
TOKYO J. MATH.
VOL. 25, NO. 2, 2002

q-linear Functions and Algebraic Independence

Takeshi KUROSAWA and Iekata SHIOKAWA

Keio University

Abstract. We define q-linear arithmetical functions and −q-linear ones and show the algebraic independence
over C(z) of their generating functions.

1. Introduction.

Algebraic independence of power series and their values defined by digital properties of
integers have been investigated by many authors (cf. [4], [6], [9], [10], [11]).

Let q ≥ 2 be an integer. An arithmetical function a(n) : N → C is called strongly
q-additive if a(nq + r) = a(n) + a(r) (n ≥ 0, 0 ≤ r < q), where N = {0, 1, 2, · · · }. Its
generating function f (z) = ∑∞

n=0 a(n)zn (|z| < 1) satisfies the functional equation

f (z) = 1 − zq

1 − z
f (zq) + 1

1 − zq

q−1∑
r=1

a(r)zr .

Toshimitsu [10] proved that, if a1(n), · · · , am(n) are strongly q-additive functions, the
functions g k(z) = ∑∞

n=0 ak(n)zn (1 ≤ k ≤ m) are algebraically independent over C(z) if

and only if (ak(1), · · · , ak(q − 1)) ∈ Cq−1 (1 ≤ k ≤ m) are linearly independent over C .
As a corollary, the algebraic independence of the values g k(α) (1 ≤ k ≤ m) for any fixed
algebraic number α with 0 < |α| < 1 can be deduced. A typical example of a strongly

q-additive function is the sum of digits function sq(n) = ∑k
h=0 dh, where

n =
k∑

h=0

dhq
h , dh ∈ {0, 1, · · · , q − 1} , dk �= 0 if n �= 0 (1)

is the q-adic expansion of n ∈ N. The sum
∑

n≤x sq(n) and also the power sum
∑

n≤x sq (n)l

(l ≥ 1) have been extensively studied (cf. [1], [8], [9]).
In this paper we introduce q-linear functions and −q-linear ones and prove the algebraic

independence of the generating functions and their values. Our method of proof is to apply
two basic theorems in transcendence theory of Mahler functions (see Lemmas 2.1 and 2.2
below).
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An arithmetical function a(n) : N → C is called q-linear, if there is an α ∈ C× such that

a(nq + r) = αa(n) + a(r) (2)

for any integers n ≥ 0 and 0 ≤ r < q . By definition a(0) = 0. A q-linear function a(n)

is uniquely determined by the coefficient α and the initial vector a := (a(1), · · · , a(q − 1));
namely

a(n) =
k∑

h=0

a(dh)α
h ,

where dh are as in (1). Especially, a(n) is not identically zero if a �= (0, · · · , 0).
Next we define −q-linearlity. An arithmetical function b(n) : Z → C is called −q-

linear, if there is a β ∈ C× such that

b(n(−q) + r) = βb(n) + b(r) (3)

for any integers n and 0 ≤ r < q . We note that b(0) = 0. A −q-linear function b(n) is
determined uniquely by β and b = (b(1), b(2), · · · , b(q − 1)). Every n ∈ Z can be expanded
uniquely as

n =
k∑

h=0

eh(−q)h , eh ∈ {0, 1, · · · , q − 1} , ek �= 0 if n �= 0 (4)

(cf. [3, Chap. 4]). We note that n > 0 if and only if k is even. Then we have

b(n) =
k∑

h=0

b(eh)β
h .

EXAMPLES. We give some examples of q-linear functions and −q-linear ones.
1. The strongly q-additive function defined above is q-linear with α = 1. In particular

the sum of digits function sq (n) is q-linear with α = 1 and a = (1, 2, · · · , q − 1), and the

sum of digits function in base −q , i.e. s−q(n) = ∑k
h=0 eh (n ∈ Z ) where eh are given by (4)

is −q -linear with β = 1 and b = (1, 2, · · · , q −1). The sum
∑

n≤x s−q (n) behaves similarly

as the sum
∑

n≤x sq(n) mentioned above (cf. [2]).

2. The radical inverse function φq(n) defined by φq(n) = ∑k
h=0 dhq

−h−1 =
0.d0d1 · · · dk, (cf. [5, Chap. 3]) is q-linear with α = q−1 and a = q−1(1, 2, · · · , q − 1),
where dh are given by (1). The radical inverse function in base −q defined similarly

as above by φ−q(n) = ∑k
h=0 eh(−q)−h−1 (n ∈ Z ) is −q-linear with β = −q−1 and b =

−q−1(1, 2, · · · , q − 1). Moreover, the generalized radical inverse function φσ
q (n) is defined

by φσ
q (n) = ∑k

h=0 dσ
h q−h−1 = 0.dσ

0 dσ
1 · · · dσ

k , where σ is a permutation of {0, 1, · · · , q − 1}
with 0σ = 0, which is also q-linear with α = q−1 and a = q−1(1σ , 2σ , · · · , (q − 1)σ ).
Similarly, φσ−q(n) can be defined.
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3. The bases change function γ
p
q (n). For any p ∈ Z with |p| ≥ q , the bases change

function γ
p
q (n) : N → Z defined by γ

p
q (n) = ∑k

h=0 dhp
h is q-linear with α = p and

a = (1, 2, · · · , q − 1), and the bases change function γ
p
−q(n) : Z → Z defined by γ

p
−q(n) =∑k

h=0 ehp
h is −q-linear with β = p and b = (1, 2, · · · , q − 1).

4. We note that the linear function a(n) = cn (c ∈ C×) is q-linear with α = q and
a = c(1, 2, · · · , q − 1), and b(n) = cn (n ∈ Z , c ∈ C×) is −q-linear with β = −q with
b = c(1, 2, · · · , q − 1).

Let a(n) be a q-linear function with the coefficient α. Then

f (z) =
∞∑

n=1

a(n)zn

converges in |z| < 1 by the definition (2) of q-linearlity and satisfies the functional equation

f (z) = α
1 − zq

1 − z
f (zq) + 1

1 − zq

q−1∑
r=1

a(r)zr ,

since

f (z) =
q−1∑
r=0

∞∑
n=0

a(nq + r)znq+r

= α

q−1∑
r=0

∞∑
n=0

a(n)znq+r +
q−1∑
r=0

∞∑
n=0

a(r)znq+r .

We note that for a(n) = cn (c ∈ C×) in Example 4

f (z) = cz

(1 − z)2 ∈ C(z) .

Let b(n) be a −q-linear function with the coefficient β and let

g (z) =
∞∑

n=1

b(n)zn , g ∗(z) =
∞∑

n=1

b(−n)zn .

These power series converge in |z| < 1 by (3) and satisfy the functional equations

g (z) = β
1 − zq

1 − z
g ∗(zq) + 1

1 − zq

q−1∑
r=1

b(r)zr,

g ∗(z) = βz−q+1 1 − zq

1 − z
g (zq) + 1

1 − zq

q−1∑
r=1

b(q − r)zr .
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Indeed, we have using (3)

g (z) =
q−1∑
r=0

∞∑
n=0

b(nq + r)znq+r

=
q−1∑
r=0

∞∑
n=0

b((−n)(−q) + r)znq+r

= β

q−1∑
r=0

∞∑
n=0

b(−n)znq+r +
q−1∑
r=0

∞∑
n=0

b(r)znq+r ,

g ∗(z) =
q−1∑
r=0

∞∑
n=0

b(−(nq + r))znq+r

=
∞∑

n=1

b(n(−q))znq +
q−1∑
r=1

∞∑
n=1

b(n(−q) + r)znq−r

= β

q−1∑
r=0

∞∑
n=1

b(n)znq−r +
q−1∑
r=1

∞∑
n=1

b(r)znq−r .

We note that for b(n) = cn (c ∈ C×) in Example 4,

g (z) = cz

(1 − z)2 , g ∗(z) = − cz

(1 − z)2 ∈ C(z) .

Putting

F(z) = (1 − z)f (z) , G(z) = (1 − z)g (z) , G∗(z) = (1 − z)g ∗(z) ,

we have the system of functional equations

⎛
⎝ F(zq)

G(zq)

G∗(zq)

⎞
⎠=

⎛
⎝ α−1 0 0

0 0 β−1zq−1

0 β−1 0

⎞
⎠
⎛
⎝ F(z)

G(z)

G∗(z)

⎞
⎠ − 1

ϕ(z)

⎛
⎝ α−1ρ(z)

β−1zq−1τ (z)

β−1σ(z)

⎞
⎠ , (5)

where ρ(z) = ∑q−1
r=1 a(r)zr, σ (z) = ∑q−1

r=1 b(r)zr, τ (z) = ∑q−1
r=1 b(q − r)zr , and

ϕ(z) =
q−1∑
r=0

zr = 1 − zq

1 − z
. (6)

We state our theorem. Let aij (n) (1 ≤ i ≤ h, 1 ≤ j ≤ m(i)) be q-linear functions with

the coefficient αi ∈ C× and let bij (n) (1 ≤ i ≤ h, 1 ≤ j ≤ n(i)) be −q-linear functions with

the coefficient βi ∈ C× , where

αi �= αk , βi �= βk (i �= k) . (7)
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We put aij = (aij (1), aij (2), · · · , aij (q − 1)), bij = (bij (1), bij (2), · · · , bij (q − 1)), and

fij (z) =
∞∑

n=1

aij (n)zn , g ij (z) =
∞∑

n=1

bij (n)zn , g ∗
ij (z) =

∞∑
n=1

bij (−n)zn .

THEOREM 1.1. Let fij (z), g ij (z), and g ∗
ij (z) be as above. Then the functions fij (z)

(1 ≤ i ≤ h, 1 ≤ j ≤ m(i)), g ij (z) and g ∗
ij (z) (1 ≤ i ≤ h, 1 ≤ j ≤ n(i)) are algebraically

independent over C(z) if and only if each of 2h sets {aij ; 1 ≤ j ≤ m(i)}, {bij ; 1 ≤ j ≤ n(i)}
(1 ≤ i ≤ h) are linearly independent over C and

(1, 2, · · · , q − 1) /∈ SpanC{aij ; 1 ≤ j ≤ m(i)} if αi = q ,

(1, 2, · · · , q − 1) /∈ SpanC{bij ; 1 ≤ j ≤ n(i)} if βi = −q .

REMARK 1.1. The linear independency of aij (1 ≤ j ≤ m(i)) and that of bij (1 ≤
j ≤ n(i)) imply that m(i) < q and if m(i) = q − 1 then αi �= q, and also n(i) < q and if
n(i) = q − 1 then βi �= −q.

COROLLARY 1.1. Let fij (z), g ij (z), and g ∗
ij (z) be as in Theorem 1.1. Assume that

αi, βi , aij (n), bij (n) belong to an algebraic number field K for all i, j and 1 ≤ n < q . If α

is an algebraic number with 0 < |α| < 1, then fij (α) (1 ≤ i ≤ h, 1 ≤ j ≤ m(i)), g ij (α)

and g ∗
ij (α) (1 ≤ i ≤ h, 1 ≤ j ≤ n(i)) are algebraically independent.

EXAMPLES. We give some examples of Theorem 1.1.
1. The generating functions of the sum of digits functions

∑
n≥1 sq (n)zn,∑

n≥1 s−q(n)zn, and
∑

n≥1 s−q(−n)zn are algebraically independent over C(z). Let

ordqm be defined by m = aqordqm with q � a. We remark that, if q is a prime, the
functions

∑
n≥1 ordqn!zn and

∑
n≥1 sq(n)zn are linearly dependent over Q mod Q(z), since

ordqn! = (n − sq (n))/(q − 1).

2. Let σ be the cyclic permutation of {1, 2, · · · , q − 1} and let φσi
be the general-

ized radical inverse functions. Then the functions
∑

n≥1 φσi

q (n)zn,
∑

n≥1 φσi

−q(n)zn, and∑
n≥1 φσi

−q(−n)zn (0 ≤ i ≤ q − 2) are algebraically independent, since the initial vectors

(1, 2, · · · , q − 1)σ
i

(i = 0, 1, · · · , q − 2) are linearly independent over C, because

det

⎛
⎜⎜⎜⎝

1 2 · · · q − 1
q − 1 1 · · · q − 2

...
. . .

...

2 3 · · · 1

⎞
⎟⎟⎟⎠ �= 0 .

3. The generating functions of bases change functions
∑

n≥1 γ
p
q (n)zn,

∑
n≥1 γ

p
−q(n)zn,

and
∑

n≥1 γ
p
−q(−n)zn (p ∈ Z , |p| > q) are algebraically independent.
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Furthermore, all these functions except
∑

n≥1 ordn!zn in Example 1 are algebraically
independent over C(z) and their values at algebraic α (0 < |α| < 1) are algebraically inde-
pendent.

2. Two lemmas.

The proof depends on the following lemmas.

LEMMA 2.1 (cf. [7, Theorem 3.5]). Let d > 1 be an integer. Let fij (z) ∈ C[[z]] (1 ≤
i ≤ h, 1 ≤ j ≤ n(i)) satisfy the functional equations

fij (z
d) = ai(z)fij (z) + bij (z) , (8)

where ai(z), bij (z) ∈ C(z)×. Suppose that

(i) ai(z)/aj (z) /∈ H := {g (zd)/g (z); g (z) ∈ C(z)×} (i �= j),

(ii) if cij ∈ C (1 ≤ j ≤ n(i)) are not all zero, there is no f (z) ∈ C(z) such that

f (zd) = ai(z)f (z) +
n(i)∑
j=1

cij bij (z) .

Then the functions fij (z) (1 ≤ i ≤ h, 1 ≤ j ≤ n(i)) are algebraically independent over
C(z).

LEMMA 2.2 (cf. [7, Theorem 4.2.1]). Let K be an algebraic number field, and let
f1(z), · · · , fm(z) ∈ K[[z]] converge in a disc U ⊂ {|z| < 1}. Suppose that for an integer
d > 1, the functional equation

⎛
⎜⎝

f1(z
d)

...

fm(zd)

⎞
⎟⎠ = A(z)

⎛
⎜⎝

f1(z)
...

fm(z)

⎞
⎟⎠ + B(z) (9)

is fulfiled, where A(z) is an m × m matrix with entries in K(z) and B(z) is an m-dimensional

vector with entries in K(z). If α ∈ U is a nonzero algebraic number such that αdk
is not a

pole of A(z), B(z) for any k ≥ 0, then

Trans. degQQ(f1(α), · · · , fm(α)) ≥ Trans. deg�(z)K(z)(f1(z), · · · , fm(z)) .

Corollary 1.1 follows from Theorem 1.1 and Lemma 2.2, since our functions fij (z),
g ij (z), and g ∗

ij (z) satisfy the functional equations of the form (9). So we prove only Theorem

1.1. It is enough to show if part, since the converse is trivial. The algebraic independence of
functions over C(z) satisfying (9) can be reduced to linear independence over C mod C(z)
if all the components of A(z) are in C (cf. [7, Theorem 3.2.2]). However, in the case in which
the components are not all constant, it is not easy to decide the algebraic independence of
these functions over C(z). Unfortunately our functional equation (5) contains non constant
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components. However, by iterating it, we get functional equations of the form (8) with d = q2.
Thus we can apply Lemma 2.1, a criterion of algebraic independence of functions over C(z).

3. Proof of Theorem 1.1.

We shall prove the algebraic independence over C(z) of the functions

Fij (z) = (1 − z)fij (z) (1 ≤ i ≤ h, 1 ≤ j ≤ m(i)) ,

Gij (z) = (1 − z)g ij (z), G∗
ij (z) = (1 − z)g ∗

ij (z) (1 ≤ i ≤ h, 1 ≤ j ≤ n(i)) ,

which satisfy the functional equation of the form (5). By iterating it, we have

Fij (zq2
) = α−2

i Fij (z) − α−2
i

(
αi

ρij (z
q)

ϕ(zq)
+ ρij (z)

ϕ(z)

)
,

Gij (z
q2

) = β−2
i zq(q−1)Gij (z) − β−2

i zq(q−1)

(
βi

τij (z
q)

ϕ(zq)
+ σij (z)

ϕ(z)

)
,

G∗
ij (z

q2
) = β−2

i zq−1G∗
ij (z) − β−2

i

(
βi

σij (zq)

ϕ(zq)
+ zq−1 τij (z)

ϕ(z)

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

the functional equations of the same forms as (8) with d = q2. However, since ai(z) in (8)

are α−2
i , β−2

i zq(q−1), and β−2
i zq−1 in (10), it may happen even under the assumption (7) of

Theorem 1.1 that ai(z) = ak(z) for some i �= k, namely if αk = −αi or βk = −βi . In such
cases, we denote for example αk (or βk) by −αi (or −βi) and put m0(i) = m(i),m1(i) =
m0(i)+m(k) (or n0(i) = n(i), n1(i) = n0(i)+n(k)). For notational convenience we assume
that αi > 0 if αi is real and βi < 0 if βi is real. After these change of the subscript if
necessarily, we have the stronger assumption

α2
i �= α2

k , β2
i �= β2

k (i �= k) , (11)

under which ai(z) �= ak(z) for all i �= k and the functional equations take the following form

Fij (zq2
) = Ai(z)Fij (z) + Pij (z) (1 ≤ i ≤ h, 1 ≤ j ≤ m1(i)) ,

Gij (z
q2

) = Bi(z)Gij (z) + Qij (z) (1 ≤ i ≤ h, 1 ≤ j ≤ n1(i)) ,

G∗
ij (z

q2
) = Ci(z)G

∗
ij (z) + Rij (z) (1 ≤ i ≤ h, 1 ≤ j ≤ n1(i)) ,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(12)

where

Ai(z) = α−2
i , Bi(z) = β−2

i zq(q−1) , Ci(z) = β−2
i zq−1 , (13)
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Pij (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−α−2
i

(
αi

ρij (zq)

ϕ(zq)
+ ρij (z)

ϕ(z)

)
(1 ≤ j ≤ m0(i)) ,

−α−2
i

(
−αi

ρij (zq)

ϕ(zq)
+ ρij (z)

ϕ(z)

)
(m0(i) < j ≤ m1(i)) ,

Qij (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−β−2
i zq(q−1)

(
βi

τij (z
q)

ϕ(zq)
+ σij (z)

ϕ(z)

)
(1 ≤ j ≤ n0(i)) ,

−β−2
i zq(q−1)

(
−βi

τij (z
q)

ϕ(zq)
+ σij (z)

ϕ(z)

)
(n0(i) < j ≤ n1(i)) ,

Rij (z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−β−2
i

(
βi

σij (z
q)

ϕ(zq)
+ zq−1 τij (z)

ϕ(z)

)
(1 ≤ j ≤ n0(i)) ,

−β−2
i

(
−βi

σij (zq)

ϕ(zq)
+ zq−1 τij (z)

ϕ(z)

)
(n0(i) < j ≤ n1(i)) ,

ρij (z) =
q−1∑
r=1

aij (r)z
r , σij (z) =

q−1∑
r=1

bij (r)z
r , τij (z) =

q−1∑
r=1

bij (q − r)zr .

Then we assume that, for each i, each of the sets {aij ; 1 ≤ j ≤ m0(i)}, {aij ; m0(i) < j ≤
m1(i)}, {bij ; 1 ≤ j ≤ n0(i)}, and {bij ; n0(i) < j ≤ n1(i)} are linearly independent over C
and

(1, 2, · · · , q − 1) /∈ SpanC{aij ; 1 ≤ j ≤ m0(i)} if αi = q , (14)

(1, 2, · · · , q − 1) /∈ SpanC{bij ; 1 ≤ j ≤ n0(i)} if βi = −q . (15)

Now we apply Lemma 2.1 to Fij (z),Gij (z), and G∗
ij (z) satisfying the functional equa-

tions (12). Clearly Ai(z), Bi(z), Ci(z) ∈ C(z)×, and Pij (z),Qij (z), Rij (z) ∈ C(z)× follow
from Lemma 3.2, bellow.

We first prove the property (i) in Lemma 2.1. It follows from (11) with (13) that Ai(z)/

Ak(z), Bi(z)/Bk(z), Ci(z)/Ck(z) ∈ C \ {1} for any i �= k. So they are not contained in
H , since H ∩ C = {1}. Since H is a subgroup of C(z)× and Ai(z)/Bk(z), Bi(z)/Ck(z),

Ci(z)/Ak(z) ∈ {czl | c ∈ C×, 1 ≤ |l| ≤ q(q − 1)} for any i and k, it is enough to show that

czl /∈ H for any c ∈ C× and 1 ≤ l ≤ q(q − 1). Assume that czl = g (zq2
)/g (z), where

g (z) = A(z)/B(z) with coprime A(z), B(z) ∈ C[z]. Then czlB(zq2
)A(z) = A(zq2

)B(z), so

that B(zq2
) devides B(z) , and hence B(z) ∈ C×. Thus we get czlA(z) = A(zq2

). Comparing
the degrees of both sides , we have a contradiction.

In the rest of the proof, our arguments will be independent of the subscript i (1 ≤ i ≤ h).
So we fix i and omit it from our notations. From now on, we denote aij (n), bij (n), Fij (z), · · ·
by aj (z), bj (z), Fj (z), · · · . In particular, αi, βi ,m0(i),m1(i), Ai(z), · · · will be written as
α, β,m0,m1, A(z), · · · .

To prove the property (ii), we prepare some lemmas.
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LEMMA 3.1. Let f (z) ∈ C(z) satisfy

f (zq2
) = D(z)f (z) + E(z)

ϕ(z)ϕ(zq)
, (16)

where ϕ(z) is defined by (6) and D(z),E(z) ∈ C[z] \ {0} are such that

D(z) ∈ C×or D(0) = 0, deg D(z) ≤ q(q − 1) , (17)

E(0) = 0 , deg E(z) ≤ 2q2 − q − 1 . (18)

Then D(1) = q−2 and

f (z) = cz

1 − z
(c ∈ C×) . (19)

PROOF. We put f (z) = a(z)/b(z) with coprime a(z), b(z) ∈ C[z]. Then it follows
from (16) that

(a(zq2
)b(z) − D(z)a(z)b(zq2

))ϕ(z)ϕ(zq) = E(z)b(z)b(zq2
) . (20)

We shall prove that

b(z) = 1 − z . (21)

Since a(zq2
) and b(zq2

) are coprime, we have

b(zq2
) | b(z)ϕ(z)ϕ(zq) , (22)

which implies deg b(z) ≤ 1. Suppose that deg b(z) = 0. Then we can put b(z) = 1, so that
by (20)

(a(zq2
) − D(z)a(z))ϕ(z)ϕ(zq) = E(z) . (23)

If deg a(z) = 0, say a(z) = c ∈ C×, we have c(1 − D(z))ϕ(z)ϕ(zq) = E(z). Putting
z = 0, we get D(0) = 1, since E(0) = 0. Hence D(0) �= 0, and so D(z) = 1 by (17).
Thus we have E(z) = 0, which contradicts the assumption. Hence s = deg a(z) ≥ 1. This

implies deg a(zq2
) > deg D(z)a(z), and so comparing the degrees of both sides of (23),

we get sq2 + q2 − 1 ≤ 2q2 − q − 1 using (18), which yields s < 1, a contradiction.
Therefore deg b(z) = 1. We can put b(z) = c0 − z (c0 ∈ C ), so that we have by (22)

c0 − zq2 = c1(c0 − z)ϕ(z)ϕ(zq) (c1 ∈ C×). Comparing the coefficients of both sides we find
c1 = 1, and putting z = 1 we obtain c0 = 1, and (21) follows.

To prove (19) it remains to show that

a(z) = cz (c ∈ C×) . (24)

It follows from (20) and (21) that

a(zq2
) − D(z)a(z)ϕ(z)ϕ(zq) = (1 − z)E(z) . (25)
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Putting z = 0 in (25), we have D(0) = 1 or a(0) = 0. If D(0) = 1,D(z) = 1 ∈ C×
by assumption (17). Then (25) with z = 1 yields a(1) = 0. This contradicts (21) and
(a(z), b(z)) = 1. Hence we have a(0) = 0. If deg a(z) = 0, we have a contradiction as

above. Suppose that s = deg a(z) ≥ 2. Then deg a(zq2
) > deg D(z)a(z)ϕ(z)ϕ(zq) by (17).

So comparing the degrees of both sides of (25) using (18), we have sq2 ≤ 2q2 − q , which is
impossible. Therefore deg a(z) = 1, which with a(0) = 0 implies (24).

It follows from (24) and (25) that czq2 −czD(z)ϕ(z)ϕ(zq) = (1−z)E(z). Putting z = 1,

we get c(1 − D(1)q2) = 0 with c �= 0, so that D(1) = q−2; and the lemma is proved.
We shall use the following notations. We put for c1, c2, · · · ∈ C

S(z) =
m0∑
j=1

cjρj (z) −
m1∑

j=m0+1

cjρj (z) =
q−1∑
r=1

s(r)zr ,

T (z) =
m1∑
j=1

cj ρj (z) =
q−1∑
r=1

t (r)zr ,

where s(r) = ∑m0
j=1 cjaj (r) − ∑m1

j=m0+1 cjaj (r), t (r) = ∑m1
j=1 cjaj (r),

U(z) =
n0∑

j=1

cj τj (z) −
n1∑

j=n0+1

cj τj (z) =
q−1∑
r=1

u(r)zr ,

V (z) =
n1∑

j=1

cjσj (z) =
q−1∑
r=1

v(r)zr ,

where u(r) = ∑n0
j=1 cjbj (q − r) − ∑n1

j=n0+1 cjbj (q − r), v(r) = ∑n1
j=1 cjbj (r),

X(z) =
n0∑

j=1

cjσj (z) −
n1∑

j=n0+1

cjσj (z) =
q−1∑
r=1

x(r)zr ,

Y (z) =
n1∑

j=1

cj τj (z) =
q−1∑
r=1

y(r)zr ,

where x(r) = ∑n0
j=1 cjbj (r) − ∑n1

j=n0+1 cj bj (r), y(r) = ∑n1
j=1 cjbj (q − r).

Then it follows from the definitions that

m1∑
j=1

cjPj (z) = −α−2 αS(zq)ϕ(z) + T (z)ϕ(zq)

ϕ(z)ϕ(zq)
, (26)

n1∑
j=1

cjQj (z) = −β−2zq(q−1) βU(zq)ϕ(z) + V (z)ϕ(zq)

ϕ(z)ϕ(zq)
, (27)
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n1∑
j=1

cjRj (z) = −β−2 βX(zq)ϕ(z) + zq−1Y (z)ϕ(zq)

ϕ(z)ϕ(zq)
. (28)

LEMMA 3.2. Each of the sets {Pj (z); 1 ≤ j ≤ m1}, {Qj(z); 1 ≤ j ≤ n1}, and
{Rj (z); 1 ≤ j ≤ n1} is linearly independent over C .

PROOF. We prove that P1(z), · · · , Pm1(z) are linearly independent over C . Suppose

that
∑m1

j=1 cjPj (z) = 0 for some c1, · · · , cm1 ∈ C not all zero. Then by (26)

αS(zq)ϕ(z) = −T (z)ϕ(zq) . (29)

If T (z) = 0, then we have S(z) = 0. Hence s(r) = t (r) = 0 (1 ≤ r < q), and so

m0∑
j=1

cjaj (r) =
m1∑

j=m0+1

cjaj (r) = 0 (1 ≤ r < q) ,

which contradicts the assumption that each of the sets {aj ; 1 ≤ j ≤ m0} and {aj ; m0 < j ≤
m1} are linearly independent over C and c1, · · · , cm1 not all zero. Now if T (z) �= 0, then by
(29) S(z) �= 0, which together with T (0) = 0 and S(0) = 0 imply that ordz=0S(zq) ≥ q and
1 ≤ deg T (z) < q , a contradiction.

Similary we can prove that Q1(z), · · · ,Qn1(z) are linearly independent over C . To

prove the linear independency of R1(z), · · · , Rn1(z) over C , we assume that
∑n1

n=1 cjRj (z) =
0 for some c1, · · · , cn1 ∈ C not all zero. Then it follows from (28) that

βX(zq)ϕ(z) = −zq−1Y (z)ϕ(zq) .

Comparing the degrees of both sides, we have q(q −1)+q −1 ≥ q −1+degY (z)+q(q −1),

so that deg Y (z) = 0. Since Y (0) = 0, we get Y (z) = 0 and so X(z) = 0. Hence x(r) =
y(r) = 0 (1 ≤ r < q), which contradicts the linear independency over C of each of the sets
{bj ; 1 ≤ j ≤ n0} and {bj ; n0 < j ≤ n1}; and the lemma is proved.

LEMMA 3.3. If P(z) = ∑q−1
r=1 p(r)zr ∈ C[z] satisfies

(1 − ζ )P (ζ ) + γ = 0 (30)

for some γ ∈ C and any ζ �= 1 with ζ q = 1, then γ = qp(1) and

P(z) = p(1)

q−1∑
r=1

rzr = p(1)
zϕ(z) − qzq

1 − z
,

where ϕ(z) is defined by (6).

PROOF. It follows from (30) that

q−1∑
r=1

(p(r) − p(r − 1))ζ r − p(q − 1) + γ = 0 , p(0) = 0 .
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If we put

ξ(z) =
q−1∑
r=1

(p(r) − p(r − 1))zr − p(q − 1) + γ ,

η(z) = (p(q − 1) − p(q − 2))

q−1∑
r=0

zr ,

we have ξ(z) = η(z), since they have q−1 common distinct roots. Comparing the coefficients,
we get p(r) = rp(1) (1 ≤ r < q) and γ = qp(1), and the lemma is proved.

Now we verify the property (ii) in Lemma 2.1 using Lemmas 3.1–3.3. We have to prove
under the assumptions of the theorem that if c1, · · · , cm1 ∈ C are not all zero, there is no
f (z) ∈ C(z) satisfying

f (zq2
) = A(z)f (z) +

m1∑
j=1

cjPj (z) , (31)

and if c1, · · · , cn1 ∈ C are not all zero, there is no f (z) ∈ C(z) satisfying

f (zq2
) = B(z)f (z) +

n1∑
j=1

cjQj (z) (32)

or

f (zq2
) = C(z)f (z) +

n1∑
j=1

cjRj (z) . (33)

Suppose first that there is f (z) ∈ C(z) satisfying (31). Recalling (26) we have the

equation (16) with D(z) = A(z) = α−2 ∈ C×,

E(z) = −α−2(αS(zq)ϕ(z) + T (z)ϕ(zq)) �= 0

(by Lemma 3.2), and (18). Hence we can apply Lemma 3.1 and get (19) and D(1) = α−2 =
q−2 , so that α = q by our convention. Thus we have by (26) and (31)

c(zq2 − q−2zϕ(z)ϕ(zq)) = −q−2(1 − z)(qS(zq)ϕ(z) + T (z)ϕ(zq)) (34)

(c ∈ C×). Putting z = ζ �= 1 with ζ q = 1, we get (1 − ζ )T (ζ ) + qc = 0, and hence

T (z) = c
zϕ(z) − qzq

1 − z

by Lemma 3.3, substituting this to (34), we find c(qzq2 − zqϕ(zq)) = −(1 − z)S(zq)ϕ(z),

which yields T (z) = S(z). Comparing the coefficients of both sides, we obtain

m0∑
j=1

cjaj (r) = cr (c ∈ C×, 1 ≤ r < q) ,
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which contradicts the assumption (14).
Next we suppose that f (z) ∈ C(z) satisfies (32). Recalling (27) we have (16) with

D(z) = β−2zq(q−1),

E(z) = −β−2zq(q−1)(βU(zq)ϕ(z) + V (z)ϕ(zq)) �= 0

(by Lemma 3.2), and (18). Then we apply Lemma 3.1 and get (19) and β = −q . Thus we
have by (27) and (32)

c(zq2 − q−2zq(q−1)zϕ(z)ϕ(zq)) = −q−2zq(q−1)(1 − z)(−qU(zq)ϕ(z) + V (z)ϕ(zq)) (35)

(c ∈ C×). Putting z = ζ �= 1 with ζ q = 1, we have (1 − ζ )V (ζ ) + qc = 0, and hence

V (z) = c
zϕ(z) − qzq

1 − z
. (36)

by Lemma 3.3, putting this into (35) , we get U(zq) = c(qzq − zqϕ(zq))/(1 − zq), which
implies

U(z) = c

q−1∑
r=1

(q − r)zr , (37)

since
q−1∑
r=1

(q − r)zr = qz − zϕ(z)

1 − z
. (38)

It follows from (36) and (37) that u(q − r) = v(r) = cr , and hence

n0∑
j=1

cjbj (r) = cr (c ∈ C×, 1 ≤ r < q) ,

which contradicts the assumption (15).
Finally we assume that f (z) ∈ C(z) satisfies (33). Similarly as in the previous case, we

have using (28) β = −q and

c(zq2 − q−2zq−1zϕ(z)ϕ(zq)) = −q−2(1 − z)(−qX(zq)ϕ(z) + zq−1Y (z)ϕ(zq)) (39)

(c ∈ C×). Putting z = ζ 1/q , where ζ �= 1 satisfies ζ q = 1, we get (1 − ζ )X(ζ ) − qc = 0.
Then by Lemma 3.3

X(z) = −c

q−1∑
r=1

rzr = −c
zϕ(z) − qzq

1 − z
.

Substituting this to (39) and using (38) we have

Y (z) = −c
qz − zϕ(z)

1 − z
= −c

q−1∑
r=1

(q − r)zr .
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Hence x(r) = y(q − r) = −cr (1 ≤ r < q), and therefore

n0∑
j=1

cjbj (r) = −cr (c ∈ C×, 1 ≤ r < q) ,

which contradicts (15). The proof of Theorem 1.1 is now completed.
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