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A Simple Proof of Nowicki’s Conjecture on the Kernel of an
Elementary Derivation

Shigeru KURODA

Tokyo Metropolitan University

Abstract. Khoury solved Nowicki’s conjecture on the kernel of an elementary derivation of a polynomial ring
using Gröbner basis theory. In this paper, we give a simple new proof of the conjecture.

1. Introduction

Let A[x] = A[x1, . . . , xn] be the polynomial ring in n variables over an integral domain
A for n ∈ N, and D an A-derivation of A[x], i.e., an A-linear map D : A[x] → A[x]
satisfying D(f g) = D(f )g + f D(g) for each f, g ∈ A[x]. We say that D is elementary
if D(xi) belongs to A for each i. Then, the kernel ker D of D is an A-subalgebra of A[x]
containing

LD
i,j := D(xj )xi − D(xi)xj for each i, j ∈ {1, . . . , n} .

In general, it is difficult to determine the structure of ker D. The problem of finite gener-
ation of ker D is a special case of the Fourteenth Problem of Hilbert when A is a polynomial
ring over a field. This problem was settled in the negative by Nagata [11], while Roberts [13]
gave a new type of counterexample obtained as the kernel of an elementary derivation (see [7]
and [9] for generalizations of Roberts’ counterexample). For a certain elementary derivation
D, Kurano [8, Proposition 3.1] found a finite set of generators of ker D, which cannot be

generated by LD
i,j ’s (see also [3] and [5] for affirmative results).

Recently, Khoury [6] solved the following conjecture of Nowicki in the affirmative by
calculating a Gröbner basis for some ideal.

CONJECTURE (Nowicki [12, Conjecture 6.9.10]). Assume that k[y] = k[y1, . . . , yn]
is the polynomial ring in n variables over a field k of characteristic zero. If ∆n is the k[y]-
derivation of k[y][x] defined by ∆n(xi) = yi for i = 1, . . . , n, then ker ∆n is generated by

L∆n
i,j for 1 ≤ i < j ≤ n over k[y].
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Khoury’s Gröbner basis consists of several families of polynomials, and he checked
many cases to show that all the S-polynomials are reduced to zero. The aim of this paper
is to give a simple new proof of Nowicki’s conjecture by a method similar to that used in the
proof of Kurano [8, Proposition 3.1].

For each A-domain B and an elementary A-derivation D of A[x], the B-derivation
DB := idB ⊗ D of B ⊗A A[x] = B[x1, . . . , xn] is elementary. Moreover, if B is flat over A,
then ker DB = B ⊗A ker D. Therefore, the result on ker ∆n implies the following theorem.

THEOREM. Let A be an integral domain containing a field k of characteristic zero, and
let D be an elementary A-derivation of A[x] such that A is flat over k[D(x1), . . . ,D(xn)] and

D(x1), . . . ,D(xn) are algebraically independent over k. Then, ker D is generated by LD
i,j for

1 ≤ i < j ≤ n over A.

Actually, D induces an elementary R-derivation D′ of R[x1, . . . , xn], for which ker D =
A⊗R ker D′, where R = k[D(x1), . . . ,D(xn)] � k[y]. We note that Khoury [6, Theorem 1.1]

showed that ker D is generated by LD
i,j for 1 ≤ i < j ≤ n over k[y] for the k[y]-derivation D

of k[y][x] defined by D(xi) = y
ti
i with ti ∈ N for i = 1, . . . , n. In this case, y

t1
1 , . . . , y

tn
n are

algebraically independent over k, and k[y] is free over k[yt1
1 , . . . , y

tn
n ].

2. Proof of the conjecture

We prove the conjecture by induction on n. The assertion is clear when n = 1. Assume

that n ≥ 2, and let Sl be the set of Li,j := L
∆n

i,j for 1 ≤ i < j ≤ l for each l ≤ n. By

the assumption on induction, ker ∆n−1 is generated by Sn−1 over k[y′] := k[y1, . . . , yn−1],
since L

∆n−1
i,j = L

∆n

i,j for each i, j . As discussed in Section 1, the k[y′]-derivation ∆n−1

naturally extends to a k[y]-derivation (∆n−1)k[y] of k[y][x′] := k[y][x1, . . . , xn−1]. Then,
(∆n−1)k[y] = ∆n|k[y][x′], so we have ker(∆n−1)k[y] = k[y][x′] ∩ ker ∆n. Moreover,

ker(∆n−1)k[y] = k[y] ⊗k[y′] ker ∆n−1, since k[y] is flat over k[y′]. Thus, we get

k[y][x′] ∩ ker ∆n = k[y][Sn−1] . (1)

Let e1, . . . , en be the coordinate unit vectors of Rn, M the Z-submodule of (Zn)2 gen-

erated by (ej − ei , ei − ej ) for 1 ≤ i < j ≤ n, and Γ = (Zn)2/M . Then, Γ -gradings are

defined on k[y][x] and k[y±1][x] := k[y][x][(y1 · · · yn)
−1] as follows. Here, a k-algebra R

is said to be Γ -graded if there exists a k-vector subspace Rγ of R for each γ ∈ Γ such that
R = ⊕

γ∈Γ Rγ and Rγ Rµ ⊂ Rγ+µ for γ,µ ∈ Γ . Let Z≥0 denote the set of nonnegative in-

tegers, and ya = y
a1
1 · · · yan

n and xb = x
b1
1 · · · xbn

n for a = (a1, . . . , an) and b = (b1, . . . , bn).

For each γ ∈ Γ , we define k[y][x]γ (resp. k[y±1][x]γ ) to be the k-vector space generated

by yaxb for a, b ∈ (Z≥0)
n (resp. a ∈ Zn, b ∈ (Z≥0)

n) such that the image of (a, b) in Γ is

equal to γ . Then, Γ -gradings are defined on k[y][x] and k[y±1][x]. Note that ∆n(k[y][x]γ ) is
contained in k[y][x]γ−δ for each γ ∈ Γ , where δ is the image of (−en, en) in Γ . From this,
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we know that

ker ∆n =
⊕

γ∈Γ

(
k[y][x]γ ∩ ker ∆n

)
.

Hence, we are reduced to showing that each 0 
= Φ ∈ k[y][x]γ ∩ ker ∆n belongs to k[y][Sn]
for γ ∈ Γ . We may find a = (a1, . . . , an) ∈ Zn and l ∈ Z≥0 such that the image of (a, len)

in Γ is equal to γ . Let m be the xn-degree of Φ, where 0 ≤ m ≤ l, and φ ∈ k[y][x′] the
coefficient of xm

n in Φ. Then, φ belongs to k[y][x]µ, where µ is the image of (a, (l −m)en) in

Γ . Furthermore, 0 = ∆n(Φ) = ∆n(φ)xm
n + mφynx

m−1
n + ∆n(Φ − φxm

n ), and the xn-degrees

of mφynx
m−1
n and ∆n(Φ − φxm

n ) are at most m − 1. Hence, ∆n(φ) = 0. Thus, φ belongs to

k[y][Sn−1] by (1). Write φ = ∑
b,u r ′

b,uybŷ−uLu, where the sum is taken over b ∈ (Z≥0)
n

and u = (ui,j )i,j with ui,j ∈ Z≥0 for 1 ≤ i < j ≤ n − 1, r ′
b,u ∈ k for each b and u, and

ŷ−u =
∏

1≤i<j≤n−1

(yiyj )
−ui,j , Lu =

∏

1≤i<j≤n−1

L
ui,j

i,j for each u .

We may assume that r ′
b,u = 0 if ybŷ−u is not in k[y]. Let η(b, u) be the image of (b −

|u|en, |u|en) in Γ , where |u| = ∑
i,j ui,j . Then, ybŷ−uLu belongs to k[y±1][x]η(b,u) for

each b and u, since (yiyj )
−1Li,j belongs to k[y±1][x]δ for each i, j . Since φ is in k[y][x]µ,

and µ is the image of (a, (l − m)en), we may assume that r ′
b,u = 0 unless |u| = l − m

and b = a + (l − m)en. For each u with ru := r ′
a+(l−m)en,u 
= 0, write yayl−m

n ŷ−u =
y

ρ1(u)
1 · · · yρn−1(u)

n−1 ys
n, where ρi(u) ∈ Z≥0 for i = 1, . . . , n − 1, and s = an + l − m. Then, we

have φ = ys
n

∑
u ruy

ρ1(u)
1 · · · yρn−1(u)

n−1 Lu. Since |u| = l − m, it follows that

n−1∑

i=1

ρi(u) =
n−1∑

i=1

ai − 2(l − m) for each u . (2)

Now, we show that Φ belongs to k[y][Sn] by contradiction. By replacing Φ if necessary,
we may assume that m is the minimum among the xn-degrees of elements of ker ∆n\k[y][Sn].
To obtain a contradiction, it suffices to deduce that

m ≥ 2l −
n−1∑

i=1

ai . (3)

In fact, (3) implies that
∑n−1

i=1 ρi(u) ≥ m by (2), so we have
∑n−1

i=1 ρ′
i (u) = m for some

integers 0 ≤ ρ′
i (u) ≤ ρi(u) for i = 1, . . . , n − 1 for each u. Then,

Φ ′ := ys
n

∑

u

ruLu
n−1∏

i=1

y
ρi (u)−ρ′

i (u)

i L
ρ′

i (u)

n,i = ys
n

∑

u

ruLu
n−1∏

i=1

y
ρi (u)−ρ′

i (u)

i (yixn − ynxi)
ρ′

i (u)
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is an element of k[y][Sn] having xn-degree m, in which the coefficient of xm
n is equal to φ.

Hence, the xn-degree of Φ−Φ ′ is less than m. Since Φ−Φ ′ is an element of ker ∆n\k[y][Sn],
this contradicts the minimality of m.

We establish that (3) holds for any nonzero homogeneous element Φ of ker ∆n by con-
tradiction. Take Φ which does not satisfy (3) so that m would be the minimum among

the xn-degrees of such polynomials. Then, t := 2l − ∑n−1
i=1 ai − m is positive, and

∑n−1
i=1 ρi(u) = m − t for each u by (2). Hence, the xn-degree of

Φ1 :=
∑

u

ruLu
n−1∏

i=1

L
ρi (u)
n,i =

∑

u

ruLu
n−1∏

i=1

(yixn − ynxi)
ρi (u)

is m − t . The coefficient of xm−t
n in ys

nΦ1 is equal to φ, so the coefficient of xm
n in ys

nΦ1L
t
n,1

is equal to that in yt
1Φ. Consequently, the xn-degree m′ of Φ2 := yt

1Φ − ys
nΦ1L

t
n,1 is less

than m. We claim that Φ2 = 0. In fact, if γ ′ is the image of (a + te1, len) in Γ , and
(a′

1, . . . , a
′
n) := a + te1, then Φ2 belongs to k[y][x]γ ′ ∩ ker ∆n, and

2l −
n−1∑

i=1

a′
i = 2l −

n−1∑

i=1

ai − t = m > m′ .

This implies that Φ2 = 0 by the minimality of m. Hence, yt
1Φ = ys

nΦ1L
t
n,1. Thus, Φ1

is divisible by y1, since neither are yn and Ln,1. Recall that the kernel of a locally nilpotent
derivation D of an integral domain R containing Q is factorially closed in R, that is, D(f g) =
0 implies D(f ) = D(g) = 0 for each f, g ∈ R \ {0} (cf. [2, Proposition 1.3.32 (iii)]). Note
that ∆n is locally nilpotent, ∆n(Φ1) = 0, Φ1 
= 0 and ∆n(xn) 
= 0. Hence, Φ1 is not divisible
by xn. By substituting zero for xn, we obtain from Φ1 a nonzero polynomial

∑

u

ruLu
n−1∏

i=1

(−ynxi)
ρi (u) = (−yn)

m−tΨ , where Ψ =
∑

u

ruLu
n−1∏

i=1

x
ρi(u)
i .

Then, Ψ 
= 0, and Ψ is divisible by y1, since so is Φ1. Define σ ∈ Autk k[y][x] by σ(xi) =
yi and σ(yi) = xi for i = 1, . . . , n. Then, σ(Ψ ) is divisible by x1. On the other hand,
σ(Li,j ) = Lj,i and σ(xi) = yi are in ker ∆n for each i, j , so σ(Ψ ) belongs to ker ∆n. Thus,
we have σ(Ψ ) = 0, because x1 is not in ker ∆n and ker ∆n is factorially closed in k[y][x].
This contradicts that Ψ 
= 0. Therefore, (3) holds true. Thereby, we have proved that Φ

belongs to k[y][Sn]. This completes the proof of the conjecture.
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and Kazuhiko Kurano for informing him of their results, and Professor Hideo Kojima for a
useful conversation.

Note. Recently, Drensky–Makar-Limanov [1] independently gave a simple proof of
Nowicki’s conjecture. Very recently, Professor Mitsuyasu Hashimoto informed the author
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that Goto-Hayasaka-Kurano-Nakamura [4, Theorem 3.2] and Miyazaki [10, Theorem 3.7]
also gave results which imply that Nowicki’s conjecture is true. Actually, ker ∆ is equal to
the invariant subring for the Ga-action on k[y][x] defined by yi �→ yi and xi �→ xi + tyi

for i = 1, . . . , n for each t ∈ Ga . On the other hand, Goto-Hayasaka-Kurano-Nakamura and
Miyazaki determined sets of generators for certain invariant rings where ker ∆ is included.

The author would like to thank Professor Hashimoto for the information.
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