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Selfdecomposability and Semi-selfdecomposability in Subordination of
Cone-parameter Convolution Semigroups

Ken-iti SATO
(Communicated by A. Tani)

Abstract. Extension of two known facts concerning subordination is made. The first fact is that, in subordi-
nation of 1-dimensional Brownian motion with drift, selfdecomposability is inherited from subordinator to subor-
dinated. This is extended to subordination of cone-parameter convolution semigroups. The second fact is that, in
subordination of strictly stable cone-parameter convolution semigroups on R4, selfdecomposability is inherited from
subordinator to subordinated. This is extended to semi-selfdecomposability.

1. Introduction

A subset K of RV is called a cone if it is a non-empty closed convex set which is closed
under multiplication by nonnegative reals and contains no straight line through 0 and if K #
{0}. Given a cone K, we call {i;: s € K} a K-parameter convolution semigroup on R if it
is a family of probability measures on R? satisfying

(1.1) Wsy * s, = [Ls;+s, for sp,s0 € K,
(1.2) Uts —> 6o ast |0, for seK,

where 8 is delta distribution located at 0 € RY. Convergence of probability measures is
understood as weak convergence. It follows from (1.1) and (1.2) that o = do.

Subordination of a cone-parameter convolution semigroup is defined as follows. Let
K; and K, be cones in RV and RM2, respectively. Let {u,: u € K>} be a Kp-parameter
convolution semigroup on R? and {ps: s € K1} a Kq-parameter convolution semigroup on
R™2 supported on K> (that is, Supp(ps) € K»). Define a probability measure oy on R? by

(1.3) os(B) =/ 1tu(B)ps(du) for B € BRY),
K>

where B(R?) is the class of Borel sets in RY. Then {o,: s € K;}isa K 1-parameter con-
volution semigroup on R¢. This procedure to get {os: s € K} is called subordination of
{ny: u € Ko} by {ps: s € K1}. Convolution semigroups {u,: u € Ko}, {ps: s € Ki},
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and {oy: s € K1} are respectively called subordinand, subordinating (or subordinator), and
subordinated.

Cone-parameter convolution semigroups on R and their subordination are introduced
in Pedersen and Sato [11]. Their basic properties are proved in Theorems 2.8, 2.11, and 4.4
of [11]. A number of examples are given there. In Barndorff-Nielsen, Pedersen, and Sato
[1], several models leading to Ry -parameter convolution semigroups supported on R_ZX are
discussed, including some financial models. Here Ry = [0, co) and Rﬁ = (R+)N .

In R -parameter case, any convolution semigroup on R? corresponds to a unique (in
law) Lévy process. For a general cone K, any K-parameter Lévy process {Xs: s € K} on
R? defined in Pedersen and Sato [12] induces a K -parameter convolution semigroup {us} on
R? as us = L(Xy), the law of X;. But, for a given K-parameter convolution semigroup on
RY, neither existence nor uniqueness (in law) of a K-parameter Lévy process which induces
the semigroup can be proved in general, as is shown in [12]. The existence is proved when
d = 1, when K is isomorphic to Rf , or when ug does not have Gaussian part for any s.
The non-existence is proved for the canonical (d-dimensional Gaussian) S; -parameter con-
volution semigroup defined in [12] for d > 2, where S:{ is the cone of d x d symmetric
nonnegative-definite matrices. Concerning the uniqueness, some sufficient conditions for the
uniqueness and for the non-uniqueness are given in [12]. For example, if {us} is an Ri—
parameter convolution semigroup on R such that the Gaussian part of w is nonzero for any
s # 0, then the corresponding R%r—parameter Lévy process on R is not unique in law. Sub-
ordination of a Kj-parameter Lévy process on RY by a Ki-parameter Lévy process on K>
results in a new Kp-parameter Lévy process on RY, as is shown in Pedersen and Sato [12]
and earlier, in the case K, = Rf and K1 = Ry, in Barndorff-Nielsen, Pedersen, and Sato
[1]. It induces subordination of a cone-parameter convolution semigroup. But subordination
of a cone-parameter convolution semigroup is not always accompanied by subordination of a
cone-parameter Lévy process.

In this paper we give some results on inheritance of selfdecomposability, semi-
selfdecomposability, and some related properties from subordinating to subordinated in sub-
ordination of cone-parameter convolution semigroups. Applications to distributions of type
multG are given.

Semi-selfdecomposable distributions were introduced by Maejima and Naito [8]. Their
probabilistic representations were given by Maejima and Sato [9]. Their remarkable conti-
nuity properties were discovered by Watanabe [19]. Recent papers of Kondo, Maejima, and
Sato [5] and Lindner and Sato [7] studied them in stationary distributions of some generalized
Ornstein—Uhlenbeck processes.
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2. One-dimensional Gaussian subordinands

Let G,,, denote Gaussian distribution on R with variance a > 0 and mean y € R, where
Go,y, = 8,. A K-parameter convolution semigroup {u,: u € K} is called 1-dimensional
Gaussian if, for each u € K, 1, is G4, with some a and y.

A distribution x on R? is said to be selfdecomposable if, for each b > 1, there is a
distribution ' on R such that

2.1 @) =ab"'9 k). zeR?.

Here 1i(z) and ,l? (z) are the characteristic functions of p and p/, respectively. If u is selfde-
composable, then u is infinitely divisible.

Noting that selfdecomposability is equivalent to semi-selfdecomposability with span b
for all b > 1 (see Section 3 for the definition) and using Theorem 15.8 of [15], we see that an
infinitely divisible distribution w on RY with Lévy measure v is selfdecomposable if and only
if
2.2) v(b~'B)y>v(B) for b>1 and B e BRY\{0}).

The condition (2.2) holds if and only if v has a polar representation
o0
(2.3) v(B) = / A(dE) / 13(ré)r 'ke(r)dr for B € BRR?\ {0}),
S 0

where S = {£: |&€| = 1}, the unit sphere in RY, } is a measure on S, and kg (r) is a nonnegative
function measurable in £ and decreasing in r > O (Theorem 15.10 of [15]). We are using the
word decrease in the wide sense allowing flatness.

THEOREM 2.1. Let K| and K be cones in RN and R™?, respectively. Let {j,: u €
K>} be a 1-dimensional Gaussian Kj-parameter convolution semigroup (subordinand),
{ps: s € K1} a K{-parameter convolution semigroup supported on K, (subordinating), and
{os: s € K1} the subordinated Ki-parameter convolution semigroup on R. Fix s € Kj. If ps
is selfdecomposable, then o; is selfdecomposable.

We stress that the Gaussian distribution u,, is not necessarily centered. For the centered
Gaussian (that is strictly 2-stable), the result is largely extended in Theorem 3.1 in Section
3. Historically, Halgreen [4] raised a question equivalent to asking whether the statement of
Theorem 2.1 for K1 = K> = Ry is true. After 22 years, Theorem 1.1 of Sato [16] answered
this question affirmatively. The theorem above is an extension of it. In order to prove the
theorem, we prepare a lemma.

LEMMA 2.2. Let f(r) be a nonnegative decreasing function of r > 0 satisfying
fooo(r/\ Dr~' f(r)dr < oo. Leta > 0andy € R. Then, for everyb > 1 and B € B(R\ {0}),

e¢]

2.4) / Grary b~ By f(r)dr > / Gray(B)r— f(r)dr .
0 0
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PROOF. Let {X;:t € Ry} be the Lévy process with distribution G, at time 1. Let

{Z,: t € Ry} be a selfdecomposable subordinator with Lévy measure r ! f (r)dr and drift 0.
Let {Y;: t € Ry} be the Lévy process on R obtained by subordination of {X;} by {Z;}. Then
Theorem 30.1 of [15] tells us that the Lévy measure v¥ of {Y;} is expressed as

v'(B) = /oo Grary(B)r~' f(r)dr, BeBR\{0}.
0

If a > 0, then Theorem 1.1 of [16] establishes that ¥; has a selfdecomposable distribution for
any t > 0. If a = 0, then {X,} is a trivial Lévy process (that is, X; = y¢, nonrandom) and
Y; = yZ,, which has a selfdecomposable distribution. In any case, {Y;} is selfdecomposable.
Hence v¥ (b~!B) > v¥(B), which is exactly (2.4). a

PROOF OF THEOREM 2.1. Let v/« v’ and v denote the Lévy measures of u,, oy,
and oy, respectively. We have u, = Gq,,y, with some a, > 0 and y, € R. These a, and y,
are continuous functions of u (Theorem 2.8 of [11]). Since u, has Lévy measure 0, Theorem
4.4 of [11] says that

B) = [ Gan (B ). B e BR\(0).
K>
Assume that py is selfdecomposable. Then v? is expressed as in the right-hand side

of (2.3) with d = N,. Since Supp(ps) € K>, it follows from Skorohod’s theorem [17] (or
Lemma 4.1 of [11]) that the measure X is supported on S N K> and that

o
/ A(dg)/ r A Dr ke (r)dr < 0o
SNK, 0
Forany b > 1 and B € B(R\ {0}) we have

v"s(b—lB):/ Gay.yu (b~ BV (du)
K>

Z/ A(dé)/ Gayeryre 0 'BYrhke(r)dr = 1 (say).
SNK, 0

Notice that kg (r) is decreasing in r and satisfies fooo r A l)r_lkg (r)dr < oo for A-almost
every £ and that a,¢ = rag and y,¢ = ryg (see Proposition 2.7 of [11]). Thus we can apply
Lemma 2.2 to obtain

1> / r(d§) /oo Gare.ype (B)r_lkg(r)dr = V" (B).
SNK» 0

This means that oy is selfdecomposable. d

REMARK 2.3. Let K be a cone and let {us: s € K} be a K-parameter convolution
semigroup on RY. Let so € K \ {0}. If s, 1s selfdecomposable, then 1y, is selfdecomposable
forall t > O since 15, = /L;O, the ¢ th convolution power of jig, (Proposition 2.7 of [11]), but
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s, may not be selfdecomposable for some s1 € K \ {tso: ¢t > 0}. This follows from Sections
2and 3 of [11].

REMARK 2.4. In Theorem 2.1 let K; = K> = R; and replace “Gaussian” by “o-
stable (not necessarily strictly «-stable)”, where o € (0, 2]. Then the statement for « = 2 is
exactly Theorem 1.1 of [16]. The statement for « € (1, 2) is not true, which is pointed out
by Kozubowski [6] using Theorem 2.1(v) of Ramachandran [13]. It is not known whether the
statement for a € (0, 1] is true.

REMARK 2.5. If u is selfdecomposable, then the distribution 1’ in (2.1) is uniquely
determined by w and b, and u’ is also infinitely divisible. For nonnegative integers m we
define L,, (R?) as follows: Lo(R?) is the class of selfdecomposable distributions on R?; for
m > 1, L,(RY) is the class of n e Lo(R%) such that, for every b > 1, i/ in (2.1) belongs
to L,—1 (R?). Thus we get a strictly decreasing sequence of subclasses of the class  D(R?)
of infinitely divisible distributions on R?. We define Lo (R?) as the intersection of L, (RY),
m =0,1,2,... . Itis not known even in the case K; = K = R} whether Theorem 2.1 is
true with “selfdecomposable” replaced by “of class L,,” form € {1,2, ..., oo}.

REMARK 2.6. Let d > 2. Theorem 2.1 cannot be generalized to d-dimensional
Gaussian. If {u,: u € R4} is an Ry-parameter convolution semigroup (subordinand) in-
duced by d-dimensional Brownian motion with nonzero drift and {o;: t € R4} is an R -
parameter convolution semigroup supported on R4 (subordinating) of Thorin class (of gen-
eralized gamma convolutions, in other words) satisfying some additional condition, then the
subordinated R_.-parameter convolution semigroup {o; : ¢ € R4} on R? is not selfdecompos-
able for any ¢ > 0. This fact was noticed by Takano [18] and Grigelionis [3]. Recall that the
Thorin class is a subclass of the class of selfdecomposable distributions. This o; supplies an
example of an infinitely divisible non-selfdecomposable distribution whose one-dimensional
projections are selfdecomposable, since we can apply Theorem 1.1 of [16] to one-dimensional
projections of {yu, : u € Ry}. The first example of a distribution with this projection property
was constructed in Sato [14].

REMARK 2.7. Itis not known even in the case K| = K» = R4 whether Theorem 2.1
is true with “selfdecomposable” replaced by ““semi-selfdecomposable”, which will be defined
in the next section.

3. Inheritance of semi-selfdecomposability

A distribution on R is called semi-selfdecomposable if there are » > 1 and u’ €
ID(RY) such that

3.1 @) ='W (), zeR?.
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The b in this definition is called a span of u; it is not uniquely determined by w. The class of
semi-selfdecomposable distributions on R¢ having b as a span is denoted by Lo(b~!, RY). If
w € Lo(b~", R?), then p is infinitely divisible and the distribution 4’ is uniquely determined
by @ and b. For any positive integer m we inductively define

Ly LR ={ue Lo ,RY): ' € Lp_1(b~ !, RY}.

Then L,, (b}, Rd) is a subclass of L,,_1 (b1, Rd). In fact we can prove that the former is a
strict subclass of the latter (see Remark 3.1 of [10]). Further we define Loo (b~ ", RY) as the
intersection of L,, (™!, Rd) form=0,1,....

Let 0 < o < 2. A distribution i on R? is called strictly a-semistable if u € I D(RY)
and if there is a real number » > 1 such that

(3.2) AP =7k, zeR,

or, equivalently, a(z)? = aw'2),z e R?. In this case we say that the «-semistable distri-
bution u has a span b, which is not uniquely determined by . If u is strictly a-semistable on
R? with a span b, then it is easy to see that u € Loo(b_l, Rd), since we have

A@) =0E" AT =ae R

For description and examples of Lévy measures of semi-selfdecomposable and
semistable distributions, see Sections 14 and 15 of [15].

The statement of Remark 2.3 is true also for “semi-selfdecomposable with a span b and
“strictly a-semistable with a span b” in place of “selfdecomposable”.

THEOREM 3.1. Let K| and K> be cones in RM and RNZ, respectively. Let {i,: u €
K>} be a Ky-parameter convolution semigroup on R? (subordinand), {ps: s € K1} a K1-
parameter convolution semigroup supported on K, (subordinating), and {o5: s € K} the
subordinated K1-parameter convolution semigroup on RY. Suppose that there are 0 < o < 2
and b > 1 such that, for every u € Ka, ju, is strictly a-semistable with a span b'/®. Fix

s € Kj. Then the following statements are true.
(1) Letmef{0,1,...,00}. If

(3.3) ps € Ly (b™', RM),
then
(3.4) o5 € Ly (b~Y% RY).

(i) LetO <o <1 If
3.5) ps is strictly o -semistable with a span b ,
then

3.6) oy is strictly aa’-semistable with a span b/,
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Note that strictly 1-semistable distributions supported on a cone are delta distributions.
This theorem is an extension of Theorem 4.10 of Pedersen and Sato [11] to the “semi” case.
We prepare a lemma. This is an analogue of Lemma 4.11 of [11] and the proof is almost the
same.

LEMMA 3.2. Let K> be a cone in RN, Suppose that p is in Lob™!, RNZ) and that
Supp(p) C Ky. Let p’ be defined by p(z) = ﬁ(b_lz)//)\’(z), z € RM2. Then Supp(p’) € K.

PROOF OF THEOREM 3.1. Let us prove assertion (i) for m = 0. Assume that p; €
Lo(b~', RM). Define p as p!'(z) = ps(b~'z). Then

B (2) = ol (2)pL(2)

and thus p; = p; * p;. Lemma 3.2 tells us that p; is supported on K. Clearly p; is also
supported on K». Hence

Es(z) Z/ ﬁu(Z)pS(du) = // ﬁu1+u2(Z),0;/(dM1),0;(du2)
K2 K2><K2
=[] @@l ol
Kyx K>

Z/ ﬁb—lul(Z)PS(dul)/ Qu, (2) py (duz) .
KZ K2

Using Proposition 2.7 of [11] and the assumption that u,, is strictly o-semistable with a span
bl/® we have

_~ —~ -1 ~ _
Bp1,(2) = (@) = W (b~1%).

It follows that
37 5. = 5,12 / Au(2)pL(du) .
K>

Since sz wu(z) ()" (du) is subordination of {u,} by {(p))': ¢t € R4}, we see that
[, u(2)p}(du) is infinitely divisible. This shows that oy € Lo(b~"/*, R?).

Next, we assume that (i) is true for a fixed m € {0,1,...}. We claim that (i) is
true for m + 1. Suppose that p; € L1 (b~', R™). Then py(z) = Z)}(b’lz);)\;(z)
with p, € L,(b~',RM). We have (3.7) since Ly+1(b~",R*) < Lo~ !, RM).
Now sz u(2)(pL)! (du) is subordination such that (o))’ is in L, (b~', RM). Hence
S/ k, Hu(z)py(du) is the the characteristic function of a distribution in Ly (b~1% RY). 1t fol-
lows that oy € Ly,1 (b~ 12, R?), which shows (i) for m + 1.

Assertion (i) for m = oo is a consequence of that for finite m.
To prove (ii), assume (3.5). Let us show (3.6), that is,

(3.8) 5. =5, (b\eg)
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Using
Byt s () = P ()™ = By (b2)

and

pu(2) = u(2)” = W (b'/*2)
we obtain

50" =G (2) = / T (2) e (dut) = / b (2) ps (due)
K> K>
B / (b 2) ps (du) = G, (b"/2) |
K>

completing the proof. |

Application to distributions of type multG. Following Barndorff-Nielsen and Pérez-
Abreu [2], we say that a probability measure o on R? is of type multG if o = £(Z'/2X),
where X is a standard Gaussian on R? , Z is an S:{—valued infinitely divisible random variable,
Z1/2 is the nonnegative-definite symmetric square root of Z, and X and Z are independent.
Here, as in Section 1, S; is the class of d x d symmetric nonnegative-definite matrices and
elements of RY are considered as column d-vectors. Regarding the lower triangle (s ;) of
s = (sj)%,_; €S, asad(d+1)/2-vector, S} is identified with a cone in R*/*D/2. The S -
parameter convolution semigroup {is: s € S:{} on R? where y; is d-dimensional Gaussian

with mean vector 0 and covariance matrix s is called the canonical Sj-parameter convolution
semigroup ([11]). The following fact is known (Theorem 4.7 of [11] and its proof).

ProPOSITION 3.3. Let {u,: u € S;} be the canonical S;-parameter convolu-
tion semigroup (subordinand), {p;: t € Ry} an Ry-parameter convolution semigroup
on RA@+D/2 supported on S:{ (subordinating), and {o;: t € Ry} the subordinated R -
parameter convolution semigroup on RY. Then o1 (or, more generally, oy) is of type multG.
Conversely, any distribution on RY of type multG is expressible as o1 of such an R -
parameter convolution semigroup {o;: t € Ry}. The correspondence of the two represen-
tations of a distribution of type multG is that p1 = L(Z).

We can show the following.

PROPOSITION 3.4. Let o be a distribution of type multG, that is, let 0 = E(Zl/ZX),
where X is a standard Gaussian on R?, Z'/? is the nonnegative-definite symmetric square
root of S;-valued infinitely divisible random variable Z, and X and Z are independent.

(i) Letm € {0,1,...,00} and b > 1. If L(Z) € Ly, RYTD/2) then o €
Ly (b™1/2,RY).
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(i) Let0 <o’ < 1landb > 1. If L(Z) is strictly o’ -semistable with a span b, then o

is strictly 2o’ -semistable with a span b'/?.

PROOF. Recall that a distribution p is strictly «-stable if and only if it is strictly

a-semistable with a span b for all b > 1. Apply Theorem 3.1 combined with Proposition

3.3.
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