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Abstract. In this paper, we will consider the equation $\mathcal{P}u=f$ , where $\mathcal{P}$ is the linear Fuchsian partial differ-
ential operator

$\mathcal{P}=(tD_{t})^{m}+\sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}a_{j,\alpha}(t, z)(\mu(t)D_{Z})^{\alpha}(tD_{t})^{f}$ .

We will give a sharp form of unique solvability in the following sense: we can find a domain $\Omega$ such that if $f$ is
defined on $\Omega$ , then we can find a unique solution $u$ also defined on $\Omega$ .

1. Introduction and result.

Denote by $N$ the set of nonnegative integers, and let $(t, z)=(t, z_{1}, \cdots z_{n})\in R\times C^{n}$ .
Let $R$ $>$ $0$ be sufficiently small, and for $\rho$

$\in$ $(0, R$ ], let $B_{\rho}$ be the polydisk
$tz\in C^{n}$ ; $|z_{i}|<\rho$ for $i=1,2,$ $\cdots n$ }.

Given any bounded, open subset $D$ of $C^{n}$ , the space $\mathcal{A}(D)$ of all functions $g(z)$ holomor-
phic in $D$ and continuous up to $\overline{D}$ forms a Banach space with norm $||g||_{D}=\max_{z\in\overline{D}}|g(z)|$ .
Let $T>0$ . Then we denote by $C^{0}([0, T], \mathcal{A}(D))$ the set of functions continuous on the
interval $[0, T]$ and valued in the space $\mathcal{A}(D)$ .

We say that a continuous, positive-valued function $\mu(t)$ on the interval $(0, T)$ is a weight

function if $\mu(t)$ is increasing and the function

(1.1) $\varphi(t)=\int_{0}^{t}\frac{\mu(s)}{s}ds$

is well-defined on $(0, T)$ , i.e., the integral on the right is finite. (See Tahara [7].)

Consider now the linear partial differential operator

(1.2) $\mathcal{P}=(tD_{t})^{m}+\sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}a_{j,\alpha}(t, z)(\mu(t)D_{z})^{\alpha}(tD_{t})^{J}$ .

Here, $D_{t}=\partial/\partial t$ and $D_{z}=$ $(\partial/\partial z_{1}, \cdots , \partial/\partial z_{n});\mu(t)$ is a weight function; and the coeffi-
cients $a_{j,\alpha}(t, z)$ belong in the space $C^{0}([0, T], \mathcal{A}(B_{R}))$ , i.e., for any $s\in[0, T]$ , each of the
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functions $a_{j,\alpha}(s, z)$ , when viewed as a function of $z$ , is holomorphic in $B_{R}$ and continuous up
to $\overline{B}_{R}$ . We associate a polynomial with this operator, called the characteristic polynomial of
$\mathcal{P}$ , and we define it by

(1.3) $C(\lambda, z)=\lambda^{m}+a_{m-1,0}(0, z)\lambda^{m-1}+\cdots+a_{0,0}(0, z)$ .

Its roots $\lambda_{1}(z),$ $\cdots$ , $\lambda_{m}(z)$ will be referred to as characteristic exponents. In what follows,
we will assume that there exists a positive number $L$ such that

(1.4) $\Re\lambda_{j}(z)\leq-L<0$ for all $z\in B_{R}$ and $1\leq j\leq m$ .

Baouendi and Goulaouic [1] studied the above operator in the case when $\mu(t)=t^{a}(a>$

$0)$ . They called such operator a Fuchsian partial differential operator, which for them is the
“natural” generalization of a Fuchsian ordinary differential operator. In their paper, they gave
some generalizations of the classical Cauchy-Kowalewski and Holmgren theorems for this
type of operators. Their method has been applied and extended to various cases as can be
seen, for example, in Tahara [6], Mandai [5] and Yamane [8].

In a previous paper [4], the author proved existence and uniqueness theorems similar to
those given in [1], but for general $\mu(t)$ . Essentially, he proved the following unique solvability
result.

THEOREM 1. Let $\mathcal{P}$ be as in (1.2). Then given any $\rho\in(0, R)$ , there exists an $\epsilon\in$

$(0, T]$ such that for any $f(t, z)\in C^{0}([0, T], \mathcal{A}(B_{R}))$ , the equation $\mathcal{P}u=f$ has a unique
solution $u(t, z)\in C^{0}([0, \epsilon], \mathcal{A}(B_{\rho}))$ satisfying for 1 $\leq p\leq m$ the relation $(tD_{t})^{p}u\in$

$C^{0}([0, \epsilon], \mathcal{A}(B_{\rho}))$ .
We remark that although $f(t, z)$ , viewed as a function of $z$ , is defined on $B_{R}$ , the exis-

tence of the solution $u(t, z)$ is only guaranteed up to $B_{\rho}$ , with $\rho<R$ . Moreover, any two
solutions of $\mathcal{P}u=f$ can only be shown to coincide in a neighborhood of the origin which is
smaller than the neighborhood on which the two are defined.

In this paper, we shall present a formulation leading to an existence and uniqueness result
sharper than the one given above. The result is sharper in the sense that the solution $u(t, z)$

of the equation $\mathcal{P}u=f$ will now have the same domain of definition as the inhomogeneous
part $f(t, z)$ .

To proceed, we will need the following definitions.

DEFINITION 1. Let $\tau\in(0, T),$ $\gamma>0$ and $\varphi(t)$ be the one in (1.1). We define
(i) $\omega_{\tau}[\gamma]=tz\in C^{n}$ ; $|z\iota|<R-\gamma\varphi(\tau)$ for $i=1,2,$ $\cdots$ , $n$ }, and

(ii) $\Omega_{T}[\gamma]=$ { $(\tau,$ $z)\in R\times C^{n}$ ; $0\leq\tau\leq T$ and $z\in\omega_{\tau}[\gamma]$ }.

DEFINITION 2. Let $p\in N$ and $\gamma>0$ .
(i) We say that $f(t, z)$ belongs in $\mathcal{K}_{0}(\Omega_{T}[\gamma])$ if for each $\tau\in[0, T]$ , we have $ f(t)\in$

$C^{0}([0, \tau], \mathcal{A}(\omega_{\tau}[\gamma]))$ .
(ii) We say that $w(t, z)$ belongs in $C_{p}^{0}([0, \tau], \mathcal{A}(\omega_{\tau}[\gamma]))$ if for all $0\leq j\leq p$ , we have

$(tD_{t})^{J}w(t)\in C^{0}([0, \tau], \mathcal{A}(\omega_{\tau}[\gamma]))$ .
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(iii) We say that $u(t, z)$ belongs in $\mathcal{K}_{p}(\Omega_{T}[\gamma])$ if for each $\tau\in[0, T]$ , we have $ u(t)\in$

$C_{p}^{0}([0, \tau], \mathcal{A}(\omega_{\tau}[\gamma]))$ .

Under the above assumptions, we now state the following main result.

THEOREM 2. Let $\mathcal{P}$ be the operator given in (1.2). Then there exist constants $To>0$

and $\gamma 0>0$ depending on $\mathcal{P}$ such thatfor any $f(t, z)\in \mathcal{K}_{0}(\Omega_{T_{0}}[\gamma_{0}])$ , the equation

(1.5) $\mathcal{P}u=f$ in $\Omega_{T_{0}}[\gamma_{0}]$

has a unique solution $u(t, z)$ in $\mathcal{K}_{m}(\Omega_{T_{0}}[\gamma 0])$ .
Moreover, the solution satisfies the a priori estimate

(1.6) $\sum_{p=0}^{m}\max_{\Delta}|(tD_{t})^{p}u|\leq C\max_{\Delta}|f|$ ,

where $\Delta$ is the closure of $\Omega_{T_{0}}[\gamma_{0}]$ and $C>0$ is some constant dependent on the above
equation and on the domain $\Omega_{T_{0}}[\gamma_{0}]$ .

Note that $f(t, z)$ and $u(t, z)$ both have $\Omega_{T_{0}}[\gamma_{0}]$ as their domain of definition. This fact
allows us to restate our theorem in the following manner: for any $T,$ $\gamma>0$ , let $X_{T,\gamma}$ and
$Y_{T,\gamma}$ be the spaces $\mathcal{K}_{m}(\Omega_{T}[\gamma])$ and $\mathcal{K}_{0}(\Omega_{T}[\gamma])$ , respectively. Let $W_{T,\gamma}$ be the subspace of
$X_{T,\gamma}$ consisting of functions $u\in X_{T,\gamma}$ such that $\mathcal{P}u$ belongs in $Y_{T,\gamma}$ . Define alinear operator
$\Psi$ from $X_{T,\gamma}$ to $Y_{T,\gamma}$ with domain $W_{T,\gamma}$ by $\Psi u=\mathcal{P}u$ . Let $\Vert|\cdot\Vert|_{T,\gamma}$ denote the maximum
norm in the closure of $\Omega_{T}[\gamma]$ . Then $X_{T,\gamma}$ and $Y_{T,\gamma}$ are Banach spaces; given $u\in X_{T,\gamma}$ and
$f\in Y_{T,\gamma}$ , we define their norms by $\sum_{p=0}^{m}\Vert|(tD_{t})^{p}u\Vert|\tau_{\gamma}$ and $\Vert|f\Vert|_{T,\gamma}$ , respectively. Note
further that the operator $\psi$ is a closed linear operator from $X_{T,\gamma}$ to $Y_{T,\gamma}$ . The above theorem
can now be stated as

THEOREM $2^{\prime}$ . There exist $T_{0},$ $V0>0$ depending on $\mathcal{P}$ such that the operator $\Psi$ is a
one-one, closed linear operatorfrom $X_{T_{0},\gamma_{0}}$ onto $Y_{T_{0},\gamma 0}$ .

Since $\psi$ is an injection, $\Psi^{-1}$ exists and is also closed. The Closed Graph Theorem
further implies that $\Psi^{-1}$ is continuous. The estimate given in (1.6) is just a consequence of
the continuity of $\Psi^{-1}$ .

2. Preliminary discussion.

We can rewrite the operator $\mathcal{P}$ as

$\mathcal{P}=\mathcal{Q}+\sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}c_{j,\alpha}(t, z)(\mu(t)D_{z})^{\alpha}(tD_{t})^{J}$ ,

where the operator $Q$ is defined by

(2.1) $\mathcal{Q}=(tD_{t})^{m}+a_{m-1,0}(0, z)(tD_{t})^{m-1}+\cdots+a_{0,0}(0, z)$
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and

$c_{j,\alpha}(t, z)=\left\{\begin{array}{ll}a_{j,\alpha}(t, z) & if |\alpha|\neq 0,\\a_{j,\alpha}(t, z)-a_{j,\alpha}(O, z) & if |\alpha|=0.\end{array}\right.$

Note that the coefficients of the ordinary differential operator $\mathcal{Q}$ are holomorphic functions of
$z$ in $B_{R}$ . Note further that the characteristic exponents of $\mathcal{Q}$ are the same as that of $\mathcal{P}$ , and
hence satisfy (1.4).

LEMMA 1. Fix $\tau>0$ and let $g(t)\in C^{0}([0, \tau], \mathcal{A}(\omega_{\tau}[\gamma]))$ . Then the equation $\mathcal{Q}u=g$

has a unique solution $u(t)\in C_{m}^{0}([0, \tau], \mathcal{A}(\omega_{\tau}[\gamma]))$ . This unique solution is given by

(2.2) $ u(t)=\frac{1}{m!}\sum_{\sigma\in S_{m}}\int_{0}^{t}\int_{0}^{s_{m}}\cdots\int_{0}^{s_{2}}(\frac{s_{m}}{t})^{-\lambda_{\sigma(m)}}(\frac{s_{m-1}}{s_{m}})^{-\lambda_{\sigma\langle m-1)}}\cdots$

$\times(\frac{S1}{s_{2}})^{-\lambda_{\sigma(1)}}g(s_{1})\frac{ds_{1}}{s_{1}}\frac{ds_{2}}{s_{2}}\cdots\frac{ds_{m}}{s_{m}}$ .

Here, $S_{m}$ is the group ofpemutations of $\{$ 1, 2, $\cdots$ , $m\}$ .
A result in symmetric entire functions asserts that the solution $u(t, z)$ is holomorphic

with respect to $z$ . The fact that it belongs in $C_{m}^{0}([0, \gamma], \mathcal{A}(\omega_{\tau}[\gamma]))$ is seen in the integral
expression, but may actually be obtained a priori. (See Baouendi-Goulaouic [1].)

To facilitate computation, we define for $\lambda=$ $(\lambda_{1}, \cdots , \lambda_{m})$ the function

(2.3) $G_{\theta}{}^{t}(\lambda)^{d}=^{ef}\frac{1}{m!}\sum_{\sigma\in S_{m}}(\frac{s_{m}}{t})^{-\lambda_{\sigma\langle m)}}(\frac{s_{m-1}}{s_{m}})^{-\lambda_{\sigma(m-1)}}\cdots(\frac{\theta}{s_{2}})^{-\lambda_{\sigma(1)}}$

for some dummy variables $s_{2},$ $\cdots$ , $s_{m}$ . Define, too, the integral operator

(2.4) $\int_{[t;\theta]}^{(m)}g^{d}=^{cf}\int_{0}^{t}\int_{0}^{s_{m}}\cdots\int_{0}^{s_{2}}g(\theta)\frac{d\theta}{\theta}\frac{ds_{2}}{s_{2}}$ $\frac{ds_{m}}{s_{m}}$

Using the above, we can now write the solution $u(t)$ of the equation $\mathcal{Q}u=g$ as

$u(t)=\int_{[t;s]}^{(m)}G_{s}{}^{t}(\lambda)g$ .

In our proof of the main theorem, it will be necessary to consider the action of the dif-
ferential operator $(tD_{t})^{p}$ on integral expressions similar to the one in (2.2). One can easily
verify the following

LEMMA 2. Let $u(t)$ be the solution of $\mathcal{Q}u=g$. Then for a natural number $p$ less than
$m$ , we have

(2.5) $(tD_{t})^{p}u=\sum_{i=m-p}^{m}\int_{[t;s_{1}]}^{(i)}g\times\{\frac{1}{m!}\sum_{\sigma\in S_{m}}h_{i}(\sigma, \lambda)(\frac{s_{i}}{t})^{-\lambda_{\sigma(i)}}$

$\times(\frac{s_{i-1}}{s_{i}})^{-\lambda_{\sigma(i-1)}}$ $(\frac{s_{1}}{s_{2}})^{-\lambda_{\sigma(1)}}\}$ ,



LINEAR FUCHSIAN PARTIAL DIFFERENTIAL EQUATIONS 481

where the functions $h_{i}(\sigma, \lambda)$ are suitable polynomialfunctions of the characteristic exponents
$\lambda_{1}(z),$ $\cdots$ $\lambda_{m}(z)$ .

For brevity, let us set, for a natural number $k$ ,

(2.6) $H_{\theta}{}^{t}(k, \lambda)=\frac{1}{m!}\sum_{\sigma\in S_{m}}h_{k}(\sigma, \lambda)(\frac{s_{k}}{t})^{-\lambda_{\sigma(k)}}(\frac{s_{k-1}}{s_{k}})^{-\lambda_{\sigma(k-1)}}\cdots(\frac{\theta}{s_{2}})^{-\lambda_{\sigma(1)}}$

By symmetry, the functions $H_{s}^{t}(k, \lambda)$ are holomorphic with respect to $z$ and thus belong in
$\mathcal{A}(B_{R})$ .

The following lemma is useful in evaluating some integral expressions in the proof.

LEMMA 3. Let $k$ be natural number. Then the following equalities hold:

(a) $\int_{0}^{s_{k}}\int_{0}^{s_{k-1}}\cdots\int_{0}^{s_{1}}(\frac{s_{0}}{s_{k}})^{L}\frac{ds_{0}}{s_{0}}\cdots\frac{ds_{k-1}}{s_{k-1}}=\frac{1}{L^{k}}$

(b) $\int_{0}^{t}\int_{0}^{s_{k}}\cdots\int_{0}^{s_{1}}\frac{\mu(s_{k})}{s_{k}}\frac{\mu(s_{k-1})}{s_{k-1}}$ $\frac{\mu(s_{1})}{s_{1}}$

$\times(\frac{s0}{t})^{L}\frac{s_{0}^{-1}}{[\varphi(t)-\varphi(s_{0})]^{k}}ds_{0}\cdots ds_{k}=\frac{1}{Lk!}$

The first equality is obvious. The second can be proved by reversing the order of inte-
gration and recalling that $t\varphi^{\prime}(t)=\mu(t)$ .

To estimate the derivatives with respect to $z$ , we have the following lemma. (For a proof,
see H\"ormander [3, Lemma 5.1.3].)

LEMMA 4. Let thefunction $v(z)$ be holomorphic in $B_{R}$ , and suppose there are positive
constants $K$ and $c$ such that

(2.7) $\Vert v\Vert_{\rho}\leq\frac{K}{(R-\rho)^{C}}$ for every $\rho\in(0, R)$ .

Then we have

(2.8) $\Vert D_{z}^{\alpha}v\Vert_{\rho}\leq\frac{Ke^{|\alpha|}(c+1)_{|\alpha|}}{(R-\rho)^{C+|\alpha|}}$ for every $\rho\in(0, R)$ .

In the above, we define $(c)_{p}=(c)(c+1)\cdots(c+p-1)$ .

3. Proof of Main Theorem.

Let $f$ be any element of $\mathcal{K}_{0}(\Omega_{T_{0}}[\gamma_{0}])$ . Here, the constants $T_{0}>0$ and $\gamma_{0}>0$ satisfy
some conditions which will later be specified. For convenience, we will drop the subscript in
both and instead use $T$ and $\gamma$ ; we will again use the subscript upon stating the conditions that
these constants need to satisfy.
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We will use the method of successive approximations to solve th$e$ equation $\mathcal{P}u=f$ .
Define the approximate solutions as follows:

(3.1) $u_{0}(t)=\int_{[t,s]}^{(.m)}G_{s}{}^{t}(\lambda)f$

and for $k\geq 1$ ,

(3.2) $u_{k}(t)=\int_{[t;s]}^{(m)}G_{s}{}^{t}(\lambda)[f-S(s)u_{k-1}]$ .

Here, $t$ $\in$ $[0, T]$ , and for brevity, we have set $S(t)$ $=\sum_{j=0}^{m-1}\sum_{|\alpha|\leq m-j}c_{j,\alpha}(t, z)$

$(\mu(t)D_{Z})^{\alpha}(tD_{t})^{1}$ . Note that for all $k$ , the approximate solutions $u_{k}(t, z)$ are defined on
$\Omega_{T_{0}}[\gamma_{0}]$ . Furthermore, they are continuous with respect to $t$ and holomorphic with respect to
$z$ on this region.

For each natural number $k$ , we also define the sequence of functions $v_{k}(t)=u_{k}(t)-$

$u_{k-1}(t)$ , where we have set $u_{-1}\equiv 0$ . Then the functions $v_{k}(t, z)$ are also defined on the same
region as $u_{k}(t, z)$ , and are also continuous with respect to $t$ and holomorphic with respect to
$z$ . Using the expression for $u_{k}(t)$ , we have

(3.3) $v_{0}(t)=\int_{[t;s]}^{(m)}G_{s}{}^{t}(\lambda)f$

and for $k\geq 1$ ,

(3.4) $v_{k}(t)=-\int_{[t;s]}^{(m)}G_{s}{}^{t}(\lambda)S(s)v_{k-1}$ .

To prove that the approximate solutions converge to the real solution, we will henceforth
fix one $t\in[0, T]$ , and estimate the functions $v_{k}(t)$ .

Let $C$ be the bound on $[0, T]\times\overline{B_{R}}$ of all $c_{j,\alpha}(t, z)$ , and $K$ be the bound in $\overline{\Omega_{T}[\gamma]}$ of
$f(t, z)$ . As for the functions $G_{s}^{t}(\lambda)$ and $H_{s}^{t}(k, \lambda)$ , we have the following estimates:

(3.5) $z\in^{\frac{up}{B_{R}}}s|G_{s}{}^{t}(\lambda)|\leq(\frac{s}{t})^{L}$

and there exists a constant $D$ such that for $1\leq k\leq m$ ,

(3.6) $z\in^{\frac{up}{B_{R}}}s|H_{s}^{t}(k, \lambda)|\leq D(\frac{s}{t})^{L}$

We can easily see that $\Vert v_{0}(t)\Vert_{\omega_{t}}$ is bounded by $KL^{-m}$ for any $0\leq t\leq T$ . Here, we
have written for convenience $\Vert\cdot\Vert_{\omega_{t}}$ in place of $\Vert\cdot||_{\omega_{t}[\gamma]}$ . For general $k$ , we note that $v_{k}(t)$ is
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given by the following iterated integral:

(3.7) $v_{k}(t)=(-1)^{k}\int_{[t;s]}^{(m_{k})}G_{s_{k}}^{t}(\lambda)S(s_{k})\int_{[s_{k};s_{k-1}]}^{(m)}G_{s_{k-1}}^{s_{k}}(\lambda)S(s_{k-1})$

. . . $\int_{[s_{2};s_{1}]}^{(m)}G_{s_{1}}^{s_{2}}(\lambda)S(s_{1})\int_{[s_{1};s_{0}]}^{(m)}G_{s_{0}}^{s_{1}}(\lambda)f(s_{0})$ .

The expression above can be expanded using Lemma 2, and thus obtain a finite sum whose
number of terms is less than $(mJ)^{k}$ , where $J$ is the cardinality of the set $\{(j, \alpha);0\leq j\leq$

$m-1$ and $|\alpha|\leq m-j$ }. Each term of the finite sum has the form

(3.8) $I=(-1)^{k}\int_{[ts_{k}]}^{(m)}G_{s_{k}}^{t}(\lambda)c_{j_{k},\alpha_{k}}(\mu D_{z})^{\alpha_{k}}\int_{[s_{k};s_{k-1}]}^{(i_{k})}H_{s_{k-1}}^{s_{k}}(i_{k}, \lambda)c_{j_{k-1},\alpha_{k-1}}(\mu D_{z})^{\alpha_{k-1}}$

. . . $\int_{[s_{2};s_{1}]}^{(i_{2})}H_{s_{1}}^{s_{2}}(i_{2}, \lambda)c_{j_{1},\alpha_{1}}(\mu D_{z})^{\alpha_{1}}\int_{[s_{1};s_{0}]}^{(i_{1})}H_{s_{0}}^{s_{1}}(i_{1}, \lambda)f(s_{0})$ ,

where for each $p$ , the relations $m-j_{p}\leq i_{p}\leq m$ and $|\alpha_{p}|\leq m-j_{p}$ hold. (Here, $\alpha_{p}$ is a
multi-index and should not be confused with the $p$th component of $\alpha.$ ) The above is further
equal to

(3.9) $I=(-1)^{k}\int_{[t;s]}^{(m_{k})}\int_{[s_{k}s_{k-1}]}^{(i_{k})}\cdots\int_{[s_{1};s_{0}]}^{(i_{1})}G_{s_{k}}^{t}c_{j_{k},\alpha_{k}}(s_{k})(\mu(s_{k})D_{Z})^{\alpha_{k}}$

$\times H_{s_{k-1}}^{s_{k}}c_{j_{k-1},\alpha_{k-1}}(s_{k-1})(\mu(s_{k-1})D_{z})^{\alpha_{k-1}}\cdots$

$\times H_{s_{1}}^{s_{2}}c_{j_{1},\alpha_{1}}(s_{1})(\mu(s_{1})D_{z})^{\alpha_{1}}H_{s_{0}}^{s_{1}}f(s_{0})$ .

Let $F_{k}(s)$ denote the integrand of the above integral. Let $R_{s_{0}}=R-\gamma\varphi(s_{0})$ . Then all the
functions above, when viewed as a function of $z$ , belong in $\mathcal{A}(\omega_{s_{0}}[\gamma])$ . (This explains the
necessity of the assumption that the coefficients be defined up to $B_{R}$ , for all $t$ in the interval
$[0, T].)$

We can therefore apply Lemma 4 repeatedly, starting from the rightmost expression, to
obtain the following estimate for the integrand: for any $\rho\in(0, R_{s_{0}})$ ,

(3.10) $\Vert F_{k}(s)\Vert_{B_{\rho}}\leq K(CD)^{k}\mu(s_{1})^{|\alpha_{1}|}$ –
$\mu(s_{k})^{|\alpha_{k}|}(\frac{s_{0}}{t})^{L}$

$\times(\frac{e}{R_{s_{0}}-\rho})^{|\alpha_{1}+\cdots+\alpha_{k}|}|\alpha_{1}+\cdots+\alpha_{k}|!$ .

If $|\alpha_{1}+\cdots+\alpha_{k}|=0$ , then for sufficiently small $T=T_{0}$ , the bound for any $c_{j,0}(t, z)=$

$a_{j,0}(t, z)-a_{j,0}(0, z)$ is actually small, since $a_{j,0}(t, z)$ is continuous with respect to $t$ . In
other words, by choosing a small $T=T_{0}$ , we could find a small constant $\delta$ such that for any
$t\in[0, T_{0}]$ and $0\leq s\leq t$ , the following holds:

(3.11) $\Vert F_{k}(s)||_{\omega_{t}}\leq K\delta^{k}(\frac{s0}{t})^{L}$
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Going back to the integral, we have

(3.12) $\Vert I||_{\omega_{t}}\leq\int_{[t;s_{k}]}^{(m)}\int_{[s_{k};s_{k-1}]}^{(i_{k})}\cdots\int_{[s_{1};s_{0}]}^{(i_{1})}K\delta^{k}(\frac{s_{0}}{t})^{L}$

$=K\frac{\delta^{k}}{L^{m+i_{1}+\cdots+i_{k}}}$ (by (a) of Lemma 3)

$\leq K(\frac{\delta}{L_{0}})^{k}$

for some constant $L_{0}$ dependent on $L$ . This is possible since $i_{p}\leq m$ for all $p$ .
If $|\alpha_{1}+\cdots+\alpha_{k}|\neq 0$ , then set the $\rho$ in (3.10) to be equal to $R-\gamma\varphi(t)$ . This gives

(3.13) $\Vert F_{k}(s)||_{\omega_{t}}\leq K(CD)^{k}\mu(s_{1})^{|\alpha_{1}|}\cdots\mu(s_{k})^{|\alpha_{k}|}(\frac{s_{0}}{t})^{L}$

$\times|\alpha_{1}+\cdots+\alpha_{k}|!(\frac{e}{\gamma[\varphi(t)-\varphi(s_{0})]})^{|\alpha_{1}+\cdots+\alpha_{k}|}$

By renaming if necessary, assume that for $p=1,$ $\cdots$ , $q,$ $|\alpha_{p}|\neq 0$ . Note that $q\geq 1$ . We
will again use the continuity of $a_{j,0}(t, z)$ to estimate those expressions which are not acted
upon by $D_{Z}$ , i.e., the $k-q$ cases when $|\alpha_{p}|=0$ . Just like before, we can show that for small
$\delta$ ,

(3.14) $\Vert F_{k}(s)\Vert_{\omega_{t}}\leq K(CD)^{q}\delta^{k-q}\mu(s_{1})^{|\alpha_{1}|}\cdots\mu(s_{q})^{|\alpha_{q}|}(\frac{s_{0}}{t})^{L}$

$\times|\alpha_{1}+\cdots+\alpha_{q}|!(\frac{e}{\gamma[\varphi(t)-\varphi(s_{0})]})^{|\alpha_{1}+\cdots+\alpha_{q}|}$

Thus, the integral $I$ can now be estimated as follows:

(3.15) $||I||_{\omega_{t}}\leq K(CD)^{q}\delta^{k-q}(\frac{e}{\gamma})^{|\alpha_{1}+\cdots+\alpha_{q}|}|\alpha_{1}+\cdots+\alpha_{q}|!$

$\times\int_{[t;s_{k}]}^{(m)}\int_{[s_{k};s_{k-1}]}^{(i_{k})}\cdots\int_{[s_{1};s_{0}]}^{(i_{1})}(\frac{s0}{t})^{L}\frac{\mu(s_{1})^{|\alpha_{1}|}\cdots\mu(s_{q})^{|\alpha_{q}|}}{[\varphi(t)-\varphi(s_{0})]^{|\alpha_{1}+\cdots+\alpha_{q}|}}$ .

Let $d=m+i_{1}+\cdots+i_{k}$ and $b=|\alpha_{1}+\cdots+\alpha_{q}|$ . Note that $b\geq q$ . Since for each
$p$ , we have $|\alpha_{p}|\leq m-j_{p}\leq i_{p}$ , and using the fact that both $\varphi(t)$ and $\mu(t)$ are increasing on
$(0, T_{0})$ , we have

(3.16) $||I||_{\omega_{t}}\leq K(CD)^{q}\delta^{k-q}(\frac{e}{\gamma})^{b}b$ !

$\times\int_{0}^{t}\int_{0}^{\xi_{b}}\cdots\int_{0}^{\xi_{1}}\frac{\mu(\xi_{b})}{\xi_{b}}\cdots\frac{\mu(\xi_{1})}{\xi_{1}}(\frac{\xi_{0}}{t})^{L}\frac{1}{[\varphi(t)-\varphi(\xi_{0})]^{b}}\frac{d\xi_{0}}{\xi_{0}}d\xi_{1}\cdots d\xi_{b}$

$\times\int_{0}^{\xi_{0}}\int_{0}^{\eta_{1}}\cdots\int_{0}^{\eta_{d-b-2}}(\frac{s_{0}}{\xi_{0}})^{L}\frac{ds_{0}}{s_{0}}\cdots\frac{d\eta_{1}}{\eta_{1}}$
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By (a) of Lemma 3, the second integral is equal to $L^{-d+b+1}$ . Thus, the above simplifies into

(3.17) $\Vert I\Vert_{\omega_{t}}\leq K(CD)^{q}\delta^{k-q}(\frac{e}{\gamma})^{b}L^{-d+b+1}b$ !

$\times\int_{0}^{t}\int_{0}^{\xi_{b}}\cdots\int_{0}^{\xi_{1}}\frac{\mu(\xi_{b})}{\xi_{b}}\cdots\frac{\mu(\xi_{1})}{\xi_{1}}(\frac{\xi_{0}}{t})^{L}\frac{\xi_{0}^{-1}}{[\varphi(t)-\varphi(\xi_{0})]^{b}}d\xi_{0}\cdots d\xi_{b}$ .

The last integral is equal to $(Lb!)^{-1}$ , by (b) of Lemma 3. Meanwhile, since $d\leq m(k+1)$ , we
can find a constant $L_{1}$ , depending on $L$ , such that $L^{-d}\leq L_{1}^{k}$ . Substituting these results into
the above equation, we get

(3.18) $\Vert I\Vert_{\omega_{t}}\leq K(CD)^{q}\delta^{k-q}(\frac{eL}{\gamma})^{b}L_{1}^{k}$

$=K(\frac{CD}{\delta})^{q}(\delta L_{1})^{k}(\frac{eL}{\gamma})^{b}$

By taking a sufficiently small $T_{0}$ , we can find a constant $\delta$ small enough such that $\delta L_{1}$ above
and $\delta L_{0}^{-1}$ in (3.12) are both less than $(mJ)^{-1}$ . Now, sinc$eq\leq b$ , we can choose and fix a
sufficiently large $\gamma=\gamma_{0}$ to make the remaining expression less than 1.

To summarize, we have shown that if $T_{0}$ is sufficiently small and $\gamma_{0}$ is sufficiently large,
some constants $K>0$ and $\delta_{0}<1$ exist such that for all $k$ , we have

(3.19) $||v_{k}(t)\Vert_{\omega_{t}[\gamma_{0}]}\leq K\delta_{0}^{k}$ for any $t\in[0, T_{0}]$ .

It follows that the series $\sum_{k=0}^{\infty}v_{k}(t, z)$ is majorized by a convergent geometric series, and
hence is itself convergent in $C^{0}([0, \tau], \mathcal{A}(\omega_{\tau}[\gamma_{0}]))$ for all $\tau\in[0, T_{0}]$ . This means that $u_{k}(t)$

converges uniformly to $u(t)$ on $\Omega_{T_{0}}[\gamma_{0}]$ .
By following the steps above, we can also show that for 1 $\leq p\leq m-1$ , the se-

quence $(tD_{t})^{p}u_{k}(t)$ converges uniformly to $(tD_{t})^{p}u(t)$ on $\Omega_{T_{0}}[\gamma 0]$ . Thus, it follows that on
a compact subset of $\Omega_{T_{0}}[\gamma_{0}]$ , the sequence $D_{z}^{\alpha}(tD_{t})^{p}u_{k}(t)$ converges to $D_{z}^{\alpha}(tD_{t})^{p}u(t)$ . This
implies the convergence of the approximate solutions to the true solution $u(t)$ .

Uniqueness may be proved in a similar manner.
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