Correction to:

"Existence and Regularity Results for Harmonic Maps with Potential"

(Tokyo Journal of Mathematics, Vol. 24 (2001), pp. 195-204)

Atsushi TACHIKAWA

Tokyo University of Science
(Communicated by Y. Maeda)

In the proof of Theorem 2.3 of the above mentioned paper, on p. 200, the author gave the following estimate.

$$
\begin{aligned}
\int_{\Omega} e(u) d \mu \leq & \int_{\Omega} G(u) d \mu+E_{G}(f) \\
& \cdots \cdots \\
\leq & E_{G}(f)+b_{0} \operatorname{vol}(\Omega)+b_{1} \int_{\Omega}\left\{\varepsilon|u|^{2^{*}}+\varepsilon^{-\frac{\gamma}{2^{*}-\gamma}}\right\} d \mu \\
\leq & c_{3}\left(E_{G}(f), \Omega, g, \varepsilon, \gamma, b_{0}, b_{1}\right)+\varepsilon c_{4}\left(\Omega, g, h, b_{1}\right) \int_{\Omega} e(u) d \mu
\end{aligned}
$$

However, the last inequality is not correct. In the last term c_{4} depends on $\|u\|_{L^{\infty}}$ also. Therefore the remaining part of the proof is not valid. We must treat the term $\int|u|^{2^{*}} d \mu$ more carefully. Moreover, for the case that $m=2$, since $2^{*}=+\infty$, some small changes are necessary. From the 14th line of page 200, the proof should be changed as follows.

Now, let us estimate the right hand side of (2.18). We proceed as if we are assuming that $m=3$ or 4 , however, by replacing 2^{*} with a sufficiently large number, the proof will be valid also for $m=2$.

[^0]Since we are assuming (2.4) and that $\|u\|_{L^{\infty}} \leq R$, the minimality of u implies that

$$
\begin{aligned}
& \int_{\Omega} e(u) d \mu \leq \int_{\Omega} G(u) d \mu+E_{G}(f) \\
& \quad \leq E_{G}(f)+b_{0} \operatorname{vol}(\Omega)+b_{1} \int_{\Omega}|u|^{\gamma} d \mu \\
& \quad \leq E_{G}(f)+b_{0} \operatorname{vol}(\Omega)+b_{1} \int_{\Omega}\left\{\varepsilon|u|^{2^{*}}+\varepsilon^{-\frac{\gamma}{2^{*}-\gamma}}\right\} d \mu \\
& \quad \leq c_{3}\left(E_{G}(f), \Omega, b_{0}\right)+b_{1} \operatorname{vol}(\Omega) \varepsilon^{-\frac{\gamma}{2^{*}-\gamma}}+\varepsilon c_{4}\left(\Omega, g, h, b_{1}\right) R^{2^{*}-2} \int_{\Omega} e(u) d \mu
\end{aligned}
$$

Here, we used Young's inequality and the Poincaré inequality. By choosing $\varepsilon=1 / 2 c_{4} R^{2^{*}-2}$, we get the following a-priori estimate:

$$
\begin{equation*}
\int_{\Omega}|D u|^{2} d x \leq c_{5}\left(g, h, \gamma, b_{0}, b_{1}, \Omega, E_{G}(f)\right)\left(1+R^{\frac{2^{*}-2}{2^{*}-\gamma} \gamma}\right) \tag{2.19}
\end{equation*}
$$

Using the Poincaré inequality and the assumption that $m \leq 4$, from (2.19) we get

$$
\begin{align*}
& \|u\|_{L^{4}} \leq c_{6}\|u\|_{L^{2^{*}}} \leq c_{6} R^{\frac{2^{*}-2}{2^{*}}}\|u\|_{L^{2}}^{\frac{2}{2^{*}}} \leq c_{6}^{\prime} R^{\frac{2^{*}-2}{2^{*}}}\|D u\|_{L^{2}}^{\frac{2}{2^{*}}} \tag{2.20}\\
& \leq c_{6}^{\prime} c_{5}^{\frac{1}{2^{*}}} R^{\frac{2^{*}-2}{2^{*}}}\left(1+R^{\frac{2^{*}-2}{2^{*}-\gamma} \gamma}\right)^{\frac{1}{2^{*}}} \leq c_{6}^{\prime} c_{5}^{\frac{1}{2^{*}}}\left(1+R^{\frac{2^{*}-2}{2^{*}-\gamma}}\right) .
\end{align*}
$$

where c_{6} is a positive constant depending only on m and Ω. It is nothing to see that c_{5} satisfies

$$
\begin{equation*}
\lim _{b_{0}, b_{1}, E_{G}(f) \rightarrow 0} c_{5}=0 . \tag{2.21}
\end{equation*}
$$

On the other hand, using the condition (2.5), we see that

$$
\left\||u| \frac{\partial G}{\partial s}\right\|_{L^{q}} \leq c_{7}\left(b_{2}, b_{3}, q, \Omega\right)\|u\|_{L^{2^{*}}} \quad \text { for } \quad q=\min \left\{2^{*}, 2^{*} / \gamma\right\}>m / 2
$$

Thus, if $m \leq 4$ and (2.5) holds, we obtain from (2.18)

$$
\begin{equation*}
\sup _{\Omega}|u|^{2} \leq c_{2}\left\{\left(c_{6}^{\prime}+c_{7}\right) c_{5}^{\frac{1}{2^{*}}}\left(1+R^{\frac{2^{*}-2}{2^{*}-\gamma}}\right)+\|f\|_{L^{2 q}}\right\}+\sup _{\Omega}|f|^{2} \tag{2.22}
\end{equation*}
$$

Now, from (2.21) and (2.22), we can see that if $b_{0}, b_{1}, b_{2}, b_{3}, E_{G}(f)$ and $\|f\|_{L^{\infty}(\Omega)}$ are sufficiently small we have (2.12).

When we can take $R_{0}=+\infty$, for any given $b_{0}, b_{1}, b_{2}, b_{3}$ and f we can choose R sufficiently large so that R^{2} is greater than the right hand side of (2.22). It is possible since we get

$$
\begin{equation*}
\frac{2^{*}-2}{2^{*}-\gamma}<2 \tag{2.23}
\end{equation*}
$$

from the assumption $\gamma<4 /(m-2)$ in (2.5).
For the case $m=2$, for any γ we can proceed as in the above proof by replacing 2^{*} by a sufficiently large constant for which (2.23) holds.

Present Address:
Department of Mathematics, Faculty of Science and Technology,
Tokyo University of Science, Noda, Chiba, 278-8510 Japan.
e-mail: atsushi@ma.noda.tus.ac.jp

[^0]: Received November 13, 2001; revised January 24, 2002

