A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

Jose Ernie C. LOPE
Sophia University
(Communicated by K. Uchiyama)

Abstract

In this paper, we will consider the equation $\mathcal{P} u=f$, where \mathcal{P} is the linear Fuchsian partial differential operator $$
\mathcal{P}=\left(t D_{t}\right)^{m}+\sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} a_{j, \alpha}(t, z)\left(\mu(t) D_{z}\right)^{\alpha}\left(t D_{t}\right)^{j}
$$

We will give a sharp form of unique solvability in the following sense: we can find a domain Ω such that if f is defined on Ω, then we can find a unique solution u also defined on Ω.

1. Introduction and result.

Denote by \mathbf{N} the set of nonnegative integers, and let $(t, z)=\left(t, z_{1}, \cdots, z_{n}\right) \in \mathbf{R} \times \mathbf{C}^{n}$. Let $R>0$ be sufficiently small, and for $\rho \in(0, R]$, let B_{ρ} be the polydisk $\left\{z \in \mathbf{C}^{n} ;\left|z_{i}\right|<\rho\right.$ for $\left.i=1,2, \cdots, n\right\}$.

Given any bounded, open subset D of \mathbf{C}^{n}, the space $\mathcal{A}(D)$ of all functions $g(z)$ holomorphic in D and continuous up to \bar{D} forms a Banach space with norm $\|g\|_{D}=\max _{z \in \bar{D}}|g(z)|$. Let $T>0$. Then we denote by $C^{0}([0, T], \mathcal{A}(D))$ the set of functions continuous on the interval $[0, T]$ and valued in the space $\mathcal{A}(D)$.

We say that a continuous, positive-valued function $\mu(t)$ on the interval $(0, T)$ is a weight function if $\mu(t)$ is increasing and the function

$$
\begin{equation*}
\varphi(t)=\int_{0}^{t} \frac{\mu(s)}{s} d s \tag{1.1}
\end{equation*}
$$

is well-defined on $(0, T)$, i.e., the integral on the right is finite. (See Tahara [7].)
Consider now the linear partial differential operator

$$
\begin{equation*}
\mathcal{P}=\left(t D_{t}\right)^{m}+\sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} a_{j, \alpha}(t, z)\left(\mu(t) D_{z}\right)^{\alpha}\left(t D_{t}\right)^{j} \tag{1.2}
\end{equation*}
$$

Here, $D_{t}=\partial / \partial t$ and $D_{z}=\left(\partial / \partial z_{1}, \cdots, \partial / \partial z_{n}\right) ; \mu(t)$ is a weight function; and the coefficients $a_{j, \alpha}(t, z)$ belong in the space $C^{0}\left([0, T], \mathcal{A}\left(B_{R}\right)\right)$, i.e., for any $s \in[0, T]$, each of the
functions $a_{j, \alpha}(s, z)$, when viewed as a function of z, is holomorphic in B_{R} and continuous up to \bar{B}_{R}. We associate a polynomial with this operator, called the characteristic polynomial of \mathcal{P}, and we define it by

$$
\begin{equation*}
\mathcal{C}(\lambda, z)=\lambda^{m}+a_{m-1,0}(0, z) \lambda^{m-1}+\cdots+a_{0,0}(0, z) \tag{1.3}
\end{equation*}
$$

Its roots $\lambda_{1}(z), \cdots, \lambda_{m}(z)$ will be referred to as characteristic exponents. In what follows, we will assume that there exists a positive number L such that

$$
\begin{equation*}
\mathfrak{R} \lambda_{j}(z) \leq-L<0 \quad \text { for all } \quad z \in B_{R} \quad \text { and } \quad 1 \leq j \leq m \tag{1.4}
\end{equation*}
$$

Baouendi and Goulaouic [1] studied the above operator in the case when $\mu(t)=t^{a}(a>$ 0). They called such operator a Fuchsian partial differential operator, which for them is the "natural" generalization of a Fuchsian ordinary differential operator. In their paper, they gave some generalizations of the classical Cauchy-Kowalewski and Holmgren theorems for this type of operators. Their method has been applied and extended to various cases as can be seen, for example, in Tahara [6], Mandai [5] and Yamane [8].

In a previous paper [4], the author proved existence and uniqueness theorems similar to those given in [1], but for general $\mu(t)$. Essentially, he proved the following unique solvability result.

THEOREM 1. Let \mathcal{P} be as in (1.2). Then given any $\rho \in(0, R)$, there exists an $\varepsilon \in$ $(0, T]$ such that for any $f(t, z) \in C^{0}\left([0, T], \mathcal{A}\left(B_{R}\right)\right)$, the equation $\mathcal{P} u=f$ has a unique solution $u(t, z) \in C^{0}\left([0, \varepsilon], \mathcal{A}\left(B_{\rho}\right)\right)$ satisfying for $1 \leq p \leq m$ the relation $\left(t D_{t}\right)^{p} u \in$ $C^{0}\left([0, \varepsilon], \mathcal{A}\left(B_{\rho}\right)\right)$.

We remark that although $f(t, z)$, viewed as a function of z, is defined on B_{R}, the existence of the solution $u(t, z)$ is only guaranteed up to B_{ρ}, with $\rho<R$. Moreover, any two solutions of $\mathcal{P} u=f$ can only be shown to coincide in a neighborhood of the origin which is smaller than the neighborhood on which the two are defined.

In this paper, we shall present a formulation leading to an existence and uniqueness result sharper than the one given above. The result is sharper in the sense that the solution $u(t, z)$ of the equation $\mathcal{P u}=f$ will now have the same domain of definition as the inhomogeneous part $f(t, z)$.

To proceed, we will need the following definitions.
Definition 1. Let $\tau \in(0, T), \gamma>0$ and $\varphi(t)$ be the one in (1.1). We define
(i) $\omega_{\tau}[\gamma]=\left\{z \in \mathbf{C}^{n} ;\left|z_{i}\right|<R-\gamma \varphi(\tau)\right.$ for $\left.i=1,2, \cdots, n\right\}$, and
(ii) $\Omega_{T}[\gamma]=\left\{(\tau, z) \in \mathbf{R} \times \mathbf{C}^{n} ; 0 \leq \tau \leq T\right.$ and $\left.z \in \omega_{\tau}[\gamma]\right\}$.

DEFINITION 2. Let $p \in \mathbf{N}$ and $\gamma>0$.
(i) We say that $f(t, z)$ belongs in $\mathcal{K}_{0}\left(\Omega_{T}[\gamma]\right)$ if for each $\tau \in[0, T]$, we have $f(t) \in$ $C^{0}\left([0, \tau], \mathcal{A}\left(\omega_{\tau}[\gamma]\right)\right)$.
(ii) We say that $w(t, z)$ belongs in $C_{p}^{0}\left([0, \tau], \mathcal{A}\left(\omega_{\tau}[\gamma]\right)\right)$ if for all $0 \leq j \leq p$, we have $\left(t D_{t}\right)^{j} w(t) \in C^{0}\left([0, \tau], \mathcal{A}\left(\omega_{\tau}[\gamma]\right)\right)$.
(iii) We say that $u(t, z)$ belongs in $\mathcal{K}_{p}\left(\Omega_{T}[\gamma]\right)$ if for each $\tau \in[0, T]$, we have $u(t) \in$ $C_{p}^{0}\left([0, \tau], \mathcal{A}\left(\omega_{\tau}[\gamma]\right)\right)$.

Under the above assumptions, we now state the following main result.
ThEOREM 2. Let \mathcal{P} be the operator given in (1.2). Then there exist constants $T_{0}>0$ and $\gamma_{0}>0$ depending on \mathcal{P} such that for any $f(t, z) \in \mathcal{K}_{0}\left(\Omega_{T_{0}}\left[\gamma_{0}\right]\right)$, the equation

$$
\begin{equation*}
\mathcal{P} u=f \quad \text { in } \quad \Omega_{T_{0}}\left[\gamma_{0}\right] \tag{1.5}
\end{equation*}
$$

has a unique solution $u(t, z)$ in $\mathcal{K}_{m}\left(\Omega_{T_{0}}\left[\gamma_{0}\right]\right)$.
Moreover, the solution satisfies the a priori estimate

$$
\begin{equation*}
\sum_{p=0}^{m} \max _{\Delta}\left|\left(t D_{t}\right)^{p} u\right| \leq C \max _{\Delta}|f| \tag{1.6}
\end{equation*}
$$

where Δ is the closure of $\Omega_{T_{0}}\left[\gamma_{0}\right]$ and $C>0$ is some constant dependent on the above equation and on the domain $\Omega_{T_{0}}\left[\gamma_{0}\right]$.

Note that $f(t, z)$ and $u(t, z)$ both have $\Omega_{T_{0}}\left[\gamma_{0}\right]$ as their domain of definition. This fact allows us to restate our theorem in the following manner: for any $T, \gamma>0$, let $X_{T, \gamma}$ and $Y_{T, \gamma}$ be the spaces $\mathcal{K}_{m}\left(\Omega_{T}[\gamma]\right)$ and $\mathcal{K}_{0}\left(\Omega_{T}[\gamma]\right)$, respectively. Let $W_{T, \gamma}$ be the subspace of $X_{T, \gamma}$ consisting of functions $u \in X_{T, \gamma}$ such that $\mathcal{P} u$ belongs in $Y_{T, \gamma}$. Define a linear operator Ψ from $X_{T, \gamma}$ to $Y_{T, \gamma}$ with domain $W_{T, \gamma}$ by $\Psi u=\mathcal{P} u$. Let $\left\|\|\cdot\|_{T, \gamma}\right.$ denote the maximum norm in the closure of $\Omega_{T}[\gamma]$. Then $X_{T, \gamma}$ and $Y_{T, \gamma}$ are Banach spaces; given $u \in X_{T, \gamma}$ and $f \in Y_{T, \gamma}$, we define their norms by $\sum_{p=0}^{m}\left\|\left(t D_{t}\right)^{p} u\right\|_{T, \gamma}$ and $\left\|\|f\|_{T, \gamma}\right.$, respectively. Note further that the operator Ψ is a closed linear operator from $X_{T, \gamma}$ to $Y_{T, \gamma}$. The above theorem can now be stated as

THEOREM 2^{\prime}. There exist $T_{0}, \gamma_{0}>0$ depending on \mathcal{P} such that the operator Ψ is a one-one, closed linear operator from $X_{T_{0}, \gamma_{0}}$ onto $Y_{T_{0}, \gamma_{0}}$.

Since Ψ is an injection, Ψ^{-1} exists and is also closed. The Closed Graph Theorem further implies that Ψ^{-1} is continuous. The estimate given in (1.6) is just a consequence of the continuity of Ψ^{-1}.

2. Preliminary discussion.

We can rewrite the operator \mathcal{P} as

$$
\mathcal{P}=\mathcal{Q}+\sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} c_{j, \alpha}(t, z)\left(\mu(t) D_{z}\right)^{\alpha}\left(t D_{t}\right)^{j}
$$

where the operator \mathcal{Q} is defined by

$$
\begin{equation*}
\mathcal{Q}=\left(t D_{t}\right)^{m}+a_{m-1,0}(0, z)\left(t D_{t}\right)^{m-1}+\cdots+a_{0,0}(0, z) \tag{2.1}
\end{equation*}
$$

and

$$
c_{j, \alpha}(t, z)= \begin{cases}a_{j, \alpha}(t, z) & \text { if }|\alpha| \neq 0 \\ a_{j, \alpha}(t, z)-a_{j, \alpha}(0, z) & \text { if }|\alpha|=0\end{cases}
$$

Note that the coefficients of the ordinary differential operator \mathcal{Q} are holomorphic functions of z in B_{R}. Note further that the characteristic exponents of \mathcal{Q} are the same as that of \mathcal{P}, and hence satisfy (1.4).

Lemma 1. Fix $\tau>0$ and let $g(t) \in C^{0}\left([0, \tau], \mathcal{A}\left(\omega_{\tau}[\gamma]\right)\right)$. Then the equation $\mathcal{Q} u=g$ has a unique solution $u(t) \in C_{m}^{0}\left([0, \tau], \mathcal{A}\left(\omega_{\tau}[\gamma]\right)\right)$. This unique solution is given by

$$
\begin{align*}
u(t)=\frac{1}{m!} \sum_{\sigma \in S_{m}} \int_{0}^{t} \int_{0}^{s_{m}} \cdots \int_{0}^{s_{2}} & \left(\frac{s_{m}}{t}\right)^{-\lambda_{\sigma(m)}}\left(\frac{s_{m-1}}{s_{m}}\right)^{-\lambda_{\sigma(m-1)}} \cdots \tag{2.2}\\
& \times\left(\frac{s_{1}}{s_{2}}\right)^{-\lambda_{\sigma(1)}} g\left(s_{1}\right) \frac{d s_{1}}{s_{1}} \frac{d s_{2}}{s_{2}} \cdots \frac{d s_{m}}{s_{m}} .
\end{align*}
$$

Here, S_{m} is the group of permutations of $\{1,2, \cdots, m\}$.
A result in symmetric entire functions asserts that the solution $u(t, z)$ is holomorphic with respect to z. The fact that it belongs in $C_{m}^{0}\left([0, \gamma], \mathcal{A}\left(\omega_{\tau}[\gamma]\right)\right)$ is seen in the integral expression, but may actually be obtained a priori. (See Baouendi-Goulaouic [1].)

To facilitate computation, we define for $\lambda=\left(\lambda_{1}, \cdots, \lambda_{m}\right)$ the function

$$
\begin{equation*}
G_{\theta}^{t}(\lambda) \stackrel{\text { def }}{=} \frac{1}{m!} \sum_{\sigma \in S_{m}}\left(\frac{s_{m}}{t}\right)^{-\lambda_{\sigma(m)}}\left(\frac{s_{m-1}}{s_{m}}\right)^{-\lambda_{\sigma(m-1)}} \cdots\left(\frac{\theta}{s_{2}}\right)^{-\lambda_{\sigma(1)}} \tag{2.3}
\end{equation*}
$$

for some dummy variables s_{2}, \cdots, s_{m}. Define, too, the integral operator

$$
\begin{equation*}
\int_{[t ; \theta]}^{(m)} g \stackrel{\text { def }}{=} \int_{0}^{t} \int_{0}^{s_{m}} \cdots \int_{0}^{s_{2}} g(\theta) \frac{d \theta}{\theta} \frac{d s_{2}}{s_{2}} \cdots \frac{d s_{m}}{s_{m}} \tag{2.4}
\end{equation*}
$$

Using the above, we can now write the solution $u(t)$ of the equation $\mathcal{Q} u=g$ as

$$
u(t)=\int_{[t ; s]}^{(m)} G_{s}^{t}(\lambda) g
$$

In our proof of the main theorem, it will be necessary to consider the action of the differential operator $\left(t D_{t}\right)^{p}$ on integral expressions similar to the one in (2.2). One can easily verify the following

Lemma 2. Let $u(t)$ be the solution of $\mathcal{Q} u=g$. Then for a natural number p less than m, we have

$$
\begin{align*}
\left(t D_{t}\right)^{p} u=\sum_{i=m-p}^{m} \int_{\left[t ; s_{1}\right]}^{(i)} g \times\{ & \frac{1}{m!} \sum_{\sigma \in S_{m}} h_{i}(\sigma, \lambda)\left(\frac{s_{i}}{t}\right)^{-\lambda_{\sigma(i)}} \tag{2.5}\\
& \left.\times\left(\frac{s_{i-1}}{s_{i}}\right)^{-\lambda_{\sigma(i-1)}} \cdots\left(\frac{s_{1}}{s_{2}}\right)^{-\lambda_{\sigma(1)}}\right\},
\end{align*}
$$

where the functions $h_{i}(\sigma, \lambda)$ are suitable polynomial functions of the characteristic exponents $\lambda_{1}(z), \cdots, \lambda_{m}(z)$.

For brevity, let us set, for a natural number k,

$$
\begin{equation*}
H_{\theta}^{t}(k, \lambda)=\frac{1}{m!} \sum_{\sigma \in S_{m}} h_{k}(\sigma, \lambda)\left(\frac{s_{k}}{t}\right)^{-\lambda_{\sigma(k)}}\left(\frac{s_{k-1}}{s_{k}}\right)^{-\lambda_{\sigma(k-1)}} \cdots\left(\frac{\theta}{s_{2}}\right)^{-\lambda_{\sigma(1)}} \tag{2.6}
\end{equation*}
$$

By symmetry, the functions $H_{s}^{t}(k, \lambda)$ are holomorphic with respect to z and thus belong in $\mathcal{A}\left(B_{R}\right)$.

The following lemma is useful in evaluating some integral expressions in the proof.
LEMMA 3. Let k be natural number. Then the following equalities hold:
(a)

$$
\int_{0}^{s_{k}} \int_{0}^{s_{k-1}} \cdots \int_{0}^{s_{1}}\left(\frac{s_{0}}{s_{k}}\right)^{L} \frac{d s_{0}}{s_{0}} \cdots \frac{d s_{k-1}}{s_{k-1}}=\frac{1}{L^{k}}
$$

(b)

$$
\begin{aligned}
\int_{0}^{t} \int_{0}^{s_{k}} \cdots \int_{0}^{s_{1}} & \frac{\mu\left(s_{k}\right)}{s_{k}} \frac{\mu\left(s_{k-1}\right)}{s_{k-1}} \cdots \frac{\mu\left(s_{1}\right)}{s_{1}} \\
& \times\left(\frac{s_{0}}{t}\right)^{L} \frac{s_{0}^{-1}}{\left[\varphi(t)-\varphi\left(s_{0}\right)\right]^{k}} d s_{0} \cdots d s_{k}=\frac{1}{L k!}
\end{aligned}
$$

The first equality is obvious. The second can be proved by reversing the order of integration and recalling that $t \varphi^{\prime}(t)=\mu(t)$.

To estimate the derivatives with respect to z, we have the following lemma. (For a proof, see Hörmander [3, Lemma 5.1.3].)

LEMMA 4. Let the function $v(z)$ be holomorphic in B_{R}, and suppose there are positive constants K and c such that

$$
\begin{equation*}
\|v\|_{\rho} \leq \frac{K}{(R-\rho)^{c}} \quad \text { for every } \quad \rho \in(0, R) . \tag{2.7}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left\|D_{z}^{\alpha} v\right\|_{\rho} \leq \frac{K e^{|\alpha|}(c+1)_{|\alpha|}}{(R-\rho)^{c+|\alpha|}} \quad \text { for every } \quad \rho \in(0, R) \tag{2.8}
\end{equation*}
$$

In the above, we define $(c)_{p}=(c)(c+1) \cdots(c+p-1)$.

3. Proof of Main Theorem.

Let f be any element of $\mathcal{K}_{0}\left(\Omega_{T_{0}}\left[\gamma_{0}\right]\right)$. Here, the constants $T_{0}>0$ and $\gamma_{0}>0$ satisfy some conditions which will later be specified. For convenience, we will drop the subscript in both and instead use T and γ; we will again use the subscript upon stating the conditions that these constants need to satisfy.

We will use the method of successive approximations to solve the equation $\mathcal{P} u=f$. Define the approximate solutions as follows:

$$
\begin{equation*}
u_{0}(t)=\int_{[t ; s]}^{(m)} G_{s}^{t}(\lambda) f \tag{3.1}
\end{equation*}
$$

and for $k \geq 1$,

$$
\begin{equation*}
u_{k}(t)=\int_{[t ; s]}^{(m)} G_{s}^{t}(\lambda)\left[f-\mathcal{S}(s) u_{k-1}\right] . \tag{3.2}
\end{equation*}
$$

Here, $t \in[0, T]$, and for brevity, we have set $\mathcal{S}(t)=\sum_{j=0}^{m-1} \sum_{|\alpha| \leq m-j} c_{j, \alpha}(t, z) \cdot$ $\left(\mu(t) D_{z}\right)^{\alpha}\left(t D_{t}\right)^{j}$. Note that for all k, the approximate solutions $u_{k}(t, z)$ are defined on $\Omega_{T_{0}}\left[\gamma_{0}\right]$. Furthermore, they are continuous with respect to t and holomorphic with respect to z on this region.

For each natural number k, we also define the sequence of functions $v_{k}(t)=u_{k}(t)-$ $u_{k-1}(t)$, where we have set $u_{-1} \equiv 0$. Then the functions $v_{k}(t, z)$ are also defined on the same region as $u_{k}(t, z)$, and are also continuous with respect to t and holomorphic with respect to z. Using the expression for $u_{k}(t)$, we have

$$
\begin{equation*}
v_{0}(t)=\int_{[t ; s]}^{(m)} G_{s}^{t}(\lambda) f \tag{3.3}
\end{equation*}
$$

and for $k \geq 1$,

$$
\begin{equation*}
v_{k}(t)=-\int_{[t ; s]}^{(m)} G_{s}^{t}(\lambda) \mathcal{S}(s) v_{k-1} \tag{3.4}
\end{equation*}
$$

To prove that the approximate solutions converge to the real solution, we will henceforth fix one $t \in[0, T]$, and estimate the functions $v_{k}(t)$.

Let C be the bound on $[0, T] \times \overline{B_{R}}$ of all $c_{j, \alpha}(t, z)$, and K be the bound in $\overline{\Omega_{T}[\gamma]}$ of $f(t, z)$. As for the functions $G_{s}^{t}(\lambda)$ and $H_{s}^{t}(k, \lambda)$, we have the following estimates:

$$
\begin{equation*}
\sup _{z \in \overline{B_{R}}}\left|G_{s}^{t}(\lambda)\right| \leq\left(\frac{s}{t}\right)^{L} \tag{3.5}
\end{equation*}
$$

and there exists a constant D such that for $1 \leq k \leq m$,

$$
\begin{equation*}
\sup _{z \in \overline{B_{R}}}\left|H_{s}^{t}(k, \lambda)\right| \leq D\left(\frac{s}{t}\right)^{L} . \tag{3.6}
\end{equation*}
$$

We can easily see that $\left\|v_{0}(t)\right\|_{\omega_{t}}$ is bounded by $K L^{-m}$ for any $0 \leq t \leq T$. Here, we

given by the following iterated integral:

$$
\begin{align*}
v_{k}(t)=(-1)^{k} & \int_{\left[t ; s_{k}\right]}^{(m)} G_{s_{k}}^{t}(\lambda) \mathcal{S}\left(s_{k}\right) \int_{\left[s_{k} ; s_{k-1}\right]}^{(m)} G_{s_{k-1}}^{s_{k}}(\lambda) \mathcal{S}\left(s_{k-1}\right) \tag{3.7}\\
& \cdots \int_{\left[s_{2} ; s_{1}\right]}^{(m)} G_{s_{1}}^{s_{2}}(\lambda) \mathcal{S}\left(s_{1}\right) \int_{\left[s_{1} ; s_{0}\right]}^{(m)} G_{s_{0}}^{s_{1}}(\lambda) f\left(s_{0}\right)
\end{align*}
$$

The expression above can be expanded using Lemma 2, and thus obtain a finite sum whose number of terms is less than $(m J)^{k}$, where J is the cardinality of the set $\{(j, \alpha) ; 0 \leq j \leq$ $m-1$ and $|\alpha| \leq m-j\}$. Each term of the finite sum has the form

$$
\begin{align*}
I= & (-1)^{k} \int_{\left[t ; s_{k}\right]}^{(m)} G_{s_{k}}^{t}(\lambda) c_{j_{k}, \alpha_{k}}\left(\mu D_{z}\right)^{\alpha_{k}} \int_{\left[s_{k} ; s_{k-1}\right]}^{\left(i_{k}\right)} H_{s_{k-1}}^{s_{k}}\left(i_{k}, \lambda\right) c_{j_{k-1}, \alpha_{k-1}}\left(\mu D_{z}\right)^{\alpha_{k-1}} \tag{3.8}\\
& \cdots \int_{\left[s_{2} ; s_{1}\right]}^{\left(i_{2}\right)} H_{s_{1}}^{s_{2}}\left(i_{2}, \lambda\right) c_{j_{1}, \alpha_{1}}\left(\mu D_{z}\right)^{\alpha_{1}} \int_{\left[s_{1} ; s_{0}\right]}^{\left(i_{1}\right)} H_{s_{0}}^{s_{1}}\left(i_{1}, \lambda\right) f\left(s_{0}\right)
\end{align*}
$$

where for each p, the relations $m-j_{p} \leq i_{p} \leq m$ and $\left|\alpha_{p}\right| \leq m-j_{p}$ hold. (Here, α_{p} is a multi-index and should not be confused with the p th component of α.) The above is further equal to

$$
\begin{align*}
I=(-1)^{k} \int_{\left[t ; s_{k}\right]}^{(m)} \int_{\left[s_{k} ; s_{k-1}\right]}^{\left(i_{k}\right)} & \cdots \int_{\left[s_{1} ; s_{0}\right]}^{\left(i_{1}\right)} G_{s_{k}}^{t} c_{j_{k}, \alpha_{k}}\left(s_{k}\right)\left(\mu\left(s_{k}\right) D_{z}\right)^{\alpha_{k}} \tag{3.9}\\
& \times H_{s_{k-1}}^{s_{k}} c_{j_{k-1}, \alpha_{k-1}}\left(s_{k-1}\right)\left(\mu\left(s_{k-1}\right) D_{z}\right)^{\alpha_{k-1}} \ldots \\
& \times H_{s_{1} c_{1} c_{j_{1}, \alpha_{1}}\left(s_{1}\right)\left(\mu\left(s_{1}\right) D_{z}\right)^{\alpha_{1}} H_{s_{0}}^{s_{1}} f\left(s_{0}\right)}
\end{align*}
$$

Let $F_{k}(s)$ denote the integrand of the above integral. Let $R_{s_{0}}=R-\gamma \varphi\left(s_{0}\right)$. Then all the functions above, when viewed as a function of z, belong in $\mathcal{A}\left(\omega_{s_{0}}[\gamma]\right)$. (This explains the necessity of the assumption that the coefficients be defined up to B_{R}, for all t in the interval $[0, T]$.)

We can therefore apply Lemma 4 repeatedly, starting from the rightmost expression, to obtain the following estimate for the integrand: for any $\rho \in\left(0, R_{s_{0}}\right)$,

$$
\begin{align*}
\left\|F_{k}(s)\right\|_{B_{\rho}} \leq & K(C D)^{k} \mu\left(s_{1}\right)^{\left|\alpha_{1}\right|} \cdots \mu\left(s_{k}\right)^{\left|\alpha_{k}\right|}\left(\frac{s_{0}}{t}\right)^{L} \tag{3.10}\\
& \times\left(\frac{e}{R_{s_{0}}-\rho}\right)^{\left|\alpha_{1}+\cdots+\alpha_{k}\right|}\left|\alpha_{1}+\cdots+\alpha_{k}\right|!.
\end{align*}
$$

If $\left|\alpha_{1}+\cdots+\alpha_{k}\right|=0$, then for sufficiently small $T=T_{0}$, the bound for any $c_{j, 0}(t, z)=$ $a_{j, 0}(t, z)-a_{j, 0}(0, z)$ is actually small, since $a_{j, 0}(t, z)$ is continuous with respect to t. In other words, by choosing a small $T=T_{0}$, we could find a small constant δ such that for any $t \in\left[0, T_{0}\right]$ and $0 \leq s \leq t$, the following holds:

$$
\begin{equation*}
\left\|F_{k}(s)\right\|_{\omega_{t}} \leq K \delta^{k}\left(\frac{s_{0}}{t}\right)^{L} \tag{3.11}
\end{equation*}
$$

Going back to the integral, we have

$$
\begin{align*}
\|I\|_{\omega_{t}} & \leq \int_{\left[t ; s_{k}\right]}^{(m)} \int_{\left[s_{k} ; s_{k-1}\right]}^{\left(i_{k}\right)} \cdots \int_{\left[s_{1} ; s_{0}\right]}^{\left(i_{1}\right)} K \delta^{k}\left(\frac{s_{0}}{t}\right)^{L} \tag{3.12}\\
& =K \frac{\delta^{k}}{L^{m+i_{1}+\cdots+i_{k}}} \quad \text { (by (a) of Lemma 3) } \\
& \leq K\left(\frac{\delta}{L_{0}}\right)^{k},
\end{align*}
$$

for some constant L_{0} dependent on L. This is possible since $i_{p} \leq m$ for all p.
If $\left|\alpha_{1}+\cdots+\alpha_{k}\right| \neq 0$, then set the ρ in (3.10) to be equal to $R-\gamma \varphi(t)$. This gives

$$
\begin{align*}
\left\|F_{k}(s)\right\|_{\omega_{t}} \leq & K(C D)^{k} \mu\left(s_{1}\right)^{\left|\alpha_{1}\right|} \cdots \mu\left(s_{k}\right)^{\left|\alpha_{k}\right|}\left(\frac{s_{0}}{t}\right)^{L} \tag{3.13}\\
& \times\left|\alpha_{1}+\cdots+\alpha_{k}\right|!\left(\frac{e}{\gamma\left[\varphi(t)-\varphi\left(s_{0}\right)\right]}\right)^{\left|\alpha_{1}+\cdots+\alpha_{k}\right|}
\end{align*}
$$

By renaming if necessary, assume that for $p=1, \cdots, q,\left|\alpha_{p}\right| \neq 0$. Note that $q \geq 1$. We will again use the continuity of $a_{j, 0}(t, z)$ to estimate those expressions which are not acted upon by D_{z}, i.e., the $k-q$ cases when $\left|\alpha_{p}\right|=0$. Just like before, we can show that for small δ,

$$
\begin{align*}
\left\|F_{k}(s)\right\|_{\omega_{t}} \leq & K(C D)^{q} \delta^{k-q} \mu\left(s_{1}\right)^{\left|\alpha_{1}\right|} \cdots \mu\left(s_{q}\right)^{\left|\alpha_{q}\right|}\left(\frac{s_{0}}{t}\right)^{L} \tag{3.14}\\
& \times\left|\alpha_{1}+\cdots+\alpha_{q}\right|!\left(\frac{e}{\gamma\left[\varphi(t)-\varphi\left(s_{0}\right)\right]}\right)^{\left|\alpha_{1}+\cdots+\alpha_{q}\right|}
\end{align*}
$$

Thus, the integral I can now be estimated as follows:

$$
\begin{align*}
\|I\|_{\omega_{t}} \leq & K(C D)^{q} \delta^{k-q}\left(\frac{e}{\gamma}\right)^{\left|\alpha_{1}+\cdots+\alpha_{q}\right|}\left|\alpha_{1}+\cdots+\alpha_{q}\right|! \tag{3.15}\\
& \times \int_{\left[t ; s_{k}\right]}^{(m)} \int_{\left[s_{k} ; s_{k-1}\right]}^{\left(i_{k}\right)} \cdots \int_{\left[s_{1} ; s_{0}\right]}^{\left(i_{1}\right)}\left(\frac{s_{0}}{t}\right)^{L} \frac{\mu\left(s_{1}\right)^{\left|\alpha_{1}\right|} \cdots \mu\left(s_{q}\right)^{\left|\alpha_{q}\right|}}{\left[\varphi(t)-\varphi\left(s_{0}\right)\right]^{\left|\alpha_{1}+\cdots+\alpha_{q}\right|}} .
\end{align*}
$$

Let $d=m+i_{1}+\cdots+i_{k}$ and $b=\left|\alpha_{1}+\cdots+\alpha_{q}\right|$. Note that $b \geq q$. Since for each p, we have $\left|\alpha_{p}\right| \leq m-j_{p} \leq i_{p}$, and using the fact that both $\varphi(t)$ and $\mu(t)$ are increasing on ($0, T_{0}$), we have
(3.16) $\|I\|_{\omega_{t}} \leq K(C D)^{q} \delta^{k-q}\left(\frac{e}{\gamma}\right)^{b} b$!

$$
\begin{aligned}
& \times \int_{0}^{t} \int_{0}^{\xi_{b}} \cdots \int_{0}^{\xi_{1}} \frac{\mu\left(\xi_{b}\right)}{\xi_{b}} \cdots \frac{\mu\left(\xi_{1}\right)}{\xi_{1}}\left(\frac{\xi_{0}}{t}\right)^{L} \frac{1}{\left[\varphi(t)-\varphi\left(\xi_{0}\right)\right]^{]}} \frac{d \xi_{0}}{\xi_{0}} d \xi_{1} \cdots d \xi_{b} \\
& \times \int_{0}^{\xi_{0}} \int_{0}^{\eta_{1}} \cdots \int_{0}^{\eta_{d-b-2}}\left(\frac{s_{0}}{\xi_{0}}\right)^{L} \frac{d s_{0}}{s_{0}} \cdots \frac{d \eta_{1}}{\eta_{1}}
\end{aligned}
$$

By (a) of Lemma 3, the second integral is equal to L^{-d+b+1}. Thus, the above simplifies into

$$
\begin{align*}
\|I\|_{\omega_{t}} \leq & K(C D)^{q} \delta^{k-q}\left(\frac{e}{\gamma}\right)^{b} L^{-d+b+1} b! \tag{3.17}\\
& \times \int_{0}^{t} \int_{0}^{\xi_{b}} \cdots \int_{0}^{\xi_{1}} \frac{\mu\left(\xi_{b}\right)}{\xi_{b}} \cdots \frac{\mu\left(\xi_{1}\right)}{\xi_{1}}\left(\frac{\xi_{0}}{t}\right)^{L} \frac{\xi_{0}^{-1}}{\left[\varphi(t)-\varphi\left(\xi_{0}\right)\right]^{b}} d \xi_{0} \cdots d \xi_{b}
\end{align*}
$$

The last integral is equal to $(L b!)^{-1}$, by (b) of Lemma 3. Meanwhile, since $d \leq m(k+1)$, we can find a constant L_{1}, depending on L, such that $L^{-d} \leq L_{1}^{k}$. Substituting these results into the above equation, we get

$$
\begin{align*}
\|I\|_{\omega_{t}} & \leq K(C D)^{q} \delta^{k-q}\left(\frac{e L}{\gamma}\right)^{b} L_{1}^{k} \tag{3.18}\\
& =K\left(\frac{C D}{\delta}\right)^{q}\left(\delta L_{1}\right)^{k}\left(\frac{e L}{\gamma}\right)^{b}
\end{align*}
$$

By taking a sufficiently small T_{0}, we can find a constant δ small enough such that δL_{1} above and δL_{0}^{-1} in (3.12) are both less than $(m J)^{-1}$. Now, since $q \leq b$, we can choose and fix a sufficiently large $\gamma=\gamma_{0}$ to make the remaining expression less than 1.

To summarize, we have shown that if T_{0} is sufficiently small and γ_{0} is sufficiently large, some constants $K>0$ and $\delta_{0}<1$ exist such that for all k, we have

$$
\begin{equation*}
\left\|v_{k}(t)\right\|_{\omega_{t}\left[\gamma_{0}\right]} \leq K \delta_{0}^{k} \quad \text { for any } \quad t \in\left[0, T_{0}\right] \tag{3.19}
\end{equation*}
$$

It follows that the series $\sum_{k=0}^{\infty} v_{k}(t, z)$ is majorized by a convergent geometric series, and hence is itself convergent in $C^{0}\left([0, \tau], \mathcal{A}\left(\omega_{\tau}\left[\gamma_{0}\right]\right)\right)$ for all $\tau \in\left[0, T_{0}\right]$. This means that $u_{k}(t)$ converges uniformly to $u(t)$ on $\Omega_{T_{0}}\left[\gamma_{0}\right]$.

By following the steps above, we can also show that for $1 \leq p \leq m-1$, the sequence $\left(t D_{t}\right)^{p} u_{k}(t)$ converges uniformly to $\left(t D_{t}\right)^{p} u(t)$ on $\Omega_{T_{0}}\left[\gamma_{0}\right]$. Thus, it follows that on a compact subset of $\Omega_{T_{0}}\left[\gamma_{0}\right]$, the sequence $D_{z}^{\alpha}\left(t D_{t}\right)^{p} u_{k}(t)$ converges to $D_{z}^{\alpha}\left(t D_{t}\right)^{p} u(t)$. This implies the convergence of the approximate solutions to the true solution $u(t)$.

Uniqueness may be proved in a similar manner.
Acknowledgements. The author would like to thank Prof. Hidetoshi Tahara for his thorough guidance and the anonymous referee for his helpful comments.

References

[1] M. S. Baouendi and C. Goulaouic, Cauchy Problems with characteristic initial hypersurface, Comm. Pure. Appl. Math. 26 (1973), 455-475.
[2] E. FISCHER, Intermediate Real Analysis, Springer (1983).
[3] L. Hörmander, Linear Partial Differential Operators, Springer (1969).
[4] J. E. C. Lope, Existence and Uniqueness Theorems for a Class of Linear Fuchsian Partial Differential Equations, J. Math. Sci. Univ. Tokyo 6 (1999), 527-538.
[5] T. MANDAI, Characteristic Cauchy problems for some non-Fuchsian partial differential operators, J. Math. Soc. Japan 45 (1993), 511-545.
[6] H. Tahara, On a Volevič system of singular partial differential equations, J. Math. Soc. Japan 34 (1982), 279-288.
[7] H. Tahara, On the uniqueness theorem for nonlinear singular partial differential equations, J. Math. Sci. Univ. Tokyo 5 (1998), 477-506.
[8] H. Yamane, Singularities in Fuchsian Cauchy Problems with Holomorphic Data, Publ. RIMS, Kyoto Univ. 34 (1998), 179-190.

Present Address:

Department of Mathematics, Sophia University, Kioicho, Chiyoda-ku, TOKyo, 102-8554 Japan.

Permanent Address:

Department of Mathematics, University of the Philippines, Diliman, 1101 Quezon City, Philippines.
e-mail: ernie@math.upd.edu.ph

