{\xi})=\alpha_{V}^{*}(\omega_{e})=\omega_{e}$ for any unit vector $\xi$ in $\mathcal{H}_{e}$ . Now suppose that $n\geq 2$ . Let $\xi$ be a
unit vector in $\mathcal{H}_{e}$ and $\epsilon$ an arbitrary small positive number $(\epsilon<3)$ . Then $\xi$ has the Fourier
expansion $\xi=\sum_{l=1}^{\infty}c\ell e\ell$ with respect to $ONS(e, V)=\{e\ell 1_{\ell=1}^{\infty}$ and there exists a positive
integer $K$ such that

$\Vert\xi-\sum_{\ell=1}^{k}c\ell e\ell\Vert=(1-\sum_{\ell=1}^{k}|C\ell|^{2})^{Z}1<\frac{\epsilon}{3}$

for all $k\geq K$ . Let $k\geq K$ and put $\xi_{k}=\sum_{\ell=1}^{k}c\ell e\ell$ . For an operator $T$ in $B(\mathcal{H})$ with $\Vert T\Vert\leq 1$ ,

by Property (A.3) and Lemma 1.2, we have

$(\alpha_{V}^{k}(T)\xi_{k},$ $\xi_{k}\rangle$ $=\sum_{\mu\in I(n)^{k}}\sum_{\ell,j=1}^{k}\langle TV(\mu)^{*}c\ell e\ell, V(\mu)^{*}c_{j}e_{j}\rangle=(\sum_{\ell=1}^{k}|c\ell|^{2})(Te_{1},$
$ e_{1}\rangle$ .
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Thus it follows that

$|(\alpha_{V}^{*})^{k}(\omega_{\xi})(T)-\omega_{e}(T)|$

$=|(\alpha_{V}^{k}(T)\xi, \xi)-(Te_{1}, e_{1})|$

$\leq|(\alpha_{V}^{k}(T)\xi, \xi)-(\alpha_{V}^{k}(T)\xi_{k}, \xi)|+|(\alpha_{V}^{k}(T)\xi_{k}, \xi\rangle-(\alpha_{V}^{k}(T)\xi_{k}, \xi_{k})|$

$+|(\alpha_{V}^{k}(T)\xi_{k}, \xi_{k})-(Te_{1}, e_{1})|$

$\leq\Vert\alpha_{V}^{k}(T)||\cdot\Vert\xi-\xi_{k}\Vert\cdot\Vert\xi\Vert+|I\alpha_{V}^{k}(T)\Vert\cdot\Vert\xi_{k}\Vert\cdot||\xi-\xi_{k}\Vert$

$+|\sum_{\ell=1}^{k}|c\ell|^{2}-1|\cdot||T\Vert\cdot\Vert e_{1}||^{2}$

$<(\epsilon/3)+(\epsilon/3)+(\epsilon/3)^{2}<\epsilon$ .

Hence we have

$||(\alpha_{V}^{*})^{k}(\omega_{\xi})-\omega_{e}||_{1}<\epsilon$ . q.e.d.

Consequently we obtain the following theorem, which has more precise form than that
of [5, Theorem 2.2.3]

THEOREM 1.4. Let $\{V_{i}\}_{i=1}^{n}$ be an $fi.c$. on $\mathcal{H}$. If there exists a unit vector $e$ such that
$V_{1}e=e$ , thenfor any state $\omega$ of theform $\omega=\sum_{\ell=1}^{\infty}\omega_{\xi_{\ell}}$ where $\xi_{\ell}’ s$ are in $\mathcal{H}_{e}$ , itfollows that

$\lim_{k\rightarrow\infty}(\alpha_{V}^{*})^{k}(\omega)=\omega_{e}$ ($wr.t$. the nom topology in $B(\mathcal{H})_{*}$).

PROOF. Let $\epsilon>0$ be given. Since $||\omega||_{1}=\sum_{\ell=1}^{\infty}||\xi_{\ell}||^{2}=1$ , there exists a positive
integer $L$ such that

$|1-\sum_{\ell=1}^{L}\Vert\xi_{\ell}\Vert^{2}|<\epsilon/3$ .

Moreover Proposition 1.3 implies that there exists an positive integer $K$ such that for each $\omega\xi_{\ell}$

$(\ell=1, \cdots L)$ and any $k>K$ it follows that

$||(\alpha_{V}^{*})^{k}(\omega_{\xi\ell})-\Vert\xi_{\ell}||^{2}\omega_{e}||_{1}<\Vert\xi_{\ell}\Vert^{2}\epsilon/3$ .

Hence for any $k>K$ we have

11 $(\alpha_{V}^{*})^{k}(\omega)-\omega_{e}||l$

$\leq||(\alpha_{V}^{*})^{k}(\omega)-(\alpha_{V}^{*})^{k}(\Sigma_{\ell=1}^{L}\omega_{\xi_{\ell}})||_{1}+||(\alpha_{V}^{*})^{k}(\Sigma_{\ell=1}^{L}\omega_{\xi_{\ell}})-\Sigma_{\ell=1}^{L}||\xi_{\ell}||^{2}\omega_{e}||l$

$+||\Sigma_{\ell=1}^{L}||\xi_{\ell}||^{2}\omega_{e}-\omega_{e}||_{1}$

$\leq||\omega-\sum_{<}\ell L=1\omega_{\xi_{\ell}}\Vert_{1}+\sum_{\epsilon(\epsilon/3)+(\Sigma_{\ell=1}^{L}||\xi_{\ell}||^{2}/3)+}\ell=1L$

I
$(\epsilon/3)|\leq\epsilon q.ed(\alpha_{V}^{*})^{k}(\omega_{\xi_{\ell}}).-\Vert\xi_{\ell}\Vert^{2}\omega_{e}\Vert_{1}+|\Sigma_{\ell=1}^{L}\Vert\xi_{\ell}\Vert^{2}-1|\cdot||\omega.|_{1}$
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Since every state in the predual of $B(\mathcal{H})$ is of the form in Theorem 1.4 ([7, Chapter II,

Proposition 3.20]), we have the following.

COROLLARY 1.5. $Let\{V_{i}\}_{i=1}^{n}$ be anfi.c. $on\mathcal{H}andeaunitvectorsuchthatV_{1}e=e$.
If $ONS(e, V)$ is complete, then for any state $\omega$ in the predual $B(\mathcal{H})_{*}ofB(\mathcal{H})$ itfollows that

$\lim_{k\rightarrow\infty}(\alpha_{V}^{*})^{k}(\omega)=\omega_{e}$ ($wr.t$. the norm topology in $B(\mathcal{H})_{*}$ ).

Before stating the following proposition, we confirm a notation about tensor product.
Let $M$ be a von Neumann algebra on a Hilbert space $\mathcal{H}$ and $M_{n}$ the full matrix algebra on
n-dimensional complex Hilbert space $C^{n}$ . The notation $M_{n}\otimes M$ means the von Neumann
algebra which is the tensor product of $M_{n}$ and $M$ on th$e$ Hilbert space $C^{n}\otimes \mathcal{H}$ . Moreover $M^{\prime}$

means the commutant of $M$ on $\mathcal{H}$ .
PROPOSITION 1.6. Let $M$ be a von Neumann algebra on $\mathcal{H}$ and { $V_{i}1_{1=1}^{n}$ and $\{W_{i}\}_{i=1}^{n}$

a couple of$f$ i.c.’s on $\mathcal{H}$ . Suppose that $M$ is invariant for $\alpha_{V}$ and $\alpha_{W}$ . Then the following
conditions are equivalent.

(1) $\alpha_{W}=\alpha_{V}$ on $M$ .

(2) $(W_{1}, \cdots W_{n})=(V_{1}, \cdots , V_{n})\left(\begin{array}{lll}H_{11} & & H_{1n}\\| & \ddots & |\\H_{nl} & & H_{nn}\end{array}\right)$ , where the matrix $[H_{i,j}]$ is a

unitary element in $M_{n}\otimes M^{\prime}$ .

The proof is omitted since it can be given similarly to that of [5, Proposition 2.2.4].

COROLLARY 1.7. Let $M$ and $\{V_{i}\}_{i=1}^{n},$ $\{W_{i}\}_{i=1}^{n}$ be the same as in Proposition 1.6If
$W_{1}$ has an eigenvalue 1 with a unit eigenvector $e$ such that $ONS(e, W)$ is complete, then for
any state $\omega$ in $M_{*}we$ have

$\lim_{k\rightarrow\infty}(\alpha_{V}^{*})^{k}(\omega)=\omega_{e}$ ($w.r.t$. the norm topology in $M_{*}$).

REMARK. Each $W_{i}$ in Proposition 1.7 is of the form $W_{i}=\sum_{j=1}^{n}V_{j}H_{ji},$ $(i\in I(n))$ .
The equation (2) conceming matrix in the above proposition is sometimes written for short
such as $W=VH$ .

2. Chaotic maps and the behavior of the orbit of a state.

In this paper (X, $m$ ) means a $\sigma- finite$ measure space. For a measurable subset $Y$ of $X$ ,

we denote by $(Y, m)$ the canonical measure subspace. Let $(Y, m)$ and $(Z, m)$ be two measure
subspaces of (X, $m$ ). A map $\varphi$ of $Y$ into $Z$ is called a non-singular map of $Y$ onto $Z$ if $\varphi$

satisfies the following condition.
(D-1) There exist two null sets $N_{Y}$ and $N_{Z}$ such that $\varphi$ is a bijective map of $Y\backslash N_{Y}$ onto

$Z\backslash N_{Z}$ .
(D-2) $\varphi$ is bimeasurable.
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(D-3) Two measures $m$ and $ mo\varphi$ on $X$ are mutually absolutely continuous in the sense
that, for any measurable set $E$ in $Y,$ $m(E)=0$ if and only if $mo\varphi(E)=0$ , where
$mo\varphi(E)=m(\varphi(E))$ .

Here we note notation conceming non-singular maps $\varphi’ s$ of $(Y, m)$ onto $(Z, m)$ .
(E-1) The Radon-Nikodym derivative for $ m\circ\varphi$ with respect to $m$ is denoted by $\frac{dmo\varphi}{dm}$

(E-2) $\varphi^{0}(x)=xand\varphi^{k}(x)=\varphi(\varphi^{k-1}(x))$ fora positive integer k.
(E-3) When $Y=X,$ $\alpha_{\varphi}$ denotes $the*$-endomorphism of $L^{\infty}(X)(=L^{\infty}(X, m))$ dePned by

$\alpha_{\varphi}(f)(x)=f(\varphi(x))$ , (a.a. $x\in X$) for $f$ in $L^{\infty}(X)$ .
(E-4) For a measurable function $\xi$ on $Z,$ $ T_{\varphi}\xi$ denotes the measurable function on $Y$ defined

by $(T_{\varphi}\xi)(x)=\xi(\varphi(x))$ , (a.a. $x\in Y$).

Moreover we note notation conceming multiplication operators on $L^{2}(X)(=L^{2}(X, m))$ .
(F-1) For a measurable function $f$ on $X,$ $M_{f}$ denotes the multiplication operator by $f$ on

$L^{2}(X)$ , that is, $ M_{f}\xi=f\xi$ for $\xi$ in $L^{2}(X)$ .
(F-2) For a function $f$ in $L^{\infty}(X),$ $\pi(f)$ denotes the bounded multiplication operator $M_{f}$ on

$L^{2}(X)$ , that is, $\pi(f)\xi=M_{f}\xi=f\xi$ for $\xi$ in $L^{2}(X)$ .

REMARK. (1) For a function $\zeta$ on $X$ , the notation $|\zeta|$ and $|\zeta|^{2}$ means $|\zeta|(x)=|\zeta(x)|$ ,
$(x\in X)$ and $|\zeta|^{2}(x)=|\zeta(x)|^{2},$ $(x\in X)$ .

(2) The $L^{2}$ -norm of $\xi$ in $L^{2}(X)$ and the $L^{1}$ -norm of $\eta$ in $L^{1}(X)$ are denoted by $||\xi||$

and $||\eta\Vert_{1}$ respectively.
(3) In the present paper, we use both $M_{f}$ and $\pi(f)$ for $f$ in $L^{\infty}(X)$ and $\pi$ is considered

as a canonical representation of $L^{\infty}(X)$ into $B(L^{2}(X))$ .
(4) $\pi(L^{\infty}(X))(=\{\pi(f)|f\in L^{\infty}(X)\})$ is a von Neumann algebra on $L^{2}(X)$ .
Finally we note notation conceming the duality between $\pi(L^{\infty}(X))$ and its predual.

(G) $\rho_{\eta}(\pi(f))=\int_{X}f(x)\eta(x)dm$ , $(f\in L^{\infty}(X), \eta\in L^{1}(X))$ .

The following is our definition, with which we begin the discussion on the chaotic prop-
erty of measurable functions.

DEFINITION 2.1. Let (X, $m$ ) be a measure space. A measurable map $\varphi$ of $X$ into $X$ is
called a map with $n$ laps, $MWnL$ for short, if there exist $n$ measurable subsets $\{X_{i}\}_{i=1}^{n}$ of $X$

such that
(i) $\bigcup_{i=1}^{n}X_{i}=X,$ $ X_{i}\cap X_{j}=\emptyset$ for $i\neq j$ and $m(X_{i})>0$ for all $i$ ,

(ii) each restriction $\varphi_{i}$ of $\varphi$ to $X_{i}$ is a non-singular map of $X$; onto $X$ .
REMARK. (1) If $\varphi$ is an $MWnL$ on $X$ , then for each $i$ in $I(n)$ it follows that

(i) $\frac{dmo\varphi_{i}}{dm}(x)\neq 0$ for a.a. $x$ in $X_{i}$ and $\frac{dm\circ\varphi^{-1}}{dm}(x)\neq 0$ for a.a. $x$ in $X$ ,

(ii) $\frac{dm\circ\varphi_{i}}{dm}(\varphi_{i}^{-1}(x))\frac{dm\circ\varphi^{-1}}{dm}(x)=1$ for a.a. $x$ in $X$ and $\frac{dmo\varphi^{-1}}{dm}(\varphi_{i}(x))\frac{dm\circ\varphi_{i}}{dm}(x)=1$

for a.a. $x$ in $X_{i}$ .
(2) For a measure space (X, $m$ ) and a measurable map $\varphi$ of $X$ into itself, $M_{f}$ and $T_{\varphi}$

are not necessarily defined on the full space $L^{2}(X)$ . Then, if necessary, each operator $V_{i}$ in
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the following definition is considered as a uniquely extended bounded linear operator on th$e$

full Hilbert space $L^{2}(X)$ .
DEFINITION 2.2. Let $\varphi$ be an $MWnL$ on a measure spac$e(X, m)$ . A family of isome-

tries $V(\varphi)=\{V(\varphi)_{j}\}_{i=1}^{n}$ on $L^{2}(X)$ associated with $\varphi$ is defined as follows:

$V(\varphi)_{j}=M_{\sqrt{dm\circ\varphi_{1}/dm}}M_{\chi_{X_{i}}}T_{\varphi}$ , $(i\in I(n))$ ,

where each $\chi_{X_{j}}$ is the characteristic function of $X_{i}$ .
By the definition we can see that
(1)

$V(\varphi)_{i}^{*}=M_{\sqrt{dm\circ\varphi_{i}^{-1}/dm}}T_{\varphi_{i}^{-1}}$
, $(i\in I(n))$ ,

(2) $V(\varphi)_{i}^{*}V(\varphi);=I$ , $(i\in I(n))$ ,

(3) $V(\varphi)_{i}V(\varphi)_{i}^{*}=M_{\chi_{X_{i}}}$ , $(i\in I(n))$ .

Hence we have the following. Th$e$ proof is omitted because it is given by routine calcu-
lation.

PROPOSITION 2.3. Let $\varphi$ be an $MWnL$ on a measure space (X, $m$ ) and $V(\varphi)=$

$\{V(\varphi)_{\iota}\}_{i=1}^{n}$ the family of isometries associated with $\varphi$ defined in the above definition. Then it

follows that
(1) $V(\varphi)$ is an $fi.c$. (cf. (A-1)) on $L^{2}(X)$ .
(2) $\alpha_{V(\varphi)}$ is $a*$-endomorphism of $B(L^{2}(X))$ .
(3) $\alpha_{V(\varphi)}$ is $a*$ -endomorphism of $\pi(L^{\infty}(X))$ and $\pi(\alpha_{\varphi}(f))=\alpha_{V(\varphi)}(\pi(f))$ for all $f$

in $L^{\infty}(X)$ .
From Proposition 2.3 (1) and Theorem 1.4 we have the following, which contains the

case of a lot of unimodal maps on the unit interval $[0,1]$ .
THEOREM 2.4. Let $\varphi$ be an $MWnL$ on a measure space (X, $m$ ) and $M$ a von Neumann

algebra which is invariantfor $\alpha_{V(\varphi)}$ . Suppose that there exist an $fi.c$. $W=\{W_{i}\}_{i=1}^{n}$ on $L^{2}(X)$

and a unit vector $e$ in $L^{2}(X)$ such that
(1) $\alpha_{W}=\alpha_{V(\varphi)}$ on $M$ ,

(2) $W_{1}e=e$ .
Then, for any state $\omega$ of the $fom\omega=\sum_{k=1}^{\infty}\omega_{\xi_{k}}$ , where $\xi_{k}’ s$ are in $L^{2}(X)_{e}$ , itfollows that

$\lim_{n\rightarrow\infty}(\alpha_{V}^{*})^{n}(\omega)=\omega_{e}$ ($wr.t$. the norm topology in $M_{*}$).

REMARK. In the above theorem, if $ONS(e, W)$ is complete, the conclusion holds for
any state $\omega$ in $M_{*}$ . However we have the case only if $n\geq 2$ except the trivial case where $X$

consists of only single point. In fact, when $n=1$ , the isometry $W_{1}$ in the theorem becomes a
unitary operators and thus $ONS(e, W)=\{e\}$ consists of only one vector.

As mentioned above, $\alpha_{V(\varphi)}$ is $a*$-endomorphism of the von Neumann algebra $\pi(L^{\infty}(X))$

and thus we can define the transposed map of the restriction of $\alpha_{V(\varphi)}$ to $\pi(L^{\infty}(X))$ , which
is denoted by $((\alpha_{V(\varphi)})_{|\pi_{1}(L(X))}\infty)^{*}$ . For a while we discuss this transposed map. First we
note that the transposed map is equal to the restriction of $\alpha_{V(\varphi)}^{*}$ to the predual of $\pi(L^{\infty}(X))$ .
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Namely we have
$((\alpha_{V(\varphi)})_{|\pi_{1}(L^{\infty}(X))})^{*}=(\alpha_{V(\varphi)}^{*})_{|\pi(L^{\infty}(X))_{*}}$ ,

where the vertical bar means the restriction of a map. We use the notation $\alpha_{V(\varphi)}^{*}$ instead
of $(\alpha_{V(\varphi)}^{*})\infty$ unless we have confusion. In Section 1, we have already shown that
$\alpha_{V(\varphi)}^{*}(\omega_{\xi})=\sum_{i=1}^{n}\omega_{V(\varphi)_{i}\xi}*$ for $\xi$ in $L^{2}(X)$ (cf. (C) after Lemma 1.2). Hence we have, for
any non-negative function $\eta$ in $L^{1}(X)$ and $f$ in $L^{\infty}(X)$ ,

a $V(\varphi)V(\varphi)\sqrt{\eta}*$

$=\sum_{i=1}^{n}(\pi(f)V(\varphi)_{i}^{*}\sqrt{\eta}, V(\varphi)_{i}^{*}\sqrt{\eta})$

$=\sum_{i=1}^{n}\int_{X}f(x)\frac{dmo\varphi_{i}^{-1}}{dm}(x)\eta(\varphi_{i}^{-1}(x))dm$ .

Since the predual $\{\rho(\eta)|\eta\in L^{1}(X)\}$ of $\pi(L^{\infty}(X))$ is spanned by the set $\{\omega_{\xi}|\xi\in L^{2}(X)\}$ ,

the above equation holds for all functions $\eta$
$\in$ $L^{1}(x)$ . Since $\alpha_{V(\varphi)}^{*}(\rho_{\eta})(\pi(f))$ $=$

$\rho_{\eta}(\alpha_{V(\varphi)}(\pi(f)))=\rho_{\eta}(\pi(\alpha_{\varphi}(f)))$ for any function $\eta$ in $L^{1}(X)$ and $f$ in $L^{\infty}(X)$ , we have

$\alpha_{V(\varphi)}^{*}(\rho_{\eta})(\pi(f))=\int_{X}f(\varphi(x))\eta(x)dm=\sum_{i=1}^{n}\int_{X}f(x)\frac{dmo\varphi_{i}^{-1}}{dm}(x)\eta(\varphi_{i}^{-1}(x))dm$ .

Now we put

(H) $(A_{\varphi}\eta)(x)=\sum_{i=1}^{n}\frac{dmo\varphi_{i}^{-1}}{dm}(x)\eta(\varphi_{i}^{-1}(x))$ , $(\eta\in L^{1}(X))$ .

Then we have $\alpha_{V(\varphi)}^{*}(\rho_{\eta})(\pi(f))=\rho_{A_{\varphi}\eta}(\pi(f))$ , that is,

(I) $\alpha_{V(\varphi)}^{*}(\rho_{\eta})=\rho_{A_{\varphi}\eta}$ .
Here we note that if $\alpha_{W}=\alpha_{V(\varphi)}$ on $\pi(L^{\infty}(X))$ as in Theorem 2.4, we have $\alpha_{W}^{*}(\eta)=$

$\alpha_{V(\varphi)}^{*}(\eta)=\rho_{A_{\varphi}\eta}$ for all $\eta$ in $L^{1}(X)$ . Moreover we note that the map $A_{\varphi}$ is a bounded linear
operator of $L^{1}(X)$ into itself, which is known as Perron-Frobenius operator, and isometric on
the set of all non-negative functions in $L^{1}(X)$ . Indeed, for any non-negative function $\eta$ in
$L^{1}(X)$ , it follows that

$||A_{\varphi}\eta||_{1}=||\rho_{A_{\varphi}\eta}\Vert_{1}=||\alpha_{V(\varphi)}^{*}(\rho_{\eta})||_{1}=(\alpha_{V(\varphi)}^{*}(\rho_{\eta}))(I)$

$=\rho_{\eta}(\alpha_{V(\varphi)}(I))=\rho_{\eta}(I)=\Vert\rho_{\eta}\Vert_{1}=||\eta||_{1}$ .
The study of the sequence $\{A_{\varphi}^{k}(\eta)\}_{k=1}^{\infty}$ is an important viewpoint for the study of the sequence
$\{(\alpha_{V(\varphi)}^{*})^{k}(\omega)\}_{k=1}^{\infty}$ . Hence we are interested in the von Neumann algebra $M$ which contains
$\pi(L^{\infty}(X))$ and is invariant for $\alpha_{V(\varphi)}$ .

COROLLARY 2.5. Let $\varphi$ be an $MWnL$ on a measure space (X, $m$ ). Suppose that there
exist a $fi.c$. $W=\{W_{i}\}_{i=1}^{n}$ and a unit vector $e$ in $L^{2}(X)$ such that
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(1) $\alpha_{W}=\alpha_{V(\varphi)}$ on $\pi(L^{\infty}(X))$ ,
(2) $W_{1}e=e$ .

Then, for anyfunction $\xi$ in $L^{2}(X)_{e}$ with $\Vert\xi||=1$ , it follows that

$\lim_{k\rightarrow\infty}||A_{\varphi}^{k}|\xi|^{2}-|e|^{2}||_{1}=0$ .

In addition, if $ONS(e, W)$ is complete, then for any non-negative function $\eta$ in $L^{1}(X)$ with
$\Vert\eta\Vert_{1}=1$ , itfollows that

$\lim_{k\rightarrow\infty}\Vert A_{\varphi}^{k}\eta-|e|^{2}\Vert_{1}=0$ .

PROOF. For $\xi$ satisfying the condition in the statement, by Theorem 2.4, it follows that

$\lim_{k\rightarrow\infty}||A_{\varphi}^{k}|\xi|^{2}-|e|^{2}\Vert_{1}=\lim_{n\rightarrow\infty}||$ $(aV(\varphi)*)^{k}(\omega_{\xi})-\omega_{e}||_{1}=0$ .

The second conclusion obviously follows from the first one. q.e. $d$ .
COROLLARY 2.6. For an $ MWnL\varphi$ on a measure space (X, $m$), let $W=\{W_{i}\}_{i=1}^{n}$ ,

$W^{\prime}=\{W_{i}^{\prime}\}_{i=1}^{n}$ be $fi.c.s$ on $L^{2}(X)$ and $e,$ $f$ unit vectors in $L^{2}(X)$ such that
(1) $\alpha_{W}=\alpha_{W^{\prime}}=\alpha_{V(\varphi)}$ on $\pi(L^{\infty}(X))$ ,
(2) $W_{1}e=e$ and $W_{1}^{\prime}f=f$,
(3) $L^{2}(x)_{e}\cap L^{2}(X)_{f}\neq\{0\}$ .

Then we have $|e|=|f|$ .
PROOF. Let $\xi$ be a function in $L^{2}(x)_{e}\cap L^{2}(X)_{f}$ with $\Vert\xi||=1$ . Then, by Corollary

2.5, we have

$|e|^{2}=\lim_{k\rightarrow\infty}A_{\varphi}^{k}|\xi|^{2}=|f|^{2}$

q.e. $d$ .
Now let $\varphi$ be an $MWnL$ on a probability measure space (X, $m$ ). As in the case ofmeasure

preserving bijective transformation on $X$ , a map $\varphi$ is $s$aid to be strong-mixing if

$\lim_{k\rightarrow\infty}m(\varphi^{-k}(E)\cap F)=m(E)m(F)$

for each pair of measurable sets $E$ and $F$ . Moreover, in the same manner as in [9, Lemma
6.11], we can see that this is equivalent to that, for any $\eta$ in $L^{1}(X)$ and any $f$ in $L^{\infty}(X)$ , it
follows that

$\lim_{k\rightarrow\infty}\int_{X}f(\varphi^{k}(x))\eta(x)dm=\int_{X}f(x)dm\int_{X}\eta(x)dm$ .
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This equation can be derived by the conclusion of Corollary 2.5, in which $e$ is the case
where $e(x)=1,$ $(x\in X)$ and $ONS(e, W)$ is complete. Thus we have the following corollary.

COROLLARY 2.7. Let $\varphi$ be an $MWnL$ as in Corollary 2.5. If the eigenvector $e$ is the

constantfunction $e(x)=1$ and $ONS(e, W)$ is complete, then $\varphi$ is strong-mixing.

The following is typical examples of $MWnL$ , which is well known in the theory of
chaotic maps. Here we show that the example yields operators which have strange and inter-
esting properties in the viewpoint of the probability theory or the theory of functional analysis.

EXAMPLE 2.8. Let $X=[0,1]$ with $X_{i}=[(i-1)/n,$ $i/n$ ) for $i=1,2,$ $\cdots$ , $n-1$ ,

$X_{n}=[(n-1)/n, 1]$ and $m$ the Lebesgue measure on $[0,1],$ $\varphi_{n}$ the piecewise continuous map
on $[0,1]$ defined by

$\varphi_{n}(x)=nx-(i-1)$ , $(x\in X_{i}, i\in I(n))$ .

Then $\varphi_{n}$ is an $MWnL$ on $[0,1$ ) with the partition $\{X_{i}\}_{i=1}^{n}$ and it follows that

$V(\varphi_{n})_{i}=M_{\sqrt{n}}M_{\chi_{J_{i}}}T_{\varphi_{n}}$ , $(i\in I(n))$ .

Let $W=\{W_{i}\}_{i=1}^{n}$ be the family of isometries defined by

$(W_{1}, \cdots W_{n})=(V(\varphi_{n})_{1}, \cdots V(\varphi_{n})_{n})\left(\begin{array}{llll}\sqrt{1/n}\sqrt{1/n} & a_{12} & & a_{1n}\\\vdots & a_{22} & & a_{2n}\\\vdots & | & \ddots & |\\\sqrt{1}/n & a_{n2} & & a_{nn}\end{array}\right)$

where $\{a_{ij}|i, j=2,3, \cdots , n\}$ are complex numbers such that the matrix in the right hand
side is an element in the unitary group $U(n)$ . Then $W=\{W_{i}\}_{i=1}^{n}$ is an f.i. $c$ . on $L^{2}[0,1]$ with
$W_{1}=T_{\varphi_{n}}$ , and, by virtue of Proposition 1.6, we have

$\alpha_{W}(T)=\sum_{i=1}^{n}W_{i}TW_{i}^{*}=\sum_{i=1}^{n}V(\varphi_{n})_{i}TV(\varphi_{n})_{i}^{*}=\alpha_{V(\varphi_{n})}(T)$

for all $T$ in $B(L^{2}[0,1])$ . Moreover for $e=1$ we have $W_{1}e=e$ and $ONS(e, W)$ is complete.
Indeed, for $e$ach $j=1,2,$ $\cdots$ , $n$ , the vector $W_{j}e$ is of the form $W_{j}e=\sqrt{n}\sum_{i=1}^{n}a_{ij}\chi_{X_{i}}$ .
Since the unit vectors $\{(a_{1j}, \cdots , a_{nj})\}_{j=1}^{n}$ in $C^{n}$ are linearly independent, $L^{2}[0,1]_{e}$ contains
the vectors $\{\chi_{X_{i}}\}_{i=1}^{n}$ . Similarly, by considering $\{W(\mu)e\}_{\mu\in I(n)^{k}}$ , we can see that $L^{2}[0,1]_{e}$

contains the vectors $\{\chi_{[(i-1)/n^{k},i/n^{k})}\}_{i=1}^{n^{k}}$ for all $k$ in N. Namely we have $L^{2}[0,1]_{e}=$

$L^{2}[0,1]$ . Now, by virtue of Corollary 1.7, for any state $\omega$ in $B(L^{2}[0,1])_{*}$ , it follows that
$\{(\alpha_{V(\varphi_{n})}^{*})^{k}(\omega)\}_{k=1}^{\infty}$ converges to the vector state $\omega_{e}$ with respect to the norm topology in
$B(L^{2}[0,1])_{*}$ . Especially, it follow $s$ that

$\lim_{k\rightarrow\infty}||A_{\varphi_{n}}^{k}\eta-e\Vert\iota=0$
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for $e$ach non-negative function $\eta$ in $L^{1}[0,1]$ . Moreover we note that

$(A_{\varphi}\eta)(x)=\frac{1}{n}\sum_{i=1}^{n}\eta(\frac{x+i-1}{n})$ , $(\eta\in L^{1}(X))$ .

EXAMPLE 2.9 (Generalized tent maps). Let $X=[0,1],$ $m$ the Lebesgue measure on
$[0,1]$ and $\tau_{c}(0<c<1)$ th$e$ continuous map on $[0,1]$ defined by

$\tau_{c}(x)=\left\{\begin{array}{ll}\frac{1}{c}x & for 0\leq x<c,\\\frac{1}{1-c}(1-x) & for c\leq x\leq 1.\end{array}\right.$

Then $\tau_{c}$ is an $MW2L$ on $[0,1]$ with the partition $X_{1}=[0, c$), $X_{2}=[c, 1]$ and it follows that

$V(\tau_{c})_{1}=M_{\sqrt{1/c}}M_{x_{l0,c)}}T_{\tau_{c}}$ , $V(\tau_{c})_{2}=M_{\sqrt{1/(1-c)}}M_{x_{[c,1]}}T_{\tau_{c}}$ .
Let $W_{1}$ and $W_{2}$ be the isometrie $s$ defined by

$(W_{1}, W_{2})=(V(\tau_{c})_{1}, V(\tau_{c})_{2})(\sqrt{c}\sqrt{1-c}$ $\sqrt{1-c}-\sqrt{c})$ .

That is,

$W_{1}=\sqrt{c}V(\tau_{c})_{1}+\sqrt{1-c}V(\tau_{c})_{2}=T_{\tau_{c}}$ ,

$W_{2}=\sqrt{1-c}V(\tau_{c})_{1}-\sqrt{c}V(\tau_{c})_{2}=\sqrt{(1-c)/c}M_{x_{\iota 0,c)}}T_{\tau_{c}}-\sqrt{c/(1-c)}M_{x_{[c,1]}}T_{\tau_{c}}$ .
Hence, by virtue of Proposition 1.6, we have $\alpha_{V_{(\tau_{C})}}(T)=\alpha_{W}(T)$ for all $T$ in $B(L^{2}[0,1])$ .
Moreover for $e=1$ we have $W_{1}e=e$ and $ONS(e, W)$ is complete. By virtue of Corollary
1.7, for any state $\omega$ in $B(L^{2}[0,1])_{*}$ , it $f^{\prime}o$llows that $\{(\alpha_{V}^{*})^{k}(\omega)\}_{k=1}^{\infty}$ converges to the vector
state $\omega_{e}$ with respect to the norm topology in $B(L^{2}[0,1])_{*}$ . Moreover we have

$(A_{\varphi}\eta)(x)=c\eta(cx)+(1-c)\eta(1-(1-c)x)$ , $(\eta\in L^{1}[0,1])$ .
REMARK. In Example 2.9, when $c=1/2$ , the map $\tau_{c}$ is so-called the tent map on $[0,1]$

and each $e_{\ell}$ in $ONS(e, W)=\{e_{\ell}\}_{\ell=1}^{\infty}$ , which is defined by (B), is of th$e$ form

$e_{1}=e,$ $e_{2}=x_{[0,1/2)}-x_{[1/2,1]}$ and $e_{(2^{f}-1)+i}=\sum_{j=0}^{2^{\ell}-1}c_{j}\chi_{[J/2^{f},(j+1)/2^{\ell})}$ , $(c_{j}\in\{1, -1\})$ .

Namely, $\{e_{\ell}\}_{\ell=1}^{\infty}$ is Walsh series in $L^{2}[0,1]$ . Like this, the study of $ONS(e, W)$ is closely
related to wavelet theory (cf. [4]).

In th$e$ definition of $MWnL$ , we gave the condition that, each $i$ in $I(n),$ $mo\varphi_{i}^{-1}$ is abso-
lutely continuous with respect to $m$ in addition to $m\circ\varphi_{i}$ . We cannot drop this condition even if
$\varphi$; is absolutely continuous on the real line with the Lebesgue measure. This is shown by the
following example. Let $c(x)$ be the Cantor function on $[0,1]$ . We put $k(x)=\frac{x+c(x)}{2}$ Then
$k$ is a homeomorphism of $[0,1]$ but not absolutely continuou $s$ on $[0,1]$ . Let $h(x)=k^{-1}(x)$ ,
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$(x\in[0,1])$ . Then $h$ is an absolutely continuous homeomorphism of $[0,1]$ . We define a map
$\varphi$ on $[0,1]$ as follows:

$\varphi(x)=\left\{\begin{array}{ll}h(2x) & for 0\leq x<1/2 ,\\h(-2x+2) & for 1/2\leq x\leq 1.\end{array}\right.$

Then $\varphi$ is an absolutely continuous function on $[0,1]$ , which satisfy the condition ofDefinition
2.1 except the absolutely continuity of $mo\varphi_{i}^{-1},$ $(i=1,2)$ in (2).

The following is an example of $MW4L$ on two-dimensional space.

EXAMPLE 2.10 (Maps on two-dimensional space). Let $X=I\times I=[0,1]\times[0,1],$ $m$

the Lebesgue measure on $I\times I$ and $\tau_{c,d}$ the map defined by $\tau_{c,d}(x, y)=(\tau_{c}(x), \tau_{d}(y))$ , where
$\tau_{c}$ and $\tau_{d}$ are generalized tent maps defined in Example 2.9. Then $\tau_{c,d}$ is a $MW4L$ with the
partition $X_{1}=[0, c$) $\times[0, d$), $X_{2}=[c, 1]\times[0, d$), $X_{3}=[c, 1]\times[d, 1],$ $X_{4}=[0, c$) $\times[d, 1]$

and it follows that

$V(\tau_{c,d})_{1}=M_{\sqrt{1/cd}}M_{Xl0,c)\times]0,d)}T_{\tau_{c.d}}$ ,

$V(\tau_{c,d})_{2}=M_{\sqrt{1/(1-c)d}}M_{X[c,1]\times l0,d)}T_{\tau_{c.d}}$ ,

$V(\tau_{c,d})_{3}=M_{\sqrt{1/c(1-d)}}M_{X[0,c)\times[d,1]}T_{\tau_{c,d}}$ ,

$V(\tau_{c,d})_{4}=M_{\sqrt{1/(1-c)(1-d)}}M_{X[c,1]\times[d,1]}T_{\tau_{c,d}}$ .

Moreover we define a family of isometries $\{W_{i}\}_{i=1}^{4}as$ follows:

$(W_{1}, W_{2}, W_{3}, W_{4})$

$=(V(\tau_{c,d})_{1}, V(\tau_{c,d})_{2},$ $V(\tau_{c,d})_{3},$ $V(\tau_{c,d})_{4})(\sqrt{cd}\sqrt{c(1-d)}\sqrt{(1-c)d}\sqrt{(1-c)(1-d)}$
$a_{22}aa_{32}a_{42}12$ $aa_{23}a_{43}a_{33}13$

$a_{24}aa_{34}a_{44}14)$

where $\{a_{ij}|i, j=2,3,4\}$ are complex numbers such that the matrix in the right hand side
is an $e1e$ment in $U(4)$ . Then we have $W_{1}=T_{\tau_{c.d}}$ . Henc$e$ for $e(x, y)=1,$ $((x, y)\in$ I $\times I$)

we have $W_{1}e=e$ and $oNS(e, W)$ is complete. Therefore, for any state $\omega$ in $B(L^{2}(I\times I))_{*}$ ,

it follows that $\{(\alpha_{V(\tau_{c,d})}^{*})^{k}(\omega)\}_{k=1}^{\infty}$ converges to the vector state $\omega_{e}$ with respect to the norm

topology in the predual of $B(L^{2}(I\times I))$ . Moreover we have

$(A_{\varphi}\eta)(x, y)=cd\eta(cx, dy)+(1-c)d\eta(1-(1-c)x, dy)+c(1-d)\eta(cx, 1-(1-d)y)$

$+(1-c)(1-d)\eta(1-(1-c)x, 1-(1-d)y)$ , $(\eta\in L^{1}(I\times I))$ .
In the following, we show some relationship between the measure theoretical property

of a given map $\varphi$ and the functional analytical property of the operators related to $\varphi$ .

THEOREM 2.11. Let $\varphi$ be an $MWnL$ on a measure space (X, $m$ ) and $e$ afunction in
$L^{2}(X)$ such that $e(x)\neq 0$ for $a.a$. $x$ in X. Then the following conditions are equivalent.

(1) There exists an $fi.c$. $W=\{W_{i}\}_{i=1}^{n}$ on $L^{2}(X)$ such that $\alpha_{W}=\alpha_{V(\varphi)}$ on $\pi(L^{\infty}(X))$

and $W_{1}e=e$ .
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(2) $\sum_{i=1}^{n}|e_{\varphi}(\varphi_{i}^{-1}(x))|^{2}\frac{dm\circ\varphi_{i}^{-1}}{dm}(x)=1$ on $X(a.e.)$ , where $e_{\varphi}(x)=\frac{e(x)}{e(\varphi(x))}$

(3) $M_{e_{\varphi}}T_{\varphi}$ is an isometry.

PROOF. (1) $\Rightarrow(2),$ (3). By Proposition 1.6, we can see that $W=V(\varphi)H$ where each
$e$ntry $H_{ij}$ of $H$ is of the form $H_{ij}=\pi(h_{ij})$ for some $h_{ij}$ in $L^{\infty}(X)$ , because $\pi(L^{\infty}(X))^{\prime}=$

$\pi(L^{\infty}(X))$ . Since

$W_{1}=\sum_{i=1}^{n}V(\varphi)_{j}H_{i1}$ and $W_{1}e=e$ ,

we have

$(W_{1}e)(x)=\sum_{i=1}^{n}\sqrt{\frac{dmo\varphi_{i}}{dm}(x)}\chi_{X;}(x)h_{i1}(\varphi(x))e(\varphi(x))=e(x)$ ,

for a.a. $x$ in $X$ . Thu $s$ , for each $i\in I(n)$ , it follows that

$\sqrt{\frac{dmo\varphi_{i}}{dm}(x)}h_{i1}(\varphi(x))e(\varphi(x))=e(x)$ , (a.a. $x\in X_{i}$ ).

Hence we have

$h_{i1}(x)=e_{\varphi}(\varphi_{i}^{-1}(x))/\sqrt{\frac{dmo\varphi_{i}}{dm}(\varphi^{-1}(x))}=e_{\varphi}(\varphi_{i}^{-1}(x))\sqrt{\frac{dmo\varphi_{i}^{-1}}{dm}(x)}$

for a.a. $x$ in $X$ . Since $H=[\pi(h_{ij})]$ is a unitary element in $M_{n}\otimes\pi(L^{\infty}(X))$ , it follows that

$\sum_{i=1}^{n}|h_{i1}(x)|^{2}=\sum_{i=1}^{n}|e_{\varphi}(\varphi_{i}^{-1}(x))|^{2}\frac{dmo\varphi_{i}^{-1}}{dm}(x)=1$

for a.a. $x$ in $X$ . Moreover we have

$W_{1}=\sum_{i=1}^{n}M_{\sqrt{dm\circ\varphi_{i}/dm}}M_{\chi_{X_{i}}}T_{\varphi}\pi(h_{i1})=\sum_{i=1}^{n}M_{e_{\varphi}}M_{\chi_{X_{i}}}T_{\varphi}=M_{e_{\varphi}}T_{\varphi}$ .

(2) $\Rightarrow(1),$ (3). Let $h_{i1}(x)=e_{\varphi}(\varphi_{i}^{-1}(x))\sqrt{\frac{dm\circ\varphi_{i}^{-1}}{dm}(x)},$
$(x\in X)$ for $i=1,2,$ $\cdots$ , $n$ .

Using Condition (2), we can get a unitary element $H=[H_{ij}]$ in $M_{n}\otimes\pi(L^{\infty}(X))$ such that
$H_{i1}=\pi(h_{i1})(i=1,2, \cdots n)$ as follows. Let $\{f_{j}\}_{j=1}^{n}$ be a c.o. $n.s$ . of $C^{n}$ . We define $n+1$

$C^{n}$ -valued measurable functions $\{s_{j}\}_{j=1}^{n+1}$ on $X$ by

$s_{1}(x)=(h_{11}(x), h_{21}(x),$ $\cdots$ $h_{n1}(x))$ ,

$s_{j}(x)=f_{j-1}$ , $(j=2,3, \cdots n+1)$ .

Then, for $x$ in $X$ except a measurable set $N$ with $m(N)=0,$ $\{s_{j}(x)\}_{j=1}^{n+1}$ is a family of
unit vectors whose linear span is the whole space $C^{n}$ . Hence, as in the way of Schmidt’s
orthogonalization, for $x$ in $X\backslash N$ , we can get an orthogonal sy $stem\{t_{j}^{\prime}(x)\}_{j=1}^{n+1}$ such that
$t_{1}^{\prime}(x)=s_{1}(x)$ and $t_{j}^{\prime}(x)s$ are unit $ve$ctors except one zero vector $t_{k(x)}^{\prime}(x)$ , where $k(x)$ is
determined by $x$ . For each $x$ in $X\backslash N$ , we put $t_{j}(x)=t_{j}^{\prime}(x)$ for $j=1,2,$ $\cdots$ , $k(x)-1$ and
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$t_{j}(x)=t_{j+1}^{\prime}(x)$ for $j=k(x),$ $\cdots$ , $n$ . Moreover we put $t_{j}(x)=0$ for $j=1,2,$ $\cdots n$ and $x$

in $N$ . Then each $t_{j}$ is a $C^{n}$ -valued $L^{\infty}$ -function on $X$ and thus it can be expressed as follows:

$t_{j}(x)=(h_{1j}(x), h_{2j}(x),$ $\cdots$ , $h_{nj}(x))\in C^{n}$ $(x\in X)$ ,

where $\{h_{ij}\}_{i=1}^{n}$ are $C^{n}$ -valued $L^{\infty}$ -functions on $X$ . Since the matrix $[h_{ij}(x)]$ is a unitary
element in $M_{n}$ for all $x$ in $X\backslash N$ , the family of operators $\{\pi(h_{ij})\}_{i,j=1}^{n}$ is a desired set of
$\{H_{ij}\}_{i,j=1}^{n}$ . Now, let $W=$ $(W_{1}, \cdots , W_{n})$ be the f.i. $c$ . defined by $W=V(\varphi)H$ . Then , by
Proposition 1.6, it follows that $\alpha_{W}=\alpha_{V(\varphi)}$ on $\pi(L^{\infty}(X))$ . Moreover we have, for any $\xi$ in
$L^{2}(X)$ ,

$(W_{1}\xi)(x)=\sum_{i=1}^{n}(M_{\sqrt{dm\circ\varphi^{-1}/dm}}M_{X_{X_{j}}}T_{\varphi}H_{1i}\xi)(x)=e_{\varphi}(x)\xi(\varphi(x))=(M_{e_{\varphi}}T_{\varphi}\xi)(x)$

for a.a. $x$ in $X$ . This implies that $W_{1}=M_{e_{\varphi}}T_{\varphi}$ and we have $M_{e_{\varphi}}T_{\varphi}e=e$ .
(3) $\Rightarrow(2)$ . Let $E$ be a measurable set in $X$ with finite measure. By virtue of (3), it

follows that $||M_{e_{\varphi}}T_{\varphi}\chi_{E}||_{2}=||\chi_{E}||_{2}$ and we have that

$\Vert M_{e_{\varphi}}T_{\varphi}\chi_{E}\Vert_{2}^{2}=\int_{X}|e_{\varphi}(x)\chi_{E}(\varphi(x))|^{2}dm=\sum_{i=1}^{n}\int_{X_{i}}|e_{\varphi}(x)\chi_{E}(\varphi_{i}(x))|^{2}dm$

$=\sum_{i=1}^{n}\int_{X_{i}}|e_{\varphi}(\varphi_{i}^{-1}(x))\chi_{E}(x)|^{2}\frac{dmo\varphi_{i}^{-1}}{dm}(x)dm$

$=\int_{E}\sum_{i=1}^{n}|e_{\varphi}(\varphi_{i}^{-1}(x))|^{2}\frac{dmo\varphi_{i}^{-1}}{dm}(x)dm$ ,

$\Vert\chi_{E}\Vert_{2}^{2}=\int_{X}|\chi_{E}(x)|^{2}dm=\int_{E}1dm$ .

Hence we have

$\int_{E}(\sum_{i=1}^{n}|e_{\varphi}(\varphi_{i}^{-1}(x))|^{2}\frac{dmo\varphi_{i}^{-1}}{dm}(x)-1)dm=0$ .

This implies (2), because $E$ is an arbitrary measurable subset of $X$ with finite measure and
(X, $m$ ) is a $\sigma- finite$ measure space. q.e. $d$ .

EXAMPLE 2.12. Let $\lambda$ be the logistic map on $X=[0,1]$ defined by $\lambda(x)=4x(1-x)$ .
Then $\lambda$ is an $MW2L$ with the partition $X_{1}=[0,1/2$), $X_{2}=[1/2,1]$ and there exists
an f.i. $c$ . $W=\{W_{1}, W_{2}\}$ such that $\alpha_{V}=\alpha_{V(\lambda)}$ on $B(L^{2}[0,1])$ and $W_{1}e=e$ for $e(x)$

$=1/(\pi(x(1-x))^{1/2})^{1/2}$ in $L^{2}[0,1]$ (cf. [6], [5, Example 3.2.5]). Moreover we have that
$\lambda_{1}^{-1}(x)=(1-\sqrt{1-x})/2,$ $\lambda_{2}^{-1}(x)=(1+\sqrt{1-x})/2,$ $\frac{dm\circ\lambda_{1}^{-1}}{dm}(x)=\frac{dmo\lambda_{2}^{-1}}{dm}(x)=1/(4\sqrt{1-x})$

and $e_{\lambda}(x)=\sqrt{2|2x-1|}$. Hence we can check that $\sum_{i=1}^{2}|e_{\lambda}(\lambda_{i}^{-1}(x))|^{2}\frac{dm\circ\lambda_{1}^{-1}}{dm}(x)=1$ and
$W_{1}=M_{e_{\lambda}}T_{\lambda}=M_{\sqrt{2|2x-1|}}T_{\lambda}$ .

COROLLARY 2.13. Let $\varphi$ be an $MWnL$ on a measure space (X, $m$ ) with $m(X)=1$
and $e$ a non-zero constantfunction on X. Then the following conditions are equivalent.
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(1) There exists an $fi.c$. $W=\{W_{i}\}_{i=1}^{n}$ on $L^{2}(X)$ such that $\alpha_{W}=\alpha_{V(\varphi)}$ on $\pi(L^{\infty}(X))$

and $W_{1}e=e$ .
(2) $\sum_{i=1}^{n}\frac{dm\circ\varphi_{i}^{-1}}{dm}(x)=1$ on $X(a.e.)$ .
(3) $T_{\varphi}$ is an isometry.

The following is an example such that $\{T\in B(\mathcal{H})|\alpha_{W}(T)=\alpha_{V(\varphi)}(T)\}=\pi(L^{\infty}(X))$ .

EXAMPLE 2.14 (Square root maps). Let $X=[0,1],$ $m$ the Lebesgue measure on
$[0,1]$ and $\rho_{c},$ $(0<c\leq 1/2)$ a continuous map on $[0,1]$ defined by

$\rho_{c}(x)=\left\{\begin{array}{ll}\sqrt{x}/c & for 0\leq x<c ,\\(1-\sqrt{4cx+1-4c})/2c & for c\leq x\leq 1.\end{array}\right.$

Then $\rho_{c}$ is a $MW2L$ on $[0,1]$ with the partition $X_{1}=[0, c$), $X_{2}=[c, 1]$ and it follows that

$(\rho_{c})_{1}^{-1}(x)=cx^{2}$ and $(\rho_{c})_{2}^{-1}(x)=cx^{2}-x+1$ .

Hence Condition (2) in Corollary 2.13 is satisfied. We put

$(W_{1}, W_{2})=(V_{1}, V_{2})\left(\begin{array}{ll}\pi(f_{1}) & \pi(f_{2})\\\pi(f_{2}) & -\pi(f_{1})\end{array}\right)$ ,

where $f_{1}(x)=\sqrt{2cx}$ and $f_{2}(x)=\sqrt{1-2cx}$. Then, by Proposition 1.6 and the fact the
von Neumann algebra generated by the entries in the matrix is equal to $\pi(L^{\infty}[0,1])$ , we can
see that the von Neumann algebra $\{T\in B(L^{2}[0,1])|\alpha_{W}(T)=\alpha_{V(\varphi)}(T)\}$ is just equal to
$\pi(L^{\infty}[0,1])$ . Thus we have that $\alpha_{W}(T)=\alpha_{V(\varphi)}(T)$ for $T$ in $\pi(L^{\infty}[0,1])$ and $W_{1}e=e$

where $e(x)=1$ .

REMARK. If an $MWnL\varphi$ satisfies one of the conditions in Theorem 2.11, $W_{1}$ is always
equal to $M_{e_{\varphi}}T_{\varphi}$ , and thus $W_{1}=V(\varphi)_{i}$ for some $i$ in $I(n)$ only if $n=1$ . In particular, in the
case where $e$ is a constant function, $W_{1}$ is always equal to $T_{\varphi}$ .

Now, in Example$s2.9,2.10,2.12$ and 2.14, we had a family of those f.i. $c$ . $sW=\{W_{i}\}_{i=1}^{n}$

which satisfy the conditions in Theorem 2.11. Thus we can see that each $V(\varphi)_{j}$ in the exam-
ples cannot have eigenvalue 1. In the following, we study th$e$ condition under which $V(\varphi)_{i}$

has eigenvalue 1. For $\varphi$ which is an $MWnL$ on (X, $m$ ) and $k$ in $N$ , we put

$X_{1}(k)=\{x\in X_{1}|\varphi^{k}(x)=x,$ $\varphi^{j}(x)\in X_{1}$ for $j=1,$ $\cdots$ $k-1$ and $\frac{dmo\varphi^{k}}{dm}(x)=1\}$ .
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Then we have the following theorem.

THEOREM 2.15. Let $\varphi$ be an $MWnL$ on a measure space (X, $m$ ). If there exists a
measurable subset $E$ in $X_{1}(k)$ for same $k$ such that $m(E)>0$ and $\{\varphi^{j}(E)\}_{j=0}^{k-1}$ are mutually
disjoint, then there exists a non-zero vector $e$ in $L^{2}(X)$ such that $V(\varphi)_{1}e=e$ .

PROOF. Using $E$ in the statement of the theorem, we define a function $e$ in $L^{2}(X)$ as
follows:

$e(x)=\left\{\begin{array}{ll}1 & if x=y for y\in E,\\1/\sqrt{\frac{dm\circ\varphi}{dm}(y)\frac{dmo\varphi}{dm}(\varphi(y))\frac{dm\circ\varphi}{dm}(\varphi^{j-1}(y))} & if x=\varphi^{j}(y) for\\0 & ifx\not\in\cup j=0\varphi^{j}(E)j\in\{1,\cdots,k-1\}tdk-1.y\in E,\end{array}\right.$

By virtue of the condition $\frac{dmo\varphi^{k}}{dm}(x)=1$ on $E$ and chain rule of derivative $\frac{dmo\varphi^{k}}{dm}$ it follows
that

$\frac{dmo\varphi^{k}}{dm}(x)=\frac{dmo\varphi}{dm}(\varphi^{k-1}(x))\frac{dmo\varphi}{dm}(\varphi^{k-2}(x))\cdots\frac{dmo\varphi}{dm}(x)=1$ , $(x\in E)$ .
Thu $s$ we obtain that

$V(\varphi)_{1}e=M_{\sqrt{\frac{dm\circ\varphi}{dm}}}M_{\chi_{X_{1}}}T_{\varphi}e=e$ .

q.e. $d$ .
COROLLARY 2.16. Suppose that $X$ is a Hausdorff topological space and $m$ a regular

measure on the $\sigma- field$ ofBorel sets in X. Let $\varphi$ be an $MWnL$ on a measure space (X, $m$ )
which is continuous on $X$] If $m(X_{1}(k))>0$ for some $k$ in $N$ , then there exists a non-zero
vector $e$ in $L^{2}(X)$ such that $V(\varphi)_{1}e=e$ .

PROOF. It is sufficient to confirm that there exists a subset $E$ in $X_{1}(k)$ satisfying the
condition in Theorem 2.15. By the assumption and the regularity of $m$ there exists a compact
set $K$ in $X_{1}(k)$ with $m(K)>0$ . For each $x$ in $K$ , there exists an open neighborhood $U(x)$ of
$x$ such that $\{\varphi^{j}(U(x))\}_{j=0}^{k-1}$ are mutually disjoint. Since the family $\{U(x)\}_{x\in K}$ is a covering of
$K$ , the set $K$ is covered by finitely many $U(x)s$ . Thus we have $m(U(x_{0})\cap K)>0$ for some
$x_{0}$ in $X_{1}$ , so that $E=U(x_{0})\cap K$ is a desired subset of $X_{1}(k)$ . q.e.d.

The following is a typical example satisfying the condition in the above theorem and
$ONS(e, V(\varphi))$ is complete.

EXAMPLE 2.17 ($MWnL$ on the set $N$ with the discrete topology). Let $X=N,$ $m$ the
counting measure on $X$ and $\delta$ the map on $X$ defined by

$\delta(n(k-1)+i)=k$ , $(k\in N, i\in I(n))$ .
Then $\delta$ is an $MWnL$ on $X$ with $X_{i}=n(N-1)+i,$ $(i\in I(n))$ and

$\frac{dmo\delta_{i}}{dm}=\chi_{X_{i}}$ , $\frac{dm\circ\delta_{i}^{-1}}{dm}=Xx=1$ and $V(\varphi)_{j}=M_{\chi_{X_{i}}}T_{\delta}$ , $(i\in I(n))$ .
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The point 1 in $X_{1}$ is the only $pe$riodic point for $\delta$ and $e=x_{\{1\}}$ is a unit eigenvector
for eigenvalue 1 of $V(\delta)_{1}$ . Obviously $ONS(e, V(\delta))=tx_{\{k\}}|k\in N$} is complete in $\ell^{2}(N)$ .
Thus, by Corollary 1.5, $\{(\alpha_{V(\delta)}^{*})^{k}(\omega)\}_{k=1}^{\infty}$ converges to $\omega_{e}$ with respect to the norm topology
in $B(\ell^{2}(N))_{*}$ . Moreover we have

$(A_{\delta}\eta)(k)=\sum_{i=1}^{n}\eta(n(k-1)+i)$ , $(\eta\in\ell^{1}(N))$ .

REMARK. If an $MWnL\varphi$ satisfies the assumption of Theorem 2.4 and $ONS(e, W)$

is complete, then the f.i. $c$ . $W=\{W_{i}\}_{i=1}^{n}$ on $L^{2}(X)=L^{2}(X)_{e}$ is regarded as the f.i. $c$ .
$V(\delta)=\{W(\delta)_{i}\}_{i=1}^{n}$ on the Hilbert space $\ell^{2}(N)$ , where $\delta$ is the $MWnL$ defined in the above
example and $L^{2}(X)$ and $\ell^{2}(N)$ are identified.

Here, we show the behavior of the orbit $\{(\alpha_{V(\varphi)}^{*})^{k}(\omega)\}_{k=1}^{\infty}$ in the case where $\varphi$ is an
$MWnL$ on a measure space (X, $m$ ) and there exists an f.i. $c$ . $W=\{W_{i}\}_{i=1}^{n}$ such that

(1) $\alpha_{W}(T)=\alpha_{V(\varphi)}(T)$ for all $T$ in $B(L^{2}(X))$ ,
(2) $W_{1}e=efor$ some unit vector ein $L^{2}(X)$ ,
(3) $ONS(e, W)$ is complete, that is, $L^{2}(X)_{e}=L^{2}(X)$ .
From these conditions it follows that for any state $\omega$ in $B(L^{2}(X))_{*}$ we have

$\lim_{k\rightarrow\infty}(\alpha_{V}^{*})^{k}(\omega)=\lim_{k\rightarrow\infty}(\alpha_{W}^{*})^{k}(\omega)=\omega_{e}$ (w.r.t. the norm topology in B $(L^{2}(X))_{*}$).

Moreover we find that $W=\{W_{i}\}_{i=1}^{n}$ can be considered as the f.i. $c$ . $V(\delta)=\{V(\delta)_{j}\}_{i=1}^{n}$ where
$\delta$ is the map defined in Example 2.17 and that $ONS(e, V(\delta))=ONS(e, W)=\{e\ell 1_{\ell=1}^{\infty}$ ,

$(e_{1}=e)$ . For $f$ in $L^{\infty}(X),$ $a$ in $\ell^{\infty}(N)$ and $\eta$ in $L^{1}(X),$ $\zeta$ in $f^{1}(N)$ , we denote by $\pi_{1}(f)$ ,
$\pi_{2}(a)$ and $\rho_{\eta}^{1},$ $\rho_{\zeta}^{2}$ the corresponding operators and $e1e$ments in the preduals according to (F-2)

and (G). In this case, $\pi_{1}(L^{\infty}(X))$ and $\pi_{2}(\ell^{\infty}(N))$ are subalgebras of the same von Neumann
algebra $B(L^{2}(X))$ . Namely, for $\omega$ in $B(L^{2}(X))_{*}$ , there exist $\eta$ in $L^{1}(X)$ and $a$ in $\ell^{1}(N)$ such
that

$\omega(\pi_{1}(f))=\rho_{\eta}^{1}(\pi_{1}(f))=\int_{X}f(x)\eta(x)dm$ , $(f\in L^{\infty}(X))$ ,

$\omega(\pi_{2}(a))=\rho_{\zeta}^{2}(\pi_{2}(a))=\sum_{\ell=1}^{\infty}a(\ell)\zeta(\ell)$ , $(a\in\ell^{\infty}(N))$ .

Then the above convergency implies the following:

$\lim_{k\rightarrow\infty}(\alpha_{V(\varphi)}^{*})^{k}(\omega)_{|\pi_{1}(L^{\infty}(x))}=\omega_{e|\pi_{1}(L^{\infty}(X))}=\rho_{|e|^{2}}^{1}$

(w.r. $t$ . the norm topology in $L^{1}(X)$ ) ,

$\lim_{k\rightarrow\infty}(\alpha_{V(\varphi)}^{*})^{k}(\omega)_{|\pi_{2}(\ell^{\infty}(N))}=\omega_{e|\pi_{2}(\ell^{\infty}(N))}=\rho_{|\hat{e}|^{2}}^{2}=\rho_{\hat{e}}^{2}$

(w.r. $t$ . the norm topology in $f^{1}(N)$),

where $\hat{e}$ is the characteristic function $x_{\{1\}}$ on N. Namely we observed that the limit of the
$se$quence $\{(\alpha_{V(\varphi)}^{*})^{k}(\omega)\}_{k=1}^{\infty}$ converges to a unique state $\rho_{\hat{e}}$ on $\pi_{2}(f^{\infty}(N))\subset B(L^{2}(X))$ for
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any $\omega$ if $\varphi$ satisfies the condition mentioned above. This is a property of the behavior of the
orbit of a state conceming $MWnLs$ .

Now, in the following proposition and examples, we show that the converse statement of
Theorem 2.15 holds in the case $X=[0,1]$ and $X_{1}$ is an interval in $[0,1]$ , though it does not
hold in general.

PROPOSITION 2.18. Let $X=[0,1],$ $m$ the Lebesgue measure on $X$ and $\varphi$ an $MWnL$

on (X, $m$ ) which is continuous on $X$ with $X_{1}=[0, c$). Then we have the following:
(1) $\bigcup_{k=1}^{\infty}X_{1}(k)=X_{1}(1)\cup X_{1}(2)$ ,

(2) $m(X_{1}(1)\cup X_{1}(2))>0\iota f$ and only $\iota f$ there exists a non-zero vector $e$ such that
$V(\varphi)_{1}e=e$ .

PROOF. (1) By the property of $MWnL$ and the continuity of $\varphi$ , the map $\varphi$ is a $home-$

omorphism of $[0, c]$ onto $[0,1]$ . Hence $\varphi_{1}$ is monotonically increasing or monotonically de-
creasing on $[0, c]$ . In the first case, all periodic points are fixed points. On the other hand,

in the second case, there exists one fixed point and the period of the other periodic points are
nothing but 2.

(2) It is sufficient to prove if part bacause of Corollary 2.16. We assume that
$m(X_{1}(1)\cup X_{1}(2))=0$ and there exists a vector $e$ in $L^{2}(X)$ such that $V(\varphi)_{1}e=e$ . In the
following we show that $e=1$ . By the assumption, we have

$(V(\varphi)_{l}e)(x)=\sqrt{\frac{dmo\varphi}{dm}(x)}\chi_{[0,c)}(x)e(\varphi(x))=e(x)$ , (a.a. $x\in X$).

Hence we have $e=\chi_{[0,c)}e=\chi_{X_{1}}e$ and inductively it follows that

$e(x)=\sqrt{\frac{dmo\varphi^{k}}{dm}(x)}e(\varphi^{k}(x))\chi_{[0,c)}(x)\chi_{[0,c)}(\varphi(x))\cdots\chi_{[0,c)}(\varphi^{k-1}(x))$ ,

(a.a. $x\in X,$ $k\geq 1$).

Now we put

$Y_{1}(1)=\{x\in X_{1}|\varphi(x)=x$ , and $\frac{dmo\varphi}{dm}(x)\neq 1\}$ ,

$Y_{1}(2)=\{x\in X_{1}|\varphi^{2}(x)=x,$ $\varphi(x)\in X_{1}$ and $\frac{dmo\varphi^{2}}{dm}(x)\neq 1\}$ ,

$X_{1}(\infty)=$ {$x\in X_{1}|\varphi^{k}(x)\in X_{1}$ and $\varphi^{k}(x)\neq x$ for all $k\geq 1$ } ,

$Z=$ {$x\in X_{1}|\varphi^{k}(x)\not\in X_{1}$ for some $k$ }.

Then we have
$X_{1}=X_{1}(1)\cup X_{1}(2)\cup Y_{1}(1)\cup Y_{1}(2)\cup X_{1}(\infty)\cup Z$ .

By the above equality, it follows that $e(x)=0$ for a.a. $x$ in $Y_{1}(1)\cup Y_{1}(2)\cup Z$ . Let $x_{0}$ be a
point in $X_{1}(\infty)$ . Then there exists an open interval $J$ containing $x_{0}$ such that $\{\varphi^{k}(J)\}_{k=1}^{\infty}$ are
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mutually disjoint. Hence we have

$\int_{J}|e(x)|^{2}dm=\int_{J}|\sqrt{\frac{dmo\varphi_{1}^{k}}{dm}(x)}e(\varphi_{1}^{k}(x))|^{2}dm=\int_{\varphi^{k}(J)}|e(x)|^{2}dm$

for all $k\geq 1$ and thus

$\Vert e\Vert^{2}\geq\int_{\bigcup_{K=1}^{\infty}\varphi^{k}(J)}|e(x)|^{2}dm=\sum_{k=1}^{\infty}\int_{\varphi^{k}(J)}|e(x)|^{2}dm=\sum_{k=1}^{\infty}\int_{J}|e(x)|^{2}dm$ .

Hence $e(x)$ $=0$ on $J$ (a.e.) and so on $X_{1}(\infty)(a.e.)$ . Combining th$e$ assumption
$m(X_{1}(1)\cup X_{1}(2))=0withthis$ , we havee $=0$ . q.e.d.

EXAMPLE 2.19 ($MW2L$ on $[0,1]$ such that $m(X_{1}(1))>0$). Let $X=[0,1],$ $m$ the
Lebesgue measure on $[0,1]$ and $\varphi$ the map defined by

$\varphi(x)=\{$

$x$ for $0\leq x<1/4$ ,

$(6x-1)/2$ for $1/4\leq x<1/2$ ,

$-2x+2$ for $1/2\leq x\leq 1$ .

Then $\varphi$ is an $MW2L$ on $[0,1]$ and $V(\varphi)_{1}=M_{x_{\iota 0,1/4)}}T_{\varphi}+\sqrt{3}M_{x_{l\iota/4,1/2)}}T_{\varphi},$ $V(\varphi)_{2}=$

$\sqrt{2}M_{x_{[1/2,1]}}T_{\varphi}$ . Put $e=2_{x_{\mathfrak{c}0,1/4)}}$ . Then $V(\varphi)_{1}e=e$ and $ONS(e, V(\varphi))$ is not complete.
Moreover we have

$(A_{\varphi}\eta)(x)=\chi_{[0,1/4)}(x)\eta(x)+\frac{1}{3}\chi_{[1/4,1]}(x)\eta(\frac{2x+1}{6})+\frac{1}{2}\eta(\frac{-x+2}{2})$ .

EXAMPLE 2.20 ($MW2L$ on $[0,1]$ such that $m((X_{1}(2))>0)$ . Let $X=[0,1],$ $m$ the
Lebesgue measure on $[0,1]$ and $\varphi$ the map defined by

$\varphi(x)=\left\{\begin{array}{ll}-5x+1 & for 0\leq x<1/8,\\-x+(1/2) & for 1/8\leq x<1/2,\\2x-1 & for 1/2\leq x\leq 1.\end{array}\right.$

Then $\varphi$ is an $MW2L$ on $[0,1]$ and $V(\varphi)_{1}$ $=\sqrt{5}M_{x_{l0,1/8)}}T_{\varphi}+M_{x_{l1/8,1/2)}}T_{\varphi},$ $V(\varphi)_{2}=$

$\sqrt{2}M_{x_{[1/2,1]}}T_{\varphi}$ . Put $e=2\chi_{[1/8,3/8]}$ . Then $V(\varphi)_{1}e=e$ and $ONS(e, V(\varphi))$ is not complete.
Moreover we have

$(A_{\varphi}\eta)(x)=\chi_{[0,1/8)}(x)\eta(\frac{-2x+1}{2})+\frac{1}{5}\chi_{[1/8,1]}(x)\eta(\frac{-x+1}{5})+\frac{1}{2}\eta(\frac{x+1}{2})$ .

REMARK. Though we showed one invariant unit vector $e$ for $V(\varphi)_{1}$ in Examples 2.19
and 2.20, it is easy to see that there exist inPtely many invariant unit vectors $f’ s$ for $V(\varphi)_{1}$ and,
for every $f,$ $ONS(f, V(\varphi))$ is not complete in the $se$ examples. This holds for any continuous
$MWnL$ on $[0,1]$ with $m(X_{1}(1))>0$ or $m(X_{1}(2))>0$ .
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3. MWIL and the behavior of the orbit of a state.

Let $\varphi$ be an MWIL on a measure space (X, $m$). Then $V(\varphi)1=M_{\sqrt{dm\circ\varphi/dm}}T_{\varphi}$ is a
unitary operator on $L^{2}(X)$ and we have

$(A_{\varphi}\eta)(x)=\frac{dm\circ\varphi^{-1}}{dm}(x)\eta(\varphi^{-1}(x))$ , $(x\in X)$

for $\eta$ in $L^{1}(X)$ . Suppose that there exists a non-negative function $\eta_{0}$ in $L^{1}(X)$ such that
$\Vert\eta_{0}||1=1$ and $\lim_{k\rightarrow\infty}A_{\varphi}^{k}\eta=\eta_{0}$ for all non-negative function $\eta$ in $L^{1}(X)$ with $||\eta\Vert_{1}=1$ .
Then $A_{\varphi}\eta_{0}=\eta_{0}$ , that is,

$\frac{dm\circ\varphi^{-1}}{dm}(x)\eta_{0}(\varphi^{-1}(x))=\eta_{0}(x)$ , (a.a. $x\in X$).

We put $e=\sqrt{\eta_{0}}$ . Then the above $e$quation implies $V(\varphi)_{1}e=e$ . However, since
$ONS(e, V(\varphi))=\{e\}$ , we have no information for finding whether the sequence $\{A_{\varphi}^{k}\eta 1_{k=1}^{\infty}$

converges to $\eta_{0}$ with respect to the norm topology in $L^{1}(X)$ or not. Indeed, in many cases,
these sequences do not converge in the sense of the norm topology. In case of MWlL’s, the
behavior of $\{A_{\varphi}^{k}\eta\}_{k=1}^{\infty}$ seems to be very complicated. So it is one of the our purpose in the
next step to study the behavior of these sequences. In the present paper, we show the behav-
ior of the sequences { $A_{\beta}^{k}\eta 1_{k=1}^{\infty}$ for Baker’s transformation $\beta$ , which is a typical example of
strong-mixing MW1L.

EXAMPLE 3.1 (Baker’s transformation). Let $X=I\times I=[0,1]\times[0,1]$ and $m$ the
Lebesgue measure on I $\times$ I. Let $\beta$ is Baker’s transformation on I $\times I$ , which is defined by

$\beta(x, y)=\left\{\begin{array}{ll}(2x, y/2) & for 0\leq x<1/2 ,\\(2x-1, (y+1)/2) & for 1/2\leq x\leq 1.\end{array}\right.$

Then $\beta$ is an MWIL with $\beta^{-1}$ , where

$\beta^{-1}(x, y)=\left\{\begin{array}{ll}(x/2,2y) & for 0\leq y<1/2,\\((x+1)/2,2y-1) & for 1/2\leq y\leq 1.\end{array}\right.$

Namely we have $\beta^{-1}(\beta(x, y))=\beta(\beta^{-1}(x, y))=(x, y)$ on $X$ (a.e.). Moreover we
have $V(\beta)_{1}=T_{\beta}$ and the constant function $e(x, y)=1$ is a $V(\beta)_{1}$ -invariant unit vector in
$L^{2}(I\times I)$ . Obviously $ONS(e, V(\beta))(=\{e\})$ is not complete. Moreover it follow $s$ that

$(A_{\beta}\eta)(x, y)=\eta(\beta^{-1}(x, y))$ , $(\eta\in L^{1}(I\times I))$ .

Although Baker’s transformation $\beta$ is strong-mixing, it does not satisfy the norm convergence
property of the orbit of a state. Indeed, for the non-negative function $\eta$ in $L^{1}$ (I $\times I$) with
$\Vert\eta\Vert_{1}=1$ defined by

$\eta(x, y)=\sin 2\pi y+1$ ,

we have $(A_{\beta}^{k}\eta)(x, y)=\sin 2^{k+1}\pi y+1$ and, of course, $\{A_{\beta}^{k}\eta\}_{k=1}^{\infty}$ converges to the constant

function $e$ with respect to $\sigma(L^{1}(I\times I), L^{\infty}(I\times I))$ -topology, where $e(x, y)=1$ for all $(x, y)$
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in $I\times I$ , but
$\Vert A_{\beta}^{k}\eta-|e|^{2}\Vert_{1}=\frac{2}{\pi}$

for all $k$ . In the following we show precisely how the sequence $\{A_{\beta}^{k}\eta\}_{k=1}^{\infty}$ behaves for func-
tions $\eta’ s$ in $L^{1}(I\times I)$ .

PROPOSITION 3.2. Let $\beta$ be Baker’s transformation on $X=$ I $\times$ I. Then, for $\eta$ in
$L^{1}(I\times I)$ and $\epsilon>0$ , there exist positive integers $K,$ $s$ and a finite set { $c\ell 1_{\ell=0}^{2^{s}-1}$ of complex
numbers such that

$\Vert A_{\beta}^{K}\eta-\sum_{\ell=0}^{2^{s}-1}c_{f}\chi_{I\times I\ell/2^{s},(f+1)/2^{s})\Vert_{1}}<\epsilon$ .

PROOF. First we put

$I_{(p,q)}^{(i,j)}=[i/2^{p},$ $(i+1)/2^{p})\times[j/2^{q},$ $(j+1)/2^{q})$

where $p,$ $q$ are non-negative integers and $i=0,1,$ $\cdots 2^{p}-1,$ $j=0,1,$ $\cdots$ , $2^{q}-1$ . Then
we have

$A_{\beta}\chi_{I_{(p,q)}^{(i,j)}}=\{$

$X_{I^{(i,j)}}$ for $i=0,1,$ $\cdots$ , $2^{p-1}-1$ ,
$(p-1,q+1)$

$x_{I_{(p-1,q+1)}^{(i-2p-1_{j+2}q)}}$
, for $i=2^{p-1},2^{p-1}+1,$ $\cdots$ $2^{p}-1$ .

Thu $s$ for $e$ach
$\chi_{I_{(p,q)}^{(i,j)}}$

there exist positive large integers $K$ and $r$ such that

$A_{\beta}^{K}\chi_{I_{(p,q)}^{(i.j)}}=\sum_{\ell=0}^{2^{r}-1}a_{f}\chi_{I\times[\ell/2^{r},(\ell+1)/2^{r})}$ , $(a\ell\in\{0,1\})$ .

Moreover we have

$A_{\beta}\chi_{I\times[j/2^{q},(j+1)/2^{q})}=A_{\beta}\chi_{I_{(0,q)}^{(0,j)}}=\chi_{I_{(0,q+1)}^{(0,j)}}+\chi_{I_{(0,q+1)}^{(0,j+2^{q})}}$

$=\chi_{Ix[j/2^{q+1},(j+1)/2^{q+1})}+\chi_{I\times[(j+2^{q})/2^{q+1},(j+2^{q}+1)/2^{q+1})}$ .
Now we put

$S=\bigcup_{p,q=0}^{\infty}\{\sum_{i=0}^{2^{p}-1}\sum_{j=0}^{2^{q}-1}b_{i,jX_{I_{(p,q)}^{(i,j)}}}|b_{i,j}\in c\}$ .

Then, for a given function $\eta$ in $L^{1}$ (I $\times I$), since $S$ is dense in $L^{1}(I\times I)$ with respect to the norm
topology in $L^{1}$ (I $\times I$), there exist non-negative integers $p,$ $q$ and complex numbers $\{b_{i,j}\}$ such
that

$\Vert\eta-\sum_{i=1}^{2^{p}-1}\sum_{j=1}^{2^{q}-1}b_{i,jX_{I_{(p,q)}^{(i,j)\Vert_{1}}}}<\epsilon$ .

By virtue of the above discussion, there exist positive integers $K$ and $s$ such that

$A_{\beta}^{K}(\sum_{i=1}^{2^{p}-1}\sum_{j=1}^{2^{q}-1}b_{t,jX_{I_{(p,q)}^{(i,j))}}}=\sum_{\ell=0}^{2^{s}-1}c\ell\chi_{I\times[\ell/2^{s},(\ell+1)/2^{s})}$ ,
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where each $ C\ell$ is a complex number. Since $A_{\beta}$ is isometric on $L^{1}(I\times I)$ , it follows that

$\Vert A_{\beta}^{K}\eta-\sum_{\ell=0}^{2^{s}-1}c\ell\chi_{I\times[\ell/2^{s},(\ell+1)/2^{s})\Vert_{1}}=\Vert A_{\beta}^{K}(\eta-\sum_{i=1}^{2^{p}-1}\sum_{j=1}^{2^{q}-1}b_{i,jX_{I_{(p.q)}^{(i,j))\Vert_{1}}}}<\epsilon$ .

Now, using the above proposition, the property of strong-mixing for Baker’s transforma-
tion is derived as follows. For a function $\eta$ in $L^{1}$ (I $\times I$), a function $f$ in $L^{\infty}(I\times I)\subset L^{1}$ (I $\times I$)

and a positive real number $\epsilon>0$, there exi $st$ a large number $k$ in $N$ and step functions in
$L^{1}(I\times I)$ such that

$\Vert A_{\beta}^{K}\eta-\sum_{\ell=0}^{2^{s}-1}c\ell\chi_{I\times[\ell/2^{s},(\ell+1)/2^{s})\Vert_{1}}<\epsilon$ ,

$\Vert f-\sum_{i=0}^{2^{u}-1}\sum_{j=0}^{2^{v}-1}d_{i,jX_{I_{(u.v)}^{(i,j)\Vert_{1}}}}<\epsilon$ ,

where $\{c_{\ell}\}$ and $\{d_{i,j}\}$ are complex numbers. For the finite set of simple functions generating
the step functions in the first approximation formula, we can see that there exists a large
number $K^{\prime}$ in $N$ such that

$\int_{I\times I}(A^{k}\beta I\times[\ell/2^{S},(\ell+1)/2^{S})I\times[J/2^{v},(j+1)/2^{v})$

for all $k>K^{\prime}$ . Moreover, for this $k>K^{\prime}$ , we have

$\int_{I\times I}(A_{\beta}^{k}\chi_{I\times[\ell/2^{s},(\ell+1)/2^{s})})\cdot\chi_{I_{\langle u,v)}^{(i,j)}}dm=\frac{1}{2^{s+u+v}}=\int_{I\times I}\chi_{I\times[\ell/2^{s},(\ell+1)/2^{s})}dm\cdot\int_{I\times I}\chi_{I_{\langle u,v)}^{(i.j)}}dm$ .

Using these facts, we can show that

$\lim_{k\rightarrow\infty}\int_{I\times I}(A_{\beta}^{K+k}\eta)\cdot fdm=\int_{I\times I}A_{\beta}^{K}\eta dm\cdot\int_{I\times I}fdm=\int_{I\times I}\eta dm\cdot\int_{I\times I}fdm$ .

Especially, if $\eta$ is a non-negative function with $||\eta\Vert 1=1$ , we have

$\lim_{k\rightarrow\infty}\int_{I\times I}A_{\beta}^{k}\eta\cdot fdm=\int_{I\times I}fdm$ .

Namely we have the following and from this we can see that $\beta$ is strong-mixing.

COROLLARY 3.3. Let $\beta$ be Baker’s transfomation on $ X=I\times$ I and $e$ the unit vector

defined by $e(x, y)=1$ in $L^{1}(I\times I)$ . Then, for each non-negativefunction $\eta$ in $L^{1}(I\times I)$ with
$||\eta||_{1}=1$ itfollows that

$\lim_{k\rightarrow\infty}A_{\beta}^{k}\eta=e$ (w.r.t. $\sigma(L^{1}(I\times I),$ $L^{\infty}(I\times I))$ -topology in $L^{1}(I\times I)$).
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