Токуо J. Матн. Vol. 26, No. 1, 2003

On a Characteristic Function of the Tensor *K*-module of Inner Type Noncompact Real Simple Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let C (resp. R) denote the complex (resp. real) number field. We consider a connected simply connected complex simple Lie group $G_{\mathbf{C}}$ and a connected noncompact inner type simple real form G of $G_{\mathbf{C}}$. Let K be a maximal compact subgroup of G. We denote the Lie algebras of G and K respectively by \mathfrak{g} and \mathfrak{k} . Let θ be the Cartan involution of \mathfrak{g} corresponding to \mathfrak{k} . Let's denote the eigensubspace of θ of \mathfrak{g} with the eigenvalue -1 by \mathfrak{p} . Then we have a Cartan decomposition: $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Consequently the Lie algebra $\mathfrak{g}_{\mathbb{C}}$ of $G_{\mathbb{C}}$ is also decomposed by $\mathfrak{g}_{\mathbb{C}} = \mathfrak{k}_{\mathbb{C}} \oplus \mathfrak{p}_{\mathbb{C}}$, where $\mathfrak{k}_{\mathbb{C}}$ (resp. $\mathfrak{p}_{\mathbb{C}}$) is the complexification of \mathfrak{k} (resp. \mathfrak{p}) in $\mathfrak{g}_{\mathbb{C}}$. Canonically K acts on the space $\mathfrak{p}_{\mathbf{C}}$. Let B be a maximal abelian subgroup of K. Since K is connected and G is an inner type simple Lie group, B is also a maximal abelian subgruop of G. Therefore B is a Cartan subgroup of G and K. Let $\mathfrak{b}_{\mathbf{C}}$ be the complexification of the Lie algebra \mathfrak{b} of B. Let Σ be the root system of the pair ($\mathfrak{g}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}}$). Then we have $\Sigma = \Sigma_K \cup \Sigma_n$, where Σ_K (resp. Σ_n) is the set of all compact (resp. noncompact) roots of Σ . We shall fix a positive root system P_K of Σ_K . Let (π_μ, V_μ) be a simple K-module with the highest weight μ . Then the tensor space $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ is a unitary K-module. Let ν be a P_{K} -dominant integral form on $\mathfrak{b}_{\mathbf{C}}$ and V_{ν} a simple K-module corresponding to ν . We define a projection operator P_{ν} on $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by

$$P_{\nu}(Z) = \deg \pi_{\nu} \int_{K} k Z \overline{\operatorname{trace} \pi_{\nu}(k)} dk \quad \text{for } Z \text{ in } \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} ,$$

where dk is the Haar measure on K normalized as $\int_K dk = 1$. Let Γ_K be the set of all P_K -dominant integral form on $\mathfrak{b}_{\mathbb{C}}$. Then we have the following decomposition:

(1.1)
$$\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} = \bigoplus_{\omega \in \Sigma_n, \mu + \omega \in \Gamma_K} P_{\mu + \omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}),$$

where $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) = \{0\}$ or is a simple *K*-module. The purpose of this paper is to characterize nontrivial *K*-module $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ by using a rational function. Let us state our results more precisely. We can prove that $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ is nontrivial if and only if

Received February 15, 2002; revised November 27, 2002

 $|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 \neq 0$, where |*| is the norm on $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$, X_{ω} is the root vector corresponding to a noncompact root ω and $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)| = 1$. Assume that $2(\mu, \alpha)|\alpha|^{-2} \geq 3$ for all α in P_K . Then we can prove (see Lemma 4.7) that $|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2$ is given by a rational function $f(\lambda + \omega; \omega)$ in $\lambda = \mu + \rho_K$, where ρ_K is one half the sum of all roots in P_K . Let $(\sqrt{-1\mathfrak{b}})^*$ be the dual space of the real vector space $\sqrt{-1\mathfrak{b}}$. Let $f(\eta; \omega)$ be the rational function in $\eta \in (\sqrt{-1\mathfrak{b}})^*$ satisfying $f(\lambda+\omega;\omega) = |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2$. We can calculate $f(\eta;\omega)$ explicitely (see Theorem 6.5) by using the functional equations in Theorem 5.4. Finally in §7 we shall prove the following main theorem.

MAIN THEOREM. Let μ be a P_K -dominant integral form on $\mathfrak{b}_{\mathbb{C}}$ and V_{μ} the simple *K*-module with the highest weight μ . Suppose that $\mu + \omega$ is P_K -dominant for a noncompact root ω in Σ . Then the *K*-submodule $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ of $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ in (1, 1) is nontrivial if and only if $f(\lambda + \omega; \omega) > 0$.

The tensor *K*-modules $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ and $\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ are closely related with the classification of irreducible infinitesimal unitary representations of *G*. For example, by using the Clebsch-Gordan coefficients of these tensor *K*-modules, the complete classifications are obtained for the groups : $SL(2, \mathbb{R})$ in [1], De Sitter group in [2] and [10], SO(2n, 1) in [5], [6] and SU(n, 1) in [8] and etc. In the subsequent paper we shall apply the main theorem to determine the multiplicity of V_{μ} in $\mathfrak{p}_{\mathbb{C}} \otimes \mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$.

Most parts of this article is reported in "Clebsch-Gordan coefficients for a tensor product representation Ad $\otimes \pi$ of a maximal compact subgroup of real semisimple Lie group", Lect. in Math., Kyoto Univ. No. 14 pp. 149–175.

2. Preliminalies

Let *G* be the connected inner type noncompact real simple Lie group. We shall always fix a maximal compact subgroup *K* and the Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$. Let *B* be the maximal abelian subgroup of *K*. Since *G* is inner, *B* is a Cartan subgroup of *K* and *G*. A linear form α on $\mathfrak{b}_{\mathbb{C}}$ is said to be a root if there exists a nontrivial element *X* in $\mathfrak{g}_{\mathbb{C}}$ such that $[H, X] \equiv ad(H)X = \alpha(H)X$ for all *H* in $\mathfrak{b}_{\mathbb{C}}$. Let Σ be the set of all roots on $\mathfrak{b}_{\mathbb{C}}$. Then Σ is a finite set. Furthermore, we have the following decomposition.

$$\mathfrak{g}_{\mathbf{C}} = \mathfrak{b}_{\mathbf{C}} \oplus \sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha} \,,$$

where \mathfrak{g}_{α} is a one dimensional eigenspace corresponding to α . The real subalgebra $\mathfrak{g}_{u} = \mathfrak{k} \oplus \sqrt{-1}\mathfrak{p}$ of $\mathfrak{g}_{\mathbb{C}}$ is said to be a compact real form of $\mathfrak{g}_{\mathbb{C}}$. We choose a Weyl basis $X_{\alpha} \in \mathfrak{g}_{\alpha}, \alpha \in \Sigma$, satisfying the followings (cf. the proof of Theorem 6.3 in [4]).

(2.1)
$$X_{\alpha} - X_{-\alpha}, \ \sqrt{-1}(X_{\alpha} + X_{-\alpha}) \in \mathfrak{g}_{u} \quad \text{and} \quad \phi(X_{\alpha}, X_{-\alpha}) = 1,$$

where ϕ is the Killing form on $\mathfrak{g}_{\mathbb{C}}$. For the element $H_{\alpha} = ad(X_{\alpha})X_{-\alpha}$ in $\sqrt{-1}\mathfrak{b}$, we have $\phi(H_{\alpha}, H) = \alpha(H)$ for all H in $\mathfrak{b}_{\mathbb{C}}$. Let μ be a linear form on $\sqrt{-1}\mathfrak{b}$. Then there exists a unique H_{μ} in $\sqrt{-1}\mathfrak{b}$ such that $\phi(H_{\mu}, H) = \mu(H)$ for all H in $\sqrt{-1}\mathfrak{b}$. Let $(\sqrt{-1}\mathfrak{b})^*$ be the dual space of $\sqrt{-1}\mathfrak{b}$. We define a positive definite bilinear form (λ, μ) by $(\lambda, \mu) = \phi(H_{\mu}, H_{\lambda})$ for $\lambda, \mu \in (\sqrt{-1}\mathfrak{b})^*$. We put, for each pair of α and β in Σ , a complex number $\langle \alpha, \beta \rangle$ by

(2.2)
$$\langle \alpha, \beta \rangle = \begin{cases} \phi(ad(X_{\alpha})X_{\beta}, X_{-\alpha-\beta}) & \text{if } \alpha + \beta \in \Sigma \\ 0 & \text{otherwise.} \end{cases}$$

Then $\langle \alpha, \beta \rangle$ is a pure imaginary number. Let *p* and *q* be two nonnegative integers such that $\beta + j\alpha \in \Sigma$ if and only if $-q \leq j \leq p$. $\beta + j\alpha, -q \leq j \leq p$, is said to be the α -series containing β . We have (cf. the proof of Lemma 4.3.8 in [11])

(2.3)
$$2(\beta,\alpha)|\alpha|^{-2} = q - p \text{ and } \beta - 2(\beta,\alpha)|\alpha|^{-2}\alpha \in \Sigma.$$

Furthermore, we have

(2.4)
$$|\langle \alpha, \beta \rangle|^2 = q(p+1)\frac{|\alpha|^2}{2},$$

and $p + q \leq 3$ (cf. Corollary 4.3.12 in [11]). Suppose that $|\alpha| \geq |\beta|$. Then

(2.5)
$$2(\alpha, \beta)|\beta|^{-2} \in \{0, \pm 1, \pm 2, \pm 3\}.$$

We remark that if $|\alpha| > |\beta|$, then $|\alpha|^2 = 2|\beta|^2$ or $|\alpha|^2 = 3|\beta|^2$. Especially if $2(\alpha, \beta)|\beta|^2 = \pm 2$ (resp. ± 3), then $|\alpha|^2 = 2|\beta|^2$ (resp. $|\alpha|^2 = 3|\beta|^2$).

A root in Σ is compact (resp. noncompact) if $X_{\alpha} \in \mathfrak{k}_{\mathbb{C}}$ (resp. $X_{\alpha} \in \mathfrak{p}_{\mathbb{C}}$). Since $\mathfrak{k}_{\mathbb{C}}$ and $\mathfrak{p}_{\mathbb{C}}$ are invariant under $ad(\mathfrak{b})$, Σ is a disjoint union of the set of all compact roots Σ_K and the set of all noncompact roots Σ_n . Σ_K is also the root system of the pair ($\mathfrak{k}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}}$). Let P be a positive root system of Σ . Then $P_K = \Sigma_K \cap P$ is a positive root system of Σ_K . A linear form μ on $\mathfrak{b}_{\mathbb{C}}$ is integral if $2(\mu, \alpha)|\alpha|^{-2}$ is an integer for all $\alpha \in P$, and μ is P-dominant (resp. P_K -dominant) if $2(\mu, \alpha)|\alpha|^{-2} \ge 0$ for all $\alpha \in P$ (resp. P_K). We shall denote the set of all P-dominant (resp. P_K -dominant) integral forms on $\mathfrak{b}_{\mathbb{C}}$ by Γ (resp. Γ_K).

Let σ (resp. τ) be the conjugation of $\mathfrak{g}_{\mathbb{C}}$ with respect to the real form \mathfrak{g} (resp. \mathfrak{g}_u). By our choice for the Weyl basis of $\mathfrak{g}_{\mathbb{C}}$ we have

(2.6)
$$\sigma(X_{\alpha}) = -X_{-\alpha}$$
 for $\alpha \in \Sigma_K$, $\sigma(X_{\alpha}) = X_{-\alpha}$ for $\alpha \in \Sigma_n$

and

(2.7)
$$\tau(X_{\alpha}) = -X_{-\alpha} \quad \text{for } \alpha \in \Sigma.$$

The inner types noncompact real simple Lie groups (i.e. rank G = rank K) are classified into three (cf. Table II, p. 354 in [4]):

(1) all noncompact roots have the same length,

(2.8) (2)
$$S_p(n, \mathbf{R})$$
 and $SO(2m, 2n+1)$,

(3) the type
$$G_2$$
.

We shall use in §6 and §7 the following Dynkin diagrams of the simple root systems Ψ for the groups in (2) and (3), where a white circle indicates a compact root and a black circle does a noncompact root.

(2.9)
$$G = S_p(n, \mathbf{R}) : \stackrel{\alpha_1}{\circ} \cdots \stackrel{\alpha_2}{\circ} \cdots \stackrel{\alpha_{n-2}}{\circ} \stackrel{\alpha_{n-1}}{\circ} \xleftarrow{\alpha_n}{\bullet} K = U(n) : \stackrel{\alpha_1}{\circ} \cdots \stackrel{\alpha_2}{\circ} \cdots \stackrel{\alpha_{n-2}}{\circ} \stackrel{\alpha_{n-1}}{\circ}.$$

(2.10)

$$G = SO(2m, 2n+1) : \overset{\alpha_1}{\circ} \underbrace{\qquad} \overset{\alpha_2}{\circ} \cdots \underbrace{\qquad} \overset{\alpha_{m-1}}{\circ} \underbrace{\qquad} \overset{\alpha_m}{\bullet} \underbrace{\qquad} \overset{\alpha_{m+1}}{\circ} \cdots \overset{\alpha_{m+n-1}}{\circ} \Longrightarrow \overset{\alpha_{m+n}}{\circ},$$

$$K = SO(2m) \otimes SO(2n+1) : \overset{\alpha_1}{\circ} \underbrace{\qquad} \overset{\alpha_2}{\circ} \cdots \overset{\alpha_{m-2}}{\circ} \underbrace{\qquad} \overset{\alpha_{m-1}}{\circ} \overset{\alpha_{m+1}}{\circ} \underbrace{\qquad} \cdots \overset{\alpha_{m+n+1}}{\circ} \Longrightarrow \overset{\alpha_{m+n}}{\circ},$$

$$\downarrow \\ \circ \alpha_0$$

where $\alpha_0 = \alpha_{m-1} + 2\alpha_m + \cdots + 2\alpha_{m+n}$.

(2.11)
$$G = G_2 : \stackrel{\alpha_1}{\bullet} \Longrightarrow \stackrel{\alpha_2}{\circ}, K = SU(2) \otimes SU(2) : \stackrel{\alpha_0}{\circ} \stackrel{\alpha_2}{\circ}$$

where $\alpha_0 = 2\alpha_1 + 3\alpha_2$.

3. Decomposition of a tensor *K*-module

For the simplicity of our notations, the adjoint action Ad(k) $(k \in K)$ on $\mathfrak{p}_{\mathbb{C}}$ will be denoted by kX for X in $\mathfrak{p}_{\mathbb{C}}$. We define a hermitian structure (X, Y) on $\mathfrak{p}_{\mathbb{C}}$ by

(3.1)
$$(X, Y) = -\phi(X, \tau(Y)) \text{ for } X, Y \in \mathfrak{p}_{\mathbb{C}}$$

Then $\mathfrak{p}_{\mathbb{C}}$ is a unitary *K*-module with respect to this hermitian structure. For $\mu \in \Gamma_K$, there exists a unitary simple *K*-module (π_{μ}, V_{μ}) with the highest weight μ . We also denote the action $\pi_{\mu}(k)$ ($k \in K$) of *K* on V_{μ} by kv for $v \in V_{\mu}$. Let dk be the Haar measure on *K* normalized as $\int_K dk = 1$. We define a character χ_{μ} of the *K*-module (π_{μ}, V_{μ}) by

(3.2)
$$\chi_{\mu}(k) = \deg(\pi_{\mu}) \operatorname{trace} \pi_{\mu}(k), \quad k \in K$$

where deg $\pi_{\mu} = \dim V_{\mu}$. Then we have

(3.3)
$$\int_{K} \chi_{\mu}(k^{-1}k')\chi_{\mu}(k)dk = \chi_{\mu}(k'), \quad k' \in K.$$

For a finite dimensional K-module V, we define a projection operator P_{μ} on V by

(3.4)
$$P_{\mu}(v) = \int_{K} k v \overline{\chi_{\mu}(k)} dk \,, \quad v \in V \,,$$

where $\overline{\chi_{\mu}(k)}$ is the complex conjugate of $\chi_{\mu}(k)$.

LEMMA 3.1. The projection operator P_{μ} on V satisfies the followings.

$$(P_{\mu})^2 = P_{\mu}$$
 and $kP_{\mu} = P_{\mu}k$ for all $k \in K$.

PROOF. Changing the variables and the order of integrals, we have for $v \in V$,

$$(P_{\mu})^{2}(v) = \int_{K} \int_{K} k' k v \overline{\chi_{\mu}(k')} \chi_{\mu}(k) dk dk'$$

=
$$\int_{K} \int_{K} k v \overline{\chi_{\mu}((k')^{-1}k)} \chi_{\mu}(k') dk dk'$$

=
$$\int_{K} k v \int_{K} \overline{\chi_{\mu}((k')^{-1}k)} \chi_{\mu}(k') dk' dk$$

Hence by the formula (3.3), we have $(P_{\mu})^2 = P_{\mu}$. For $k \in K$ and $v \in V$ we have

$$kP_{\mu}(v) = \int_{K} kk' v \overline{\chi_{\mu}(k')} dk'$$
$$= \int_{K} (kk'k^{-1})(kv) \overline{\chi_{\mu}(kk'k^{-1})} dk'$$
$$= P_{\mu}(kv) .$$

Thus we can prove that $k P_{\mu} v = P_{\mu} k v$.

We now define an action of $\mathfrak{k}_{\mathbf{C}}$ on V_{μ} by

$$Xv = \frac{d}{dt} \exp(tX)v|_{t=0}$$
 for $X \in \mathfrak{k}_{\mathbb{C}}$ and $v \in V_{\mu}$.

By the choice of X_{α} in (2.1) we have

(3.5)
$$(X_{\alpha}v, w) = (v, X_{-\alpha}w) \text{ for all } \alpha \in \Sigma_K \text{ and } v, w \in V_{\mu}.$$

We define a unitary K-module structure on $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ by

(3.6)
$$k(X \otimes v) = kX \otimes kv \quad \text{for } k \in K,$$
$$(X \otimes v, Y \otimes w) = (X, Y)(v, w) \quad \text{for } X, Y \in \mathfrak{p}_{\mathbb{C}} \text{ and } v, w \in V_{\mu}.$$

Thereby $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}$ is a finite dimensional unitary *K*-module. Let ω be a noncompact root in Σ . Assume that $\mu + \omega$ is P_K -dominant. By the second property in Lemma 3.1 we have

(3.7)
$$Y P_{\mu+\omega}(X \otimes v) = P_{\mu+\omega}(ad(Y)X \otimes v) + P_{\mu+\omega}(X \otimes Yv)$$

for all
$$Y \in \mathfrak{k}_{\mathbb{C}}$$
, $X \in \mathfrak{p}_{\mathbb{C}}$ and $v \in V_{\mu}$.

DEFINITION 3.2. Let p be a nonnegative integer. We define a set Π_p by

$$\Pi_0 = \{\tilde{\phi}\}, \quad \Pi_p = \{(\alpha_1, \alpha_2, \cdots, \alpha_p) : \alpha_i \in P_K\} \quad \text{for } p > 1, \quad \text{and put } \Pi = \bigcup_{p=0}^{\infty} \Pi_p.$$

Let $I = (\alpha_1, \alpha_2, \dots, \alpha_p)$ and $J = (\beta_1, \beta_2, \dots, \beta_q)$ be two elements in Π . We define a multiplicative operation \star in Π by

$$I \star J = (\alpha_1, \alpha_2, \cdots, \alpha_p, \beta_1, \beta_2, \cdots, \beta_q).$$

Then Π is a semigroup with the identity ϕ .

DEFINITION 3.3. Let $U(\mathfrak{k}_{\mathbb{C}})$ be the universal enveloping algebra of $\mathfrak{k}_{\mathbb{C}}$. For each *I* in Π we define an element Q(I) in $U(\mathfrak{k}_{\mathbb{C}})$ by

$$Q(I) = 1$$
 for $I = \tilde{\phi}$ and $Q(I) = X_{-\alpha_1} X_{-\alpha_2} \cdots X_{-\alpha_p}$ for $I = (\alpha_1, \alpha_2, \cdots, \alpha_p)$.

Then Q is a semigroup homomorphism of Π to $U(\mathfrak{k}_{\mathbb{C}})$. Furthermore, Q(I) acts on $\mathfrak{p}_{\mathbb{C}}$ by Q(I)X = ad(Q(I))X for X in $\mathfrak{p}_{\mathbb{C}}$. We also define the adjoint operator $Q(I)^*$ of Q(I) by $(Q(I)X, Y) = (X, Q(I)^*Y)$ for $X, Y \in \mathfrak{p}_{\mathbb{C}}$.

LEMMA 3.4. Let $\mu \in \Gamma_K$ and V_{μ} a simple K-module with the highest weight μ . Then we have

$$\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} = \bigoplus_{\omega \in \Sigma_n, \mu + \omega \in \Gamma_K} P_{\mu + \omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}),$$

where $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) = \{0\}$ or is a simple K-module.

PROOF. By Peter-Weyl's theorem, we have (cf. Theorem 1.12 (c) in [7])

$$\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} = \bigoplus_{\lambda \in \Gamma_K} P_{\lambda}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}) \,.$$

Let V_{λ} be a simple *K*-submodule of $P_{\lambda}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$. We shall prove that $V_{\lambda} = P_{\mu+\gamma}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ for a suitable noncompact root γ . We note that the simple *K*-module V_{μ} is generated by the set $\{Q(I)v(\mu) : I \in \Pi\}$, where $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)| = 1$. Moreover, it follows from (3.7) that

(3.8)
$$X_{\alpha}P_{\lambda}(X\otimes v) = P_{\lambda}(ad(X_{\alpha})X\otimes v) + P_{\lambda}(X\otimes X_{\alpha}v)$$

for all $X \in \mathfrak{p}_{\mathbb{C}}$, $v \in V_{\mu}$ and $\alpha \in \Sigma_{K}$. Let $v(\lambda)$ be the highest weight vector of V_{λ} . It follows from (3.8) that $v(\lambda)$ is written by

(3.9)
$$v(\lambda) = \sum_{\omega \in \Sigma_n} \sum_{I \in \Pi} c_{\omega,I} Q(I) P_{\lambda}(X_{\omega} \otimes v(\mu)),$$

where $c_{\omega,I}$ is a complex constant. Since $v(\lambda)$ is the highest weight vector, (3.5) implies that

$$(v(\lambda), v(\lambda)) = \sum_{\omega \in \Sigma_n} \overline{c_{\omega, \tilde{\phi}}}(v(\lambda), P_{\lambda}(X_{\omega} \otimes v(\mu))).$$

Consequently, we have $\lambda = \mu + \gamma$ for a noncompact root γ . Again by (3.9) we have

$$v(\lambda) = \sum_{\omega \in \Sigma_n} \sum_{I \in \Pi} c_{\omega,I} Q(I) P_{\mu+\gamma}(X_{\omega} \otimes v(\mu)) \,.$$

Let ω be a noncompact root. When $\omega > \gamma$, we have $P_{\mu+\gamma}(X_{\omega} \otimes v(\mu)) = 0$ because $\mu + \gamma$ is the highest weight in $P_{\mu+\gamma}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$. When $\omega < \gamma$, the weight of $Q(I)P_{\mu+\gamma}(X_{\omega} \otimes v(\mu))$ is distinct to $\mu + \gamma$. Hence we have $v(\lambda) = c_{\gamma,\tilde{\phi}}P_{\mu+\gamma}(X_{\gamma} \otimes v(\mu))$. This implies that $V_{\lambda} = P_{\mu+\gamma}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$.

In view of the proof of the above lemma we have the following.

COROLLARY 3.5. Let ω be a noncompact root in Σ . If $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$, then we have $P_{\mu+\omega}(X_{\omega} \otimes v(\mu)) \neq 0$.

LEMMA 3.6. Let ω be a noncompact root in Σ , and suppose that $\mu + \omega \in \Gamma_K$, $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. If $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$ for a noncompact root γ , then we have

$$(|\lambda + \omega|^2 - |\lambda + \gamma|^2)|P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = \sum_{\alpha \in P_K} 2|\langle \alpha, \gamma \rangle|^2|P_{\mu+\omega}(X_{\gamma+\alpha} \otimes v(\mu))|^2$$

where $v(\mu)$ is the highest weight vector in V_{μ} , $\lambda = \mu + \rho_K$ and ρ_K is one half the sum of all roots in P_K .

PROOF. Let Ω_K be the Casimir operator on K given by

$$\Omega_K = \sum_{i=1}^{\ell} (H_i)^2 + H_{2\rho_K} + \sum_{\alpha \in P_K} 2X_{-\alpha} X_{\alpha} ,$$

where $\{H_1, H_2, \dots, H_\ell\}$ is an orthonormal basis of $\sqrt{-1}\mathfrak{b}$ with respect to the Killing form ϕ . Since $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ is a simple *K*-module, Ω_K is a scalar operator on this space. We can verify $\Omega_K v(\mu + \omega) = (|\lambda + \omega|^2 - |\rho_K|^2)v(\mu + \omega)$, where $v(\mu + \omega)$ is the highest weight vector of $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$. Then we have for $\gamma \in \Sigma_n$,

$$\mathcal{Q}_{K}P_{\mu+\omega}(X_{\gamma}\otimes v(\mu)) = (|\lambda+\omega|^{2} - |\rho_{K}|^{2})P_{\mu+\omega}(X_{\gamma}\otimes v(\mu)).$$

On the other hand, since

$$\Omega_{K} P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) = (|\lambda+\gamma|^{2} - |\rho_{K}|^{2}) P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) + \sum_{\alpha \in P_{K}} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu+\omega}(X_{\gamma+\alpha} \otimes v(\mu)),$$

we have

$$(|\lambda + \omega|^2 - |\lambda + \gamma|^2) P_{\mu + \omega}(X_{\gamma} \otimes v(\mu)) = \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \omega} \otimes v(\mu)) + \sum_{\alpha \in P_K} 2$$

Consequently, by (3.5) we have

$$\begin{aligned} (|\lambda + \omega|^2 - |\lambda + \gamma|^2) |P_{\mu + \omega}(X_{\omega} \otimes v(\mu))|^2 \\ &= \sum_{\alpha \in P_K} 2 \langle \alpha, \gamma \rangle \left(X_{-\alpha} P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu)), P_{\mu + \omega}(X_{\gamma} \otimes v(\mu)) \right) \\ &= \sum_{\alpha \in P_K} 2 |\langle \gamma, \alpha \rangle |^2 |P_{\mu + \omega}(X_{\gamma + \alpha} \otimes v(\mu))|^2 \,. \end{aligned}$$

DEFINITION 3.7. Let γ and ω be two noncompact roots. We put

$$\Pi(\gamma; \omega) = \{ I \in \Pi : Q(I)^* X_{\gamma} \in \mathfrak{g}_{\omega} \setminus \{0\} \}$$

LEMMA 3.8. Suppose that $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$ for $\omega \in \Sigma_n$, and let γ be a root in Σ_n . Then $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$ if and only if $\Pi(\gamma; \omega) \neq \phi$. Moreover if $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$, then $|\lambda + \omega|^2 - |\lambda + \gamma|^2 > 0$.

PROOF. By Corollary 3.5 $P_{\mu+\omega}(X_{\omega} \otimes v(\mu))$ is the highest weight vector of the simple *K*-module $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes v(\mu))$. Assume that $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$. When $\omega = \gamma$ we have $\tilde{\phi} \in \Pi(\omega; \omega)$. Suppose $\omega \neq \gamma$. Since $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))$ is not the highest weight vector,

(3.10) there is
$$\beta \in P_K$$
 such that $X_\beta P_{\mu+\omega}(X_\gamma \otimes v(\mu)) \neq 0$.

Similarly, since the dimension of the space of the highest vectors is one, we can choose $I \in \Pi$ satisfying $Q(I)^* P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \in \mathbb{C}P_{\mu+\omega}(X_{\omega} \otimes v(\mu)) \setminus \{0\}$. Since $X_{\alpha}v(\mu) = 0$ for $\alpha \in P_K$, we have

$$Q(I)^* P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) = P_{\mu+\omega}(Q(I)^* X_{\gamma} \otimes v(\mu)),$$

and hence, $I \in \Pi(\gamma; \omega)$. Conversely assume that $I \in \Pi(\gamma; \omega)$. Since $Q(I)^* X_{\gamma} \in \mathfrak{g}_{\omega} \setminus \{0\}$, we have $Q(I)^* P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$. This implies that $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$. The inequality $|\lambda + \omega|^2 - |\lambda + \gamma|^2 > 0$ for $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$ follows from Lemma 3.6 and (3.10).

4. Rational function associated with the coefficient $|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2$

The purpose of this section is to prove Lemma 4.7. In order to prove this lemma we shall prepare three lemmas after the following two definitions.

DEFINITION 4.1. For a generic point η in $(\sqrt{-1}\mathfrak{b})^*$, $\omega \in \Sigma_n$ and $I \in \Pi$, we define $R(\eta; I), S(\eta; I), T(\eta; I), a_{\omega}(I) \ (I \in \Pi)$ and $f(\eta; \omega)$ as follows:

$$R(\eta; \tilde{\phi}) = S(\eta; \tilde{\phi}) = T(\eta; \tilde{\phi}) = a_{\omega}(\tilde{\phi}) = 1$$

and for $I = (\alpha_1, \alpha_2, \cdots, \alpha_p) \in \Pi$

$$R(\eta; I) = (|\eta + \langle I \rangle |^2 - |\eta|^2)^{-1},$$

$$S(\eta; I) = \prod_{J, L \in \Pi, J \star L = I, J \neq \tilde{\phi}} R(\eta; J),$$

(4.1)
$$T(\eta; I) = \prod_{J,L \in \Pi, J \star L = I} R(\eta + \langle J \rangle; L),$$
$$a_{\omega}(I) = 2^{\sharp I} |\phi(Q(I)^* X_{\omega}, X_{-\omega - \langle I \rangle})|^2,$$
$$f(\eta; \omega) = \sum_{I \in \Pi} (-1)^{\sharp I} a_{\omega}(I) S(\eta; I),$$

where $\sharp I = p$ and $\langle I \rangle = \sum_{i=1}^{p} \alpha_i$.

For $\gamma \in \Sigma_n$, $\alpha \in P_K$ and $J, L \in \Pi$, we have

(4.2)
$$a_{\gamma}(\alpha)a_{\gamma+\alpha}(J) = a_{\gamma}(\alpha \star J),$$

(4.3)
$$R(\eta; J) + R(\eta + \langle J \rangle; L) = R(\eta + \langle J \rangle; L)R(\eta; J)R(\eta; J \star L)^{-1},$$

(4.4)
$$S(\eta; L \star \alpha) = S(\eta; L)R(\eta; L \star \alpha),$$

(4.5)
$$T(\eta; \alpha \star J) = T(\eta + \alpha; J)R(\eta; \alpha \star J).$$

DEFINITION 4.2. Let ω and γ be two noncompact roots. When $\Pi(\gamma; \omega) \neq \phi$ (see Definition 3.7), we define $n(\gamma; \omega)$ as the maximal integer of the set { $\sharp I : I \in \Pi(\gamma; \omega)$ }.

LEMMA 4.3. Assume that $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes v(\mu)) \neq \{0\}$ for a noncompact root ω . If $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$, then we have

(4.6)
$$|P_{\mu+\omega}(X_{\gamma}\otimes v(\mu))|^{2} = \sum_{I\in\Pi(\gamma;\omega)} a_{\gamma}(I)T(\lambda+\gamma;I)|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^{2}.$$

PROOF. By Lemma 3.8 $P_{\mu+\omega}(X_{\gamma} \otimes v(\mu)) \neq 0$ if and only if $n(\gamma; \omega) \geq 0$. We shall prove (4.6) by using an induction on $n(\gamma; \omega) \geq 0$. When $n(\gamma; \omega) = 0$, our assertion is obvious. Assume that the lemma is true for all $\delta \in \Sigma_n$ satisfying $0 \leq n(\delta; \omega) < n(\gamma; \omega)$. Let α be an element in P_K satisfying $n(\gamma+\alpha; \omega) \geq 0$. Since $\alpha \star I \in \Pi(\gamma; \omega)$ for $I \in \Pi(\gamma+\alpha; \omega)$, we have $0 \leq n(\gamma + \alpha; \omega) < n(\gamma; \omega)$. By the hypothesis of our induction we have

(4.7)
$$|P_{\mu+\omega}(X_{\gamma+\alpha}\otimes v(\mu))|^{2} = \sum_{I\in\Pi(\gamma+\alpha;\omega)} a_{\gamma+\alpha}(I)T(\lambda+\gamma+\alpha;I)|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^{2}.$$

Since $|\mu + \omega|^2 - |\mu + \gamma|^2 > 0$ (see Lemma 3.8), (4.2) and (4.5) imply $2|\langle \alpha, \gamma \rangle|^2$

$$\frac{2|\langle \alpha, \gamma \rangle|^2}{|\lambda + \omega|^2 - |\lambda + \gamma|^2} a_{\gamma + \alpha}(I)T(\lambda + \gamma + \alpha; I)$$

= $a_{\gamma}(\alpha)a_{\gamma + \alpha}(I)R(\lambda + \gamma; \alpha \star I)T(\lambda + \gamma + \alpha; I)$
= $a_{\gamma}(\alpha \star I)T(\lambda + \gamma; \alpha \star I)$.

Hence by Lemma 3.6 and (4.7), we have

$$\begin{split} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^{2} \\ &= \sum_{\alpha \in P_{K}} \sum_{I \in \Pi(\gamma+\alpha;\omega)} a_{\gamma}(\alpha \star I) T(\lambda+\gamma; \alpha \star I) |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2} \\ &= \sum_{I \in \Pi(\gamma;\omega)} a_{\gamma}(I) T(\lambda+\gamma; I) |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2} \,. \end{split}$$

Let *P* be a positive root system containing P_K and $\Psi = \{\beta_1, \beta_2, \dots, \beta_\ell\}$. We define $\lambda_i \in (\sqrt{-1}\mathfrak{b})^*$ by

(4.8)
$$2(\lambda_i, \beta_j) |\beta_j|^{-2} = \delta_{i,j}, \quad 1 \le i, j \le \ell,$$

where $\delta_{i,j}$ is Kronecker's delta. For $\eta \in (\sqrt{-1}\mathfrak{b})^*$ we have

$$\eta = \sum_{i=1}^{\ell} \eta_i \lambda_i, \ \eta_i = 2(\eta, \beta_i) |\beta_i|^{-2}.$$

Let $\mathbf{R}[\eta] = \mathbf{R}[\eta_1, \eta_2, \dots, \eta_\ell]$ be the ring of all polynomials in $\eta_1, \eta_2, \dots, \eta_\ell$ over the real number field \mathbf{R} . The quotient field of $\mathbf{R}[\eta]$ will be denoted by $\mathbf{R}(\eta)$.

LEMMA 4.4. Let $I \neq \tilde{\phi}$ be an element in Π . Then we have

$$(-1)^{(\sharp I)-1}S(\eta;I) = \sum_{J,L\in\Pi,J\star L=I,J\neq\tilde{\phi}} (-1)^{\sharp L}T(\eta;J)S(\eta+\langle J\rangle;L)\,.$$

PROOF. We put $F(\eta; I) = \sum_{J \star L = I} (-1)^{\sharp L} T(\eta; J) S(\eta + \langle J \rangle; L)$. Then the identity of this lemma is equivalent to $F(\eta; I) = 0$ in $\mathbf{R}(\eta)$. We shall prove that $F(\eta; I) = 0$ by using an induction on $\sharp I$. When $\sharp I = 1$ our assertion is obvious. Suppose that $\sharp I > 1$ and $F(\eta; J) = 0$ for all J in $\Pi_{(\sharp I)-1}$. We put $I = (\alpha_1, \alpha_2, \cdots, \alpha_p)$. By the definition of F, we have

(4.9)
$$F(\eta; I) = \sum_{J \star L = I, J \neq \tilde{\phi}, L \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta; J) S(\eta + \langle J \rangle; L) + (-1)^{\sharp I} S(\eta; I) + T(\eta; I).$$

We now put $I' = (\alpha_1, \alpha_2, \dots, \alpha_{p-1})$ and $I'' = (\alpha_2, \alpha_3, \dots, \alpha_p)$. By (4.4) and (4.5) we have (4.10) $S(\eta; I) = S(\eta; I')R(\eta; I), \quad T(\eta; I) = T(\eta + \alpha_1; I'')R(\eta; I).$

By the hypothesis of our induction we have the followings.

$$\begin{split} &(-1)^{p-2} S(\eta; I') = \sum_{J \star L = I', J \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta; J) S(\eta + \langle J \rangle; L), \\ &(-1)^{p-2} S(\eta + \alpha_1; I'') \\ &= \sum_{J \star L = I'', J \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta + \alpha_1; J) S(\eta + \alpha_1 + \langle J \rangle; L) \\ &= T(\eta + \alpha_1; I'') + \sum_{J \star L = I'', J \neq \tilde{\phi}, L \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta + \alpha_1; J) S(\eta + \alpha_1 + \langle J \rangle; L). \end{split}$$

These two identities imply that

$$\begin{split} &(-1)^{p} S(\eta; I') + T(\eta + \alpha_{1}; I'') \\ &= \sum_{J \star L = I', J \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta; J) S(\eta + \langle J \rangle; L) \\ &+ (-1)^{p-2} S(\eta + \alpha_{1}; I'') - \sum_{J \star L = I'', J \neq \tilde{\phi}, L \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta + \alpha_{1}; J) S(\eta + \alpha_{1} + \langle J \rangle; L) \\ &= \sum_{J \star L = I', J \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta; J) S(\eta + \langle J \rangle; L) \\ &- \sum_{J \star L = I'', L \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta + \alpha_{1}; J) S(\eta + \alpha_{1} + \langle J \rangle; L) \,. \end{split}$$

We put $I''' = (\alpha_2, \alpha_3, \dots, \alpha_{p-1})$. Then by (4.4) and (4.5) we have

$$\begin{split} (-1)^{p}S(\eta;I') + T(\eta + \alpha_{1};I'') \\ &= \sum_{J'\star L = I'''} (-1)^{\sharp L} T(\eta;\alpha_{1}\star J')S(\eta + \alpha_{1} + \langle J' \rangle;L) \\ &+ \sum_{J\star L' = I'''} (-1)^{\sharp L'} T(\eta + \alpha_{1};J)S(\eta + \alpha_{1} + \langle J \rangle;L'\star\alpha_{p}) \\ &= \sum_{J'\star L' = I'''} (-1)^{\sharp L'} T(\eta + \alpha_{1};J')R(\eta;\alpha_{1}\star J')S(\eta + \langle \alpha_{1}\star J' \rangle;L') \\ &+ \sum_{J'\star L' = I'''} (-1)^{\sharp L'} T(\eta + \alpha_{1};J')S(\eta + \langle \alpha_{1}\star J \rangle;L')R(\eta + \langle \alpha_{1}\star J' \rangle;L'\star\alpha_{p}) \\ &= \sum_{J'\star L' = I'''} (-1)^{\sharp L'} T(\eta + \alpha_{1};J')S(\eta + \langle \alpha_{1}\star J \rangle;L')R(\eta + \langle \alpha_{1}\star J' \rangle;L'\star\alpha_{p}) \\ &\times \{R(\eta;\alpha_{1}\star J') + R(\eta + \langle \alpha_{1}\star J' \rangle;L'\star\alpha_{p})\}. \end{split}$$

By (4.3) and (4.10) we have

$$(-1)^{\sharp I} S(\eta; I) + T(\eta; I)$$

$$= \sum_{J' \star L' = I'''} (-1)^{\sharp L'} T(\eta + \alpha_1; J') R(\eta; \alpha_1 \star J')$$

$$\times S(\eta + \langle \alpha_1 \star J' \rangle; L') R(\eta + \langle \alpha_1 \star J' \rangle; L' \star \alpha_p)$$

$$= -\sum_{J \star L = I, J \neq \tilde{\phi}, L \neq \tilde{\phi}} (-1)^{\sharp L} T(\eta; J) S(\eta + \langle J \rangle; L) .$$

Consequently, by (4.9) we have $F(\eta; I) = 0$ as claimed.

We now choose a positive root system *P* of Σ as follows. If (G, K) is a hermitian pair, then we choose *P* for which (cf. Proposition 7.2 in [4]) $\mathfrak{p}_{\mathbb{C}} = \mathfrak{p}^+ \oplus \mathfrak{p}^-$, where \mathfrak{p}^{\pm} is the subspace of $\mathfrak{p}_{\mathbb{C}}$ generated by the root vectors corresponding to the noncompact positive (resp. negative) roots. If (G, K) is nonhermitian, then we choose a positive root system *P* containing P_K .

DEFINITION 4.5. We put, for the hermitian case, $v = p^{\pm}$ and for nonhermitian case $v = p_{C}$. v is a simple *K*-module. The set of all weights (roots) in v will be denoted by Σ_{v} .

REMARK. If (G, K) is hermitian, then we have $\mathfrak{p}_{\mathbb{C}} = \mathfrak{v} \oplus \tau(\mathfrak{v})$ and $U(\mathfrak{k}_{\mathbb{C}})\mathfrak{v} \subset \mathfrak{v}$. These imply that $\Pi(\omega; \gamma) = \phi$ for $\omega \in \Sigma_{\mathfrak{v}}$ and $\gamma \in \Sigma_{\tau(\mathfrak{v})}$. Moreover since $\mathfrak{v} \otimes V_{\mu}$ and $\tau(\mathfrak{v}) \otimes V_{\mu}$ are orthogonal with respect to the hermitian product in (3.6), $\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu} = \mathfrak{v} \otimes V_{\mu} \oplus \tau(\mathfrak{v}) \otimes V_{\mu}$ as *K*modules. By these properties the conclusions of Lemma 3.8 and Lemma 4.3, replacing $\mathfrak{p}_{\mathbb{C}}$ and Σ_n respectively with \mathfrak{v} and $\Sigma_{\mathfrak{v}}$, are also true. Let W_K be the Weyl group of the pair ($\mathfrak{k}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}}$). Each *s* in W_K is realized by $s = \mathrm{Ad}(k)|_{\mathfrak{b}_{\mathbb{C}}}$, $k \in N_K(B)$, where $N_K(B)$ is the normalizer of *B* in *K* and $\mathrm{Ad}(k)|_{\mathfrak{b}_{\mathbb{C}}}$ the restriction of $\mathrm{Ad}(k)$ to $\mathfrak{b}_{\mathbb{C}}$. Thereby $\Sigma_{\mathfrak{v}}$ is W_K -invariant.

LEMMA 4.6. Let (π_{μ}, V_{μ}) be a unitary simple K-module with the highest weight μ . Assume that $\mu + \omega \in \Gamma_K$ for all noncompact root ω in $\Sigma_{\mathfrak{v}}$. Then we have

$$\mathfrak{v} \otimes V_{\mu} = \bigoplus_{\omega \in \Sigma_{\mathfrak{v}}} P_{\mu+\omega}(\mathfrak{v} \otimes V_{\mu}), \ P_{\mu+\omega}(\mathfrak{v} \otimes V_{\mu}) \neq \{0\}$$

PROOF. There exists a finite covering group K^* of K such that the function $\xi_{\rho_K}(\exp H) = e^{\rho_K(H)}(H \in \mathfrak{b})$ is well- defined, where $X \to \exp(X)$ is the exponential mapping of \mathfrak{k} to K^* . Let B^* be the Cartan subgroup of K^* corresponding to \mathfrak{b} . Define a function Δ_K on B^* by

$$\Delta_K(\exp H) = \prod_{\alpha \in P_K} \left(e^{\frac{1}{2}\alpha(H)} - e^{-\frac{1}{2}\alpha(H)} \right).$$

Applying Weyl's character formula to π_{μ} (cf. Theorem 4.46 in [7]), we have

$$(\Delta_K \operatorname{trace}(\operatorname{Ad}|_{\mathfrak{v}} \otimes \pi_{\mu}))(\exp H) = \left(\sum_{\omega \in \Sigma_{\mathfrak{v}}} e^{\omega(H)}\right) \left(\sum_{t \in W_K} \varepsilon(t) e^{t(\mu + \rho_K)(H)}\right),$$

where $\varepsilon(t)$ is the signature of t and $Ad|_{v}$ is the restriction of the adjoint representation of K to v. Since

$$\sum_{\omega \in \Sigma_{\mathfrak{v}}} e^{\omega(H)} = \sum_{\omega \in \Sigma_{\mathfrak{v}}} e^{t\omega(H)} \quad \text{for all } t \in W_K,$$

it follows that

(4.11)
$$(\Delta_K \operatorname{trace}(\operatorname{Ad}|_{\mathfrak{v}} \otimes \pi_{\mu}))(\exp H) = \sum_{\omega \in \Sigma_{\mathfrak{v}}} \sum_{t \in W_K} \varepsilon(t) e^{t(\mu + \omega + \rho_K)(H)} .$$

We now assume that $\mu + \omega \in \Gamma_K$ for all $\omega \in \Sigma_v$, and let $\pi_{\mu+\omega}$ be the simple *K*-module with the highest weight $\mu + \omega$. By (4.11) we have

trace
$$(\operatorname{Ad}|_{\mathfrak{v}} \otimes \pi_{\mu})(k) = \sum_{\omega \in \Sigma_{\mathfrak{v}}} \operatorname{trace} \pi_{\mu+\omega}(k) \text{ for all } k \in K$$
,

and thus, the assertion of this lemma.

LEMMA 4.7. Assume that $\mu + \delta \in \Gamma_K$ for all noncompact roots δ . Then for ω in Σ_n we have

$$|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 = f(\lambda + \omega; \omega),$$

where $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)| = 1$ and $\lambda = \mu + \rho_K$.

PROOF. We choose a K-module \mathfrak{v} satisfying $\omega \in \Sigma_{\mathfrak{v}}$, and let γ_0 be the highest root in $\Sigma_{\mathfrak{v}}$. Since \mathfrak{v} is a simple K-module, we have $n(\omega; \gamma_0) \ge 0$. We shall prove the identity in this lemma by using an induction on $n(\omega; \gamma_0)$. By Lemma 4.6 we have

$$X_{\omega} \otimes v(\mu) = \sum_{\gamma \in \Sigma_{\mathfrak{v}}} P_{\mu+\gamma}(X_{\omega} \otimes v(\mu)).$$

This implies that

$$|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^{2}=1-\sum_{\gamma\in\Sigma_{\mathfrak{v}},\gamma\neq\omega}|P_{\mu+\gamma}(X_{\omega}\otimes v(\mu))|^{2}.$$

Moreover, since $P_{\mu+\gamma}(\mathfrak{v} \otimes V_{\mu}) \neq \{0\}$ for all $\gamma \in \Sigma_{\mathfrak{v}}$, Lemma 3.8 implies that $P_{\mu+\gamma}(X_{\omega} \otimes v(\mu)) \neq 0$ iff $\Pi(\omega; \gamma) \neq \phi$. When $\omega = \gamma_0$ we have $\Pi(\gamma_0; \gamma) = \phi$ for all $\gamma \neq \gamma_0, \gamma \in \Sigma_{\mathfrak{v}}$. Therefore $|P_{\mu+\gamma_0}(X_{\gamma_0} \otimes v(\mu))|^2 = 1$. On the other hand, since $\gamma_0 + \alpha \notin \Sigma_{\mathfrak{v}}$ for all $\alpha \in P_K$, we have $a_{\gamma_0}(I) = 0$ for all $I \neq \tilde{\phi}, I \in \Pi$. Thus by (4.1)

$$f(\lambda + \gamma_0; \gamma_0) = 1 = |P_{\mu + \gamma_0}(X_{\gamma_0} \otimes v(\mu))|^2$$
.

Let us now assume that the formula is true for all roots γ in Σ_{v} satisfying $0 \leq n(\gamma; \gamma_{0}) < n(\omega; \gamma_{0})$. To apply our inductive hypothesis we shall prove that if $\Pi(\omega; \gamma) \neq \phi$ and $\gamma \neq \omega$, then $n(\gamma; \gamma_{0}) < n(\omega; \gamma_{0})$. Let *I* be an elemen in $\Pi(\omega; \gamma)$. Then $Q(I)^{*}X_{\omega} \in \mathfrak{g}_{\gamma} \setminus \{0\}$. Since $Q(J)^{*}X_{\gamma} \in \mathfrak{g}_{\gamma_{0}} \setminus \{0\}$ for $J \in \Pi(\gamma; \gamma_{0})$, we have $Q(I \star J)^{*}X_{\omega} = Q(J)^{*}Q(I)^{*}X_{\omega} \in \mathfrak{g}_{\gamma_{0}} \setminus \{0\}$.

This implies that $I \star J \in \Pi(\omega; \gamma_0)$ for all $J \in \Pi(\gamma; \gamma_0)$. Since $n(\omega; \gamma_0) \ge \sharp (I \star J) = \sharp I + \sharp J$ and $\sharp I \ge 1$, we have $n(\gamma; \gamma_0) < n(\omega; \gamma_0)$. Applying Lemma 4.3 to $P_{\mu+\gamma}(X_{\omega} \otimes v(\mu))$ for $\gamma \neq \omega, \gamma \in \Sigma_{\mathfrak{v}}$ satisfying $\Pi(\omega; \gamma) \neq \phi$ we have

$$|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2} = 1 - \sum_{\gamma \in \Sigma_{\mathfrak{v}}, \gamma \neq \omega} \sum_{J \in \Pi(\omega;\gamma)} a_{\omega}(J)T(\lambda + \omega; J)|P_{\mu+\gamma}(X_{\gamma} \otimes v(\mu))|^{2},$$

hence by the inductive hypothesis,

$$= 1 - \sum_{\substack{\gamma \neq \omega, J \in \Pi(\omega; \gamma)}} \sum_{L \in \Pi} (-1)^{\sharp L} \times a_{\omega}(J) a_{\gamma}(L) T(\lambda + \omega; J) S(\lambda + \gamma; L)$$

$$= 1 - \sum_{\substack{\gamma \neq \omega, J \in \Pi(\omega; \gamma)}} \sum_{L \in \Pi} (-1)^{\sharp L} \times a_{\omega}(J) a_{\gamma}(L) T(\lambda + \omega; J) S(\lambda + \omega + \langle J \rangle; L) .$$

Since $a_{\omega}(J)a_{\gamma}(L) = a_{\omega}(J \star L)$ and $\bigcup_{\gamma \in \Sigma_{v,\gamma} \neq \omega} \Pi(\omega; \gamma) = \{J \in \Pi : J \neq \tilde{\phi}, a_{\omega}(J) \neq 0\}$, we have from Lemma 4.4

$$\begin{aligned} |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2} &= 1 - \sum_{\sharp I \ge 1} \sum_{J \star L = I, J \neq \tilde{\phi}} (-1)^{\sharp L} a_{\omega}(I) T(\lambda + \omega; J) S(\lambda + \omega + \langle J \rangle; L) \\ &= \sum_{I \in \Pi} \sum_{J \star L = I, J \neq \tilde{\phi}} (-1)^{\sharp I} a_{\omega}(I) S(\lambda + \omega; I) \\ &= f(\lambda + \omega; \omega) \,. \end{aligned}$$

REMARK. The assumption of this lemma is crucial to apply our induction. For example, it is not trivial that $P_{\mu+\omega}(\mathfrak{v}\otimes v(\mu)) = 0$ for $\omega \in \Sigma_{\mathfrak{v}}, \mu+\omega \in \Gamma_K$ implies $f(\lambda+\omega; \omega) = 0$.

The following two lemmas will be applied to prove Theorem 5.5.

LEMMA 4.8. Let $\omega \in \Sigma_n$ and $\mu \in \Gamma_K$. Assume that $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. Then we have

$$\sum_{\gamma \in \Sigma_n} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = f(-\lambda - \omega; -\omega) |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2.$$

PROOF. We can assume that $\omega \in \Sigma_{v}$. Since $P_{\mu+\omega}(\tau(v) \otimes V_{\mu}) = \{0\}$, it is sufficient to prove that

$$\sum_{\gamma \in \Sigma_{\mathfrak{v}}} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = f(-\lambda - \omega; -\omega) |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2.$$

Let γ be an element in Σ_{v} satisfying $n(\gamma; \omega) \ge 1$. First we define a mapping ψ of $\Pi(\gamma; \omega)$ to $\Pi(-\omega; -\gamma)$ by

 $\psi(I) = (\alpha_p, \alpha_{p-1}, \cdots, \alpha_1)$ for $I = (\alpha_1, \alpha_2, \cdots, \alpha_p) \in \Pi(\gamma; \omega)$.

Actually, since

$$\phi(ad(Q(I)^*)X_{\gamma}, X_{-\omega}) = \phi(ad(X_{\alpha_p}X_{\alpha_{p-1}}\cdots X_{\alpha_1})X_{\gamma}, X_{-\omega})$$
$$= (-1)^p \phi(X_{\gamma}, ad(X_{\alpha_1}X_{\alpha_2}\cdots X_{\alpha_p})X_{-\omega})$$
$$= (-1)^p \phi(Q(\psi(I))^*X_{-\omega}, X_{\gamma}),$$

Definition 3.7 implies that $\psi(I) \in \Pi(-\omega, -\gamma)$. Furthermore, we have (see Definition 4.1)

(4.12)
$$a_{\gamma}(I) = a_{-\omega}(\psi(I)) \text{ for } I \in \Pi(\gamma; \omega),$$

and ψ is bijective, because ψ^2 is the identity on $\Pi(\gamma, \omega)$. Next we shall prove that

(4.13)
$$T(\lambda + \gamma; I) = (-1)^{\sharp I} S(-\lambda - \omega; \psi(I)) \text{ for all } \gamma \in \Sigma_{\mathfrak{v}} \text{ and}$$
$$I \in \Pi(\gamma; \omega) \text{ satisfying } n(\gamma; \omega) \ge 1,$$

by an induction on $n(\gamma; \omega) \ge 1$. Suppose that $n(\gamma; \omega) = 1$. Then we have immediately $T(\lambda + \gamma; I) = -S(-\lambda - \omega; I)$. Let γ be an elemant in Σ_{v} satisfying $1 < n(\gamma, \omega)$. Let us assume that the identity (4.13) is true for all δ in Σ_{v} satisfying $1 \le n(\delta; \omega) < n(\gamma, \omega)$. Let I be an element in $\Pi(\gamma; \omega)$. We can assume that $I = \alpha \star I'$ for $\alpha \in P_{K}$ and $I' \in \Pi(\gamma + \alpha; \omega)$. Then by (4.5)

(4.14)
$$T(\lambda + \gamma; I) = R(\lambda + \gamma; I)T(\lambda + \gamma + \alpha; I').$$

Since $n(\gamma + \alpha; \omega) < n(\gamma; \omega)$, the inductive hypothesis implies that

$$T(\lambda + \gamma + \alpha; I') = (-1)^{\sharp I'} S(-\lambda - \omega; \psi(I')).$$

Since $\gamma + \langle I \rangle = \omega$, we have $R(\lambda + \gamma; I) = -R(-\lambda - \omega; \psi(I))$. Consequently, by (4.14) and (4.4) we conclude that

$$T(\lambda + \gamma; I) = (-1)^{\sharp I} R(-\lambda - \omega; \psi(I)) S(-\lambda - \omega; \psi(I'))$$
$$= (-1)^{\sharp I} S(-\lambda - \omega; \psi(I)).$$

Hence we have (4.13). Let us now prove this lemma. By using Lemma 4.3, we have

$$\sum_{\gamma \in \Sigma_{v}} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^{2} = \sum_{\gamma \in \Sigma_{v}} \sum_{I \in \Pi(\gamma;\omega)} a_{\gamma}(I)T(\lambda+\gamma;I)|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2},$$
$$= \sum_{\gamma \in \Sigma_{n}} \sum_{I \in \Pi(\gamma;\omega)} a_{\gamma}(I)T(\lambda+\gamma;I)|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2}$$
$$= \sum_{I \in \Pi} (-1)^{\sharp I} a_{-\omega}(I)S(-\lambda-\omega;I)|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2},$$
$$= f(-\lambda-\omega;-\omega)|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2}.$$

Here we used (4.12) and (4.13). By Lemma 4.7 and Lemma 4.8 we have immediately the following lemma.

COROLLARY 4.9. Let $\mu \in \Gamma_K$, and assume that $\mu + \delta \in \Gamma_K$ for all $\delta \in \Sigma_n$. Then we have

$$\sum_{\gamma \in \Sigma_n} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = f(-\lambda - \omega; -\omega) f(\lambda + \omega; \omega)$$

for each ω in Σ_n .

5. Functional equations of $f(\eta; \omega)$

For each ω in Σ_n , we shall consider the rational function $f(\eta; \omega)$ in η (see (4.1)). Our purpose of this section is to prove Theorem 5.4 and Theorem 5.5. We note that Theorem 5.5 is a refinement of Lemma 4.7.

LEMMA 5.1. Let $\mu \in \Gamma_K$, and assume that $\mu + \omega \in \Gamma_K$, $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$ for a noncompact root $\omega \in \Sigma_n$. Then we have

(5.1)
$$\prod_{\alpha \in P_K} (\lambda, \alpha) |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 = \prod_{\alpha \in P_K} (\lambda + \omega, \alpha) |P_{\mu}(X_{-\omega} \otimes v(\mu + \omega))|^2,$$

(5.2)
$$\sum_{\gamma \in \Sigma_n} |P_{\mu+\omega}(X_{\gamma} \otimes v(\mu))|^2 = \prod_{\alpha \in P_K} \frac{(\lambda+\omega,\alpha)}{(\lambda,\alpha)},$$

where $v(\mu)$ (resp. $v(\mu + \omega)$) is a highest weight vector in $V_{\mu}(resp. V_{\mu+\omega})$ normalized as $|v(\mu)| = |v(\mu + \omega)| = 1$, and $\lambda = \mu + \rho_K$.

REMARK. The identity (5.1) is due to N. Tatsuuma (cf. [9]).

PROOF OF LEMMA 5.1. By Schur orthogonality relation we have

$$C = \int_{K} (k(X_{\omega} \otimes v(\mu)), X_{\omega} \otimes v(\mu)) \overline{(kv(\mu + \omega), v(\mu + \omega))} dk$$

=
$$\int_{K} (kP_{\mu+\omega}(X_{\omega} \otimes v(\mu)), P_{\mu+\omega}(X_{\omega} \otimes v(\mu))) \overline{(kv(\mu + \omega), v(\mu + \omega))} dk$$

=
$$(\deg \pi_{\mu+\omega})^{-1} |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2}.$$

On the other hand, we have

$$\begin{split} C &= \int_{K} (kX_{\omega}, X_{\omega})(kv(\mu), v(\mu))\overline{(kv(\mu + \omega), v(\mu + \omega))}dk \\ &= \int_{K} (kv(\mu), v(\mu))\overline{(k(X_{-\omega} \otimes v(\mu + \omega)), X_{-\omega} \otimes v(\mu + \omega))}dk \\ &= \int_{K} (kv(\mu), v(\mu))\overline{(kP_{\mu}(X_{-\omega} \otimes v(\mu + \omega)), P_{\mu}(X_{-\omega} \otimes v(\mu + \omega)))}dk \\ &= (\deg \pi_{\mu})^{-1} |P_{\mu}(X_{-\omega} \otimes v(\mu + \omega))|^{2}. \end{split}$$

Hence we have

(5.3)
$$\deg \pi_{\mu} |P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^{2} = \deg \pi_{\mu+\omega} |P_{\mu}(X_{-\omega} \otimes v(\mu+\omega))|^{2} .$$

Bearing in mind deg $\pi_{\mu} = \prod_{\alpha \in P_K} \frac{(\lambda, \alpha)}{(\rho_K, \alpha)}$ and the corresponding formula for deg $\pi_{\mu+\omega}$, (5.3) implies the identity (5.1). Let us prove the identity (5.2). Let $\{u_i : 1 \leq i \leq N\}, N =$ deg $\pi_{\mu+\omega}$, be an orthonormal basis of $V_{\mu+\omega}$. By using Schur orthogonality relation, we have

(5.4)

$$E = \sum_{\gamma \in \Sigma_n} \sum_{i=1}^N \int_K (k(X_\gamma \otimes v(\mu)), X_\gamma \otimes v(\mu)) \overline{(ku_i, u_i)} dk$$

$$= \sum_{\gamma \in \Sigma_n} \sum_{i=1}^N N^{-1} (P_{\mu+\omega}(X_\gamma \otimes v(\mu)), u_i) \overline{(P_{\mu+\omega}(X_\gamma \otimes v(\mu)), u_i)}$$

$$= N^{-1} \sum_{\gamma \in \Sigma_n} |P_{\mu+\omega}(X_\gamma \otimes v(\mu))|^2.$$

On the other hand, we have

$$E = \int_{K} (kv(\mu), v(\mu)) \sum_{\gamma \in \Sigma_{n}} \sum_{i=1}^{N} \overline{(kX_{-\gamma}, X_{-\gamma})(ku_{i}, u_{i})} dk$$
$$= \int_{K} (kv(\mu), v(\mu)) \overline{\operatorname{trace}(\operatorname{Ad} \otimes \pi_{\mu+\omega})(k)} dk$$
$$= m(\mu) \int_{K} (kv(\mu), v(\mu)) \overline{\operatorname{trace} \pi_{\mu}(k)} dk$$
$$= m(\mu) (\deg \pi_{\mu})^{-1}.$$

Here we used

trace(Ad
$$\otimes \pi_{\mu+\omega}$$
)(k) = $\sum_{\gamma \in \Sigma_n, \mu+\omega+\gamma \in \Gamma_K} m(\mu+\omega+\gamma)$ trace($\pi_{\mu+\omega+\gamma}(k)$),

where $m(\mu + \omega + \gamma) = 1$ or = 0 (see Lemma 3.4). Hence by (5.4) we have the identity (5.2). We define a subset *D* of Γ by

(5.5)
$$D = \{ \mu \in \Gamma : 2(\mu, \beta_i) |\beta_i|^{-2} \ge 9 \text{ for all } i = 1, 2, \cdots, \ell \},\$$

where $\Psi = \{\beta_1, \beta_2, \cdots, \beta_\ell\}$ is the same as in (4.8).

LEMMA 5.2. Let μ be an element in D. Then we have $\mu + \omega \in \Gamma$ for all $\omega \in \Sigma_n$. Furthermore, we have $6n\lambda_i + \mu \in D$ for all positive integers n and $i = 1, 2, \dots, \ell$.

PROOF. Let ω be a noncompact root in Σ . Since μ and ω are integral, $\mu + \omega$ is also an integral form on $\mathfrak{b}_{\mathbb{C}}$. We shall prove $\mu + \omega$ is *P*-dominant. Let α be a root in *P*. By (2.5) we have

(5.6)
$$2(\mu + \omega, \alpha)|\alpha|^{-2} \ge 2(\mu, \alpha)|\alpha|^{-2} - 3.$$

Let $\alpha = \sum_{i=1}^{\ell} m_i \beta_i$ be the expression of α by the simple roots in Ψ . Then all m'_i s are nonnegative integers. Furthermore, we can assume that $m_k > 0$ for $k, 1 \le k \le \ell$. Since $|\beta_k|^2 |\alpha|^{-2} \ge 1/3$ and $2(\mu, \beta_k) |\beta_k|^{-2} \ge 9$, we have

$$2(\mu, \alpha)|\alpha|^{-2} \ge m_k(2(\mu, \beta_k)|\beta_k|^{-2})(|\beta_k|^2|\alpha|^{-2}) \ge 3$$

Hence by (5.6), we have $2(\mu + \omega, \alpha)|\alpha|^{-2} \ge 0$. Thus $\mu + \omega \in \Gamma$ as claimed. Let us prove the second assertion of this lemma. It is sufficient to prove that $6n\lambda_i \in \Gamma$. Let α be as above. If $m_i = 0$, we have $2(6n\lambda_i, \alpha) = 0$. Assume that $m_i > 0$. Since

$$2(6n\lambda_i, \alpha)|\alpha|^{-2} = 6m_i n(|\beta_i|^2 |\alpha|^{-2}),$$

(2.5) implies that $6n\lambda_i$ is a *P*-dominant integral form on $\mathfrak{b}_{\mathbb{C}}$.

LEMMA 5.3. Let F be an element in $\mathbf{R}[\eta]$. Suppose that $F(\lambda) = 0$ for all $\lambda \in D + \rho_K$. Then we have $F \equiv 0$.

PROOF. F is written by

(5.7)
$$F(\eta) = \sum_{i=0}^{m} (\eta_1)^i F_i(\eta_2, \cdots, \eta_\ell) \,.$$

Let $\lambda = \mu + \rho_K$ be an element in $D + \rho_K$. We put $\lambda = \sum_{i=1}^{\ell} p_i \lambda_i$. Then p_i is a rational number. We shall prove the assertion by using an induction on ℓ . We first assume that $F(\eta) = F(\eta_1)$. By Lemma 5.2 we have $6n\lambda_1 + \lambda \in D + \rho_K$ for all positive integers *n*. Hence by our assumption for *F*, we have $F((6n + p_1)\lambda_1) = 0$. Since the polynomial $F(\eta_1)$ has the infinitely many zeros, we have $F \equiv 0$. Let *F* be the same as in (5.7). Since $\sum_{i=0}^{m} (6n + p_1)^i F_i(p_2, \dots, p_\ell) = 0$ for all positive integers *n*,

$$F_i(p_2, \dots, p_\ell) = 0$$
 for all $i = 0, 1, \dots, m$.

We have $F_i(\lambda) = 0$ for all i and $\lambda \in D + \rho_K$. Thus by the hypothesis of our induction we conclude that $F \equiv 0$.

Let η be an element in $(\sqrt{-1}b)^*$ and α an element in P_K . We put $\alpha = \sum_{i=1}^{\ell} m_i \beta_i$, where m_i is a nonnegative integer. Then

$$(\eta, \alpha) = \sum_{i=1}^{\lambda} \frac{m_i}{2} |\beta_i|^2 \eta_i \,.$$

Especially, $(\eta, \alpha) \in \mathbf{R}[\eta]$ for all $\alpha \in P_K$.

THEOREM 5.4. Let ω be an element in Σ_n . Then we have the following functional equations in $\mathbf{R}(\eta)$.

(5.8)
$$\prod_{\alpha \in P_K} (\eta, \alpha) f(\eta + \omega; \omega) = \prod_{\alpha \in P_K} (\eta + \omega, \alpha) f(\eta; -\omega),$$

(5.9)
$$f(\eta + \omega; \omega) f(-\eta - \omega; -\omega) = \prod_{\alpha \in P_K} (\eta + \omega, \alpha) (\eta, \alpha)^{-1}$$

PROOF. We put

$$f(\eta + \omega; \omega) = \frac{q(\eta)}{p(\eta)}$$
 and $f(\eta; -\omega) = \frac{s(\eta)}{r(\eta)}$

where $p, q, r, s \in \mathbf{R}[\eta]$. By Lemma 4.7 and Lemma 5.1 we have

$$\prod_{\alpha \in P_K} (\lambda, \alpha) f(\lambda + \omega; \omega) = \prod_{\alpha \in P_K} (\lambda + \omega, \alpha) f(\lambda; -\omega) \quad \text{for all } \lambda \in D + \rho_K \,.$$

This implies that

$$\prod_{\alpha} (\lambda, \alpha) r(\lambda) q(\lambda) - \prod_{\alpha} (\lambda + \omega, \alpha) s(\lambda) p(\lambda) = 0 \quad \text{for all } \lambda \in D + \rho_K \,.$$

By Lemma 5.3 this identity holds for all $\eta \in (\sqrt{-1b})^*$, and therefore, we have the identity (5.8). The identity (5.9) is also proved by using the same arguments as above.

THEOREM 5.5. Let $\mu \in \Gamma_K$ and $\omega \in \Sigma_n$. Suppose that $\mu + \omega \in \Gamma_K$ and $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$ for a noncompact root ω . Then we have

$$|P_{\mu+\omega}(X_{\omega} \otimes v(\mu))|^2 = f(\lambda + \omega; \omega).$$

PROOF. Combining Lemma 4.8 with Lemma 5.1 we have

$$f(-\lambda-\omega;-\omega)|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^{2}=\prod_{\alpha\in P_{K}}(\lambda+\omega,\alpha)(\lambda,\alpha)^{-1}.$$

By the second identity in Theorem 5.4, we conclude that

$$|P_{\mu+\omega}(X_{\omega}\otimes v(\mu))|^2 = f(\lambda+\omega;\omega).$$

The following lemma will be used to calculate the explicit formula of $f(\eta; \omega)$.

LEMMA 5.6. Let f_i , h_i (i = 1, 2) be four polynomials in $\mathbf{R}[\eta]$. We assume that deg $h_1 = \deg h_2 = 1$ and $f_1h_1 = f_2h_2$. If h_2 is distinct to a non-zero constant multiple of h_1 , then f_2 is divisible by h_1 .

PROOF. Since deg $h_1 = 1$, there exists a number $i, 1 \le i \le \ell$, such that the first partial derivative $\frac{\partial h_1}{\partial \eta_i}$ is a non-zero constant. We can assume that i = 1, and put $\zeta_1 = h_1$, $\zeta_i = \eta_i$ for

 $2 \le i \le \ell$. Then we have $\mathbf{R}[\zeta] = \mathbf{R}[\zeta_1, \zeta_2, \cdots, \zeta_\ell] = \mathbf{R}[\eta]$. Let g_i (i = 1, 2) and h be three polynomials in $\mathbf{R}[\zeta]$ satisfying $g_i(\zeta) = f_i(\eta)$ and $h(\zeta) = h_2(\eta)$. We put

$$h(\zeta) = \sum_{i=1}^{\ell} c_i \zeta_i + c_0, \ g_1(\zeta) = \sum_{j=0}^{m} \zeta_1^j r_j(\zeta) \quad \text{and} \quad g_2(\zeta) = \sum_{j=0}^{m} \zeta_1^j s_j(\zeta),$$

where $r_j, s_j \in \mathbf{R}[\zeta_2, \cdots, \zeta_\ell]$ and $c_i \in \mathbf{R}$. Since

$$0 = f_1(\eta)h_1(\eta) - f_2(\eta)h_2(\eta)$$

= $\sum_{j=0}^m \zeta_1^{j+1} r_j(\zeta) - \sum_{j=0}^m \zeta_1^j s_j(\zeta)(h(\zeta) - c_1\zeta_1) - \sum_{j=0}^m c_1\zeta_1^{j+1} s_j(\zeta),$

we have

$$\sum_{j=0}^{m} \zeta_1^{j+1}(r_j(\zeta) - c_1 s_j(\zeta)) = \sum_{j=0}^{m} \zeta_1^j s_j(\zeta)(h(\zeta) - c_1 \zeta_1).$$

Bearing in mind $h(\zeta) - c_1\zeta_1, s_j, r_j \in \mathbf{R}[\zeta_2, \dots, \zeta_\ell]$, it follows that $s_0(\zeta)(h(\zeta) - c_1\zeta_1) = 0$. On the other hand, since $h(\zeta) = h_2(\eta)$ is not a constant multiple of $\zeta_1 = h_1(\eta)$, we have $h(\zeta) - c_1\zeta_1 \neq 0$. Since $\mathbf{R}[\zeta]$ is an integral domain, we conclude that $s_0(\zeta) = 0$. Thus $f_2(\eta) = \sum_{j=1}^m \zeta_1^j s_j(\zeta)$ is divisible by $\zeta_1 = h_1(\eta)$. This completes our proof.

6. Product formula for $f(\eta + \omega; \omega)$

For each $\omega \in \Sigma_n$ we define a rational function $f(\eta; \omega)$ and a real number $a_{\omega}(I), I \in \Pi$, by Definition 4.1. In this section we shall prove that $f(\eta; \omega)$ has a product formula. First we define a subset $\hat{\Delta}(\omega)$ in $(\sqrt{-1b})^*$ by

(6.1)
$$\hat{\Delta}(\omega) = \{ \langle I \rangle : a_{\omega}(I) \neq 0, I \in \Pi \setminus \Pi_0 \}.$$

We define the polynomials $p_{\xi}(\eta)$ ($\xi \in \hat{\Delta}(\omega)$) and $p(\eta; \omega)$ in **R**[η] by

(6.2)
$$p_{\xi}(\eta) = 2(\eta, \xi) + |\xi|^2, \quad p(\eta; \omega) = \prod_{\xi \in \hat{\Delta}(\omega)} p_{\xi}(\eta).$$

Since $p(\eta; \omega)$ is the least common multiple of the denominators of fractional terms $S(\eta; I)$ $(I \in \Pi)$ in $f(\eta; \omega)$, there exists a polynomial $g(\eta; \omega)$ such that

(6.3)
$$p(\eta; \omega) f(\eta; \omega) = g(\eta; \omega)$$

We put $\Delta_{\pm}(\omega) = \{ \alpha \in P_K : \pm(\omega, \alpha) > 0 \}$. By Theorem 5.4 we have

(6.4)
$$p(\eta; -\omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)} (\eta, \alpha) g(\eta + \omega; \omega)$$
$$= p(\eta + \omega; \omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)} (\eta + \omega, \alpha) g(\eta; -\omega)$$

We now define the subsets $\Delta(\omega)$, $\Delta_m(\omega)$ and $\Delta_m(\omega)^*$ of P_K , where *m* is an integer, by

$$\Delta(\omega) = \{ \alpha \in P_K : \omega + \alpha \in \Sigma \},\$$
$$\Delta_m(\omega) = \{ \alpha \in P_K : 2(\omega, \alpha) |\alpha|^{-2} = m, \omega + \alpha \in \Sigma \},\$$
$$\Delta_m(\omega)^* = \{ \alpha \in \Delta_m(\omega) : \omega - \alpha \in \Sigma \}.$$

We note that $\Delta(\omega) \subset \hat{\Delta}(\omega)$.

LEMMA 6.1. Let G be an inner type noncompact real simple Lie group and ω a noncompact root in Σ . Then we have the followings.

- (1) $\Delta(\omega) = \Delta_{-}(\omega) \cup \Delta_{0}(\omega) \cup \Delta_{1}(\omega), \quad \Delta_{0}(\omega) = \Delta_{0}(\omega)^{*} \text{ and } \Delta_{1}(\omega) = \Delta_{1}(\omega)^{*}.$
- (2) If $\Delta_0(\omega)^* \neq \phi$, then G is one of $S_p(n, \mathbf{R})$ and SO(2m, 2n + 1), and $\Delta(\omega) = \Delta_0(\omega)^* \cup \Delta_{-1}(\omega)$.
- (3) If $\Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* \neq \phi$, then G is of the type G_2 .

PROOF. Let α be an element in P_K and $\omega + j\alpha$ ($-q \le j \le p$) the α -series containing ω . We put $A = \Delta_-(\omega) \cup \Delta_0(\omega) \cup \Delta_1(\omega)$. We first prove that $\Delta(\omega) = A$. Let α be an element in A. Since $\Delta_0(\omega) \cup \Delta_1(\omega) \subset \Delta(\omega)$, we can assume $\alpha \in \Delta_-(\omega)$. Then by (2.3) we have $\alpha \in \Delta(\omega)$, and hence, $A \subset \Delta(\omega)$. Let us now assume that $\alpha \in \Delta(\omega)$. Since $p \ge 1$ and $p + q \le 3$, (2.3) implies that $\alpha \in A$. Thus $A = \Delta(\omega)$. Moreover, we have $\Delta_0(\omega) = \Delta_0(\omega)^*$ and $\Delta_1(\omega)^* = \Delta_1(\omega)$. Let us prove (2) and (3). Suppose that $\alpha \in \Delta_0(\omega)^*$. Then $\omega + \alpha \in \Sigma$ and $2(\omega + \alpha, \alpha)|\alpha|^{-2} = 2$. In view of (2.8), (2.9), (2.10) and (2.11) we have G is one of SO(2m, 2n + 1) and $S_p(n, \mathbb{R})$. It remains to prove that if $\Delta_0(\omega)^* \neq \phi$, then $\Delta(\omega) = \Delta_0(\omega) \cup \Delta_{-1}(\omega)$. By (1) it is sufficient to prove $\Delta_{-}(\omega) = \Delta_{-1}(\omega)$ and $\Delta_1(\omega) = \phi$. If $\Delta_0(\omega) \neq \phi$, then ω is a short root. By (2.9) and (2.10) we have $|2(\omega, \alpha)|\alpha|^{-2}| \le 1$ for all $\alpha \in P_K$. This implies $\Delta_{-}(\omega) = \Delta_{-1}(\omega)$. Suppose that $\alpha \in \Delta_1(\omega)$. Since $\omega + \alpha \in \Sigma_n$ and $2(\omega + \alpha, \alpha)|\alpha|^{-2} = 3$, G is of the type G_2 . This implies that $\Delta_1(\omega)^* = \Delta_1(\omega) \neq \phi$, the above argument implies G is of type G_2 . If $\alpha \in \Delta_{-1}(\omega)^*$, then we have $2(\omega - \alpha, \alpha)|\alpha|^{-2} = -3$. This implies also the same conclusion.

LEMMA 6.2. Consider a noncompact root ω and a compact root α in P_K . Then for each $\xi \in \hat{\Delta}(\omega)$ and $\zeta \in \hat{\Delta}(-\omega)$ we have the followings.

- (1) $p_{\xi}(\eta + \omega)$ is divisible by (η, α) iff $\alpha \in \Delta_{-}(\omega)$ and $\xi = -\frac{2(\omega, \alpha)}{|\alpha|^2}\alpha$.
- (2) $p_{\zeta}(\eta)$ is divisible by $(\eta + \omega, \alpha)$ iff $\alpha \in \Delta_{+}(\omega)$ and $\zeta = \frac{2(\omega, \alpha)}{|\alpha|^{2}}\alpha$.
- (3) $p_{\xi}(\eta + \omega)$ is divisible by $p_{\zeta}(\eta)$ iff one of the following three cases;
 - (i) $\xi = \zeta \in \Delta_0(\omega)^*$, (ii) $\xi \in \Delta_1(\omega)^*$ and $\zeta = 2\xi$,
 - (iii) $\zeta \in \Delta_{-1}(\omega)^*$ and $\xi = 2\zeta$.

PROOF. Let us prove (1). Assume that there exists a nonzero real number k such that $p_{\xi}(\eta + \omega) = 2k(\eta, \alpha)$. Then we have $\xi = k\alpha$ and $2(\omega, \alpha) + k|\alpha|^2 = 0$. On the other hand, since $\xi \in \hat{\Delta}(\omega)$, there is $I \in \Pi \setminus \Pi_0$ such that $\xi = \langle I \rangle$. This implies that k is a positive real number. Consequently, we have $\alpha \in \Delta_-(\omega)$ and $\xi = -\frac{2(\omega, \alpha)}{|\alpha|^2}\alpha$. Conversely if α and ξ satisfy these conditions, then we can prove that $p_{\xi}(\eta + \omega)$ is a non-zero constant multiple of (η, α) . Similarly by using the same arguments we can prove (2). We shall prove (3). Suppose that there exists a nonzero real number k such that $kp_{\xi}(\eta + \omega) = p_{\zeta}(\eta)$. Then we have

(6.5)
$$\zeta = k\xi \text{ and } 2(\omega, \xi) = (k-1)|\xi|^2$$

By the first identity in (6.5), k is positive. We put $\delta = \omega + \xi$. Since $\xi \in \hat{\Delta}(\omega)$, it follows from the definition in (6.1) that $\delta \in \Sigma$. We have

(6.6)
$$|\delta|^2 - |\omega|^2 = 2(\omega, \xi) + |\xi|^2 = k|\xi|^2.$$

This implies that $|\delta|^2 > |\omega|^2$. On the other hand, since $|\xi|^2 = |\delta|^2 - 2(\omega, \delta) + |\omega|^2$, we have

(6.7)
$$2(\omega,\delta) = \left(1+\frac{1}{k}\right)|\omega|^2 + \left(1-\frac{1}{k}\right)|\delta|^2.$$

When $|\delta|^2 = 2|\omega|^2$, we have k = 1 and $\frac{2(\delta,\omega)}{|\omega|^2} = 2$. Therefore $\xi = \zeta \in \Delta_0(\omega)^*$ which is the case (i). When $|\delta|^2 = 3|\omega|^2$, (6.7) implies that $2(\omega, \delta) = (4 - 2/k)|\omega|^2$. Since

$$\frac{2(\delta,\omega)}{|\omega|^2} \in \{0,\pm 3\}$$

it follows that k = 2 or k = 1/2 or k = 2/7. In the first case, we have $\delta - \omega = \xi \in \Delta_1(\omega)^*$ and $\zeta = 2\xi$. Let us consider the second case: $\frac{2(\delta, \omega)}{|\omega|^2} = 0$ and k = 1/2. We put $\delta' = -\omega + \zeta$. Then we have $\delta' \in \Sigma$. Furthermore, by (6.5) we have

$$2(\omega,\zeta) = -\frac{1}{4}|\xi|^2 = -\frac{1}{4}|\delta - \omega|^2 = -|\omega|^2.$$

Therefore

$$2(\delta', \omega) = 2(\zeta, \omega) - 2|\omega|^2 = -3|\omega|^2.$$

Hence we have $\zeta = \delta' + \omega \in \Sigma$ and $2(\zeta, \omega) = -|\omega|^2 = -|\zeta|^2$. Thus $\zeta \in \Delta_{-1}(\omega)^*$ and $\xi = 2\zeta$. Suppose that k = 2/7. Since $\xi \in \hat{\Delta}(\omega)$, there are two nonnegative integers p, q such that $\xi = p\alpha_0 + q\alpha_2$, where $\{\alpha_0, \alpha_2\}$ is the positive root system P_K of type G_2 (see (2.11)). Since $|\delta|^2 = 3|\omega|^2$, the equation in (6.6) implies that $\xi = \alpha_0 + 2\alpha_2$. Then, $\zeta = \frac{2}{7}\xi \notin \hat{\Delta}(-\omega)$. This is contradict to the assumption $\zeta \in \hat{\Delta}(-\omega)$. Thus the final case does not occur.

Let ω be a fixed noncompact root in Σ_n . In order to calculate a product formula for $f(\eta; \omega)$ we shall consider two cases: $\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^*$ is empty or not. For the first case

CHARACTERISTIC FUNCTION OF THE TENSOR K-MODULE

we define two polynomials $p(\eta; \omega)$ and $g(\eta; \omega)$ as in (6.3). We now put

$$p'(\eta + \omega; \omega) = p(\eta + \omega; \omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)} (\eta + \omega, \alpha)$$
$$p'(\eta; -\omega) = p(\eta; -\omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)} (\eta, \alpha).$$

Then by (6.4) we have

(6.8)
$$p'(\eta; -\omega)g(\eta + \omega; \omega) = p'(\eta + \omega; \omega)g(\eta; -\omega)$$

We also define two polynomials $s(\eta; \omega)$ and $q(\eta; \omega)$ in **R**[η] by

(6.9)
$$s(\eta;\omega) = \prod_{\alpha \in \Delta_0(\omega)^*} (2(\eta,\alpha) + |\alpha|^2),$$
$$q(\eta;\omega) = s(\eta;\omega) \prod_{\alpha \in \Delta_-(\omega)} (\eta-\omega,\alpha) \prod_{\alpha \in \Delta_+(\omega)} (\eta,\alpha).$$

Since $q(\eta; \omega)$ and $s(\eta; \omega)$ are invariant under the transformation: $(\eta, \omega) \to (\eta - \omega, -\omega)$, we can define $q(\eta; -\omega)$ and $s(\eta; -\omega)$ by

(6.10)
$$q(\eta; -\omega) = q(\eta + \omega; \omega) \text{ and } s(\eta; -\omega) = s(\eta + \omega; \omega).$$

LEMMA 6.3. Assume that $\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^* = \phi$. Then the greatest common divisor of $p'(\eta + \omega; \omega)$ and $p'(\eta; -\omega)$ is given by $q(\eta + \omega; \omega) = q(\eta; -\omega)$.

PROOF. By (6.2) we have $p(\eta + \omega; \omega) = \prod_{\xi \in \hat{\Delta}(\omega)} p_{\xi}(\eta + \omega)$. The polynomials $p_{\xi}(\eta)$ and $p_{\zeta}(\eta)$ are mutually prime for two distinct ξ and ζ in $\hat{\Delta}(\omega)$. Actually, if $p_{\xi}(\eta) = cp_{\zeta}(\eta)$ for a non-zero real number c, then $\xi = c\zeta$ and $|\xi|^2 = c|\zeta|^2$. These imply c = 1 and $\xi = \zeta$. Let p be a common prime divisor of $p'(\eta + \omega; \omega)$ and $p'(\eta; -\omega)$. Since p is a divisor of $p'(\eta + \omega; \omega)$, we can assume that $p = p_{\xi}(\eta + \omega)$ ($\xi \in \hat{\Delta}(\omega)$) or $p = (\eta + \omega, \alpha)$ ($\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)$). If $p = p_{\xi}(\eta + \omega)$, then the formula of $p'(\eta; -\omega)$ implies that $cp = (\eta, \beta), \beta \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)$ or $cp = p_{\zeta}(\eta), \zeta \in \hat{\Delta}(-\omega)$, where c is a constant. In the first case, (1) in Lemma 6.2 implies $cp = (\eta, \beta), \beta \in \Delta_{-}(\omega)$. For the second case, from (3) in Lemma 6.2 it follows that $cp = 2(\eta, \beta) + |\beta|^2, \beta \in \Delta_{0}(\omega)^*$. If $p = (\eta + \omega, \alpha), \alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)$, then by (2) in Lemma 6.2 we have $\alpha \in \Delta_{+}(\omega)$. Therefore, p is a divisor of

$$q(\eta + \omega; \omega) = \prod_{\gamma \in \Delta_{-}(\omega)} (\eta, \gamma) \prod_{\gamma \in \Delta_{+}(\omega)} (\eta + \omega, \gamma) \prod_{\gamma \in \Delta_{0}(\omega)^{*}} (2(\eta, \gamma) + |\gamma|^{2}).$$

Thus $q(\eta + \omega; \omega)$ is divisible by all common prime divisors of $p'(\eta + \omega; \omega)$ and $p'(\eta; -\omega)$. Again by Lemma 6.2 $q(\eta + \omega; \omega)$ is a common divisor of $p'(\eta + \omega; \omega)$ and $p'(\eta; -\omega)$ which implies the conclusion of this lemma.

We keep the assumption $\Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$, and put $h(\eta; \omega) = p'(\eta; \omega)q(\eta; \omega)^{-1}$, $h(\eta; -\omega) = p'(\eta; -\omega)q(\eta; -\omega)^{-1}$. By (6.8) we have

(6.11)
$$h(\eta; -\omega)g(\eta + \omega; \omega) = h(\eta + \omega; \omega)g(\eta; -\omega).$$

By Lemma 6.3, $h(\eta + \omega; \omega)$ and $h(\eta; -\omega)$ are mutually prime. Therefore, it follows from Lemma 5.6 that there are two polynomials $k(\eta; \omega)$ and $k(\eta; -\omega)$ such that

(6.12)
$$g(\eta + \omega; \omega) = k(\eta + \omega; \omega)h(\eta + \omega; \omega), \quad g(\eta; -\omega) = k(\eta; -\omega)h(\eta; -\omega).$$

Substituting the first identity for (6.3), we have

$$\begin{split} f(\eta + \omega; \omega) &= g(\eta + \omega; \omega) p(\eta + \omega; \omega)^{-1} ,\\ &= k(\eta + \omega; \omega) h(\eta + \omega; \omega) p(\eta + \omega; \omega)^{-1} \\ &= k(\eta + \omega; \omega) p'(\eta + \omega; \omega) (q(\eta + \omega; \omega) p(\eta + \omega; \omega))^{-1} \\ &= k(\eta + \omega; \omega) \prod_{\alpha \in \Delta_{-}(\omega)} (\eta + \omega, \alpha) (\eta, \alpha)^{-1} s(\eta + \omega; \omega)^{-1} . \end{split}$$

LEMMA 6.4. Assume that $\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^* = \phi$. Then we have $k(\eta + \omega; \omega) = k(\eta; -\omega)$ and the following identities.

(1)
$$f(\eta + \omega; \omega) = k(\eta + \omega; \omega) \prod_{\alpha \in \Delta_{-}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1} s(\eta + \omega; \omega)^{-1},$$
$$f(\eta; -\omega) = k(\eta; -\omega) \prod_{\alpha \in \Delta_{+}(\omega)} (\eta, \alpha)(\eta + \omega, \alpha)^{-1} s(\eta; -\omega)^{-1}.$$
(2)
$$k(-\eta - \omega; -\omega)k(\eta + \omega; \omega) = s(-\eta - \omega; -\omega)s(\eta + \omega; \omega).$$

PROOF. The first identity in (1) is already shown, and the second one also follows from the same calculation. It remains to prove the identities $k(\eta + \omega; \omega) = k(\eta; -\omega)$ and (2). By using the first identity in Theorem 5.4 we have

$$\prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)} (\eta, \alpha) f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)} (\eta + \omega, \alpha) f(\eta; -\omega) \,.$$

Hence by (6.10) and the identities in (1), we have $k(\eta + \omega; \omega) = k(\eta; -\omega)$. By the second identity in (1) we have

$$f(-\eta - \omega; -\omega) = k(-\eta - \omega; -\omega) \prod_{\alpha \in \Delta_+(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1} s(-\eta - \omega, -\omega)^{-1},$$

and then, by the first identity in (1) we have

 $f(\eta + \omega; \omega) f(-\eta - \omega; -\omega) = k(\eta + \omega; \omega)k(-\eta - \omega; -\omega)\{s(\eta + \omega; \omega)s(-\eta - \omega; -\omega)\}^{-1}$ $\times \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1}.$

Therefore, the second identity in Theorem 5.4 implies the assertion of (2).

THEOREM 6.5. Let G be an inner type noncompact real simple Lie group and ω a noncompact root. We define $f(\eta; \omega)$ by (4.1). Then $f(\eta; \omega)$ has one of the following product formulae.

(1) If
$$\Delta_0(\omega)^* \cup \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$$
, then

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{-}(\omega)} (\eta + \omega, \alpha) (\eta, \alpha)^{-1}.$$

(2) If
$$\Delta_0(\omega)^* \neq \phi$$
, then $\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^* = \phi$ and

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_0(\omega)^*} (2(\eta, \alpha) - |\alpha|^2)(2(\eta, \alpha) + |\alpha|^2)^{-1}$$

$$\times \prod_{\alpha \in \Delta_{-1}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1}.$$
(3) If $\Delta_1(\omega)^* \sqcup \Delta_2(\omega)^* \neq \phi$, then $\Delta_2(\omega)^* = \phi$ and

(3) If
$$\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \neq \phi$$
, then $\Delta_{0}(\omega)^{*} = \phi$ and

$$f(\eta + \omega; \omega) = \prod_{\alpha \in \Delta_{-}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1} \prod_{\alpha \in \Delta_{1}(\omega)^{*}} (2(\eta, \alpha) - |\alpha|^{2}) \{2((\eta, \alpha) + |\alpha|^{2})\}^{-1}$$

$$\times \prod_{\alpha \in \Delta_{-1}(\omega)^{*}} 2((\eta, \alpha) - |\alpha|^{2})(2(\eta, \alpha) + |\alpha|^{2})^{-1}.$$

PROOF. If $\Delta_0(\omega)^* \cup \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$, then by (6.9) we have $s(\eta + \omega; \omega) = 1$. (2) in Lemma 6.4 implies that $k(\eta + \omega; \omega) = c$, where c is a real constant. Hence by (1) in Lemma 6.4

$$f(\eta + \omega; \omega) = c \prod_{\alpha \in \Delta_{-}(\omega)} (\eta + \omega, \alpha)(\eta, \alpha)^{-1}.$$

We shall prove c = 1. Let λ_0 be a P_K -regular dominant integral form on $\mathfrak{b}_{\mathbb{C}}$. By the above identity, we have

$$\lim_{a \to +\infty} f(a\lambda_0 + \omega; \omega) = c \,.$$

Let $S(\eta; I), I \in \Pi$, be the rational function as in Definition 4.1. Since $\lim_{a\to+\infty} S(a\lambda_0; I) = 0$ for $I \neq \tilde{\phi}$, we have $\lim_{a\to+\infty} f(a\lambda_0 + \omega) = 1$. Hence we can prove (1). Let us assume that $\Delta_0(\omega)^* \neq \phi$. By (2), (3) in Lemma 6.1 we have $\Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$ and $\Delta_{-}(\omega) = \Delta_{-1}(\omega)$. We put

$$\begin{split} s(\eta) &= s(\eta + \omega; \omega), \ k(\eta) = k(\eta + \omega; \omega), \\ u(\eta) &= \sum_{\alpha \in \Pi_1} a_{\omega}(\alpha) p_{\alpha}(\eta + \omega)^{-1}, \\ v(\eta) &= \prod_{\alpha \in \Delta_{-1}(\omega)} (\eta + \omega, \alpha), \end{split}$$

$$w(\eta) = \prod_{\alpha \in \Delta_{-1}(\omega)} (\eta, \alpha),$$
$$r(\eta) = f(\eta + \omega; \omega) - 1 + u(\eta)$$

By (4.1) there exist two polynomials r_1 , r_2 in $\mathbf{R}[\eta]$ such that $r = r_1 r_2^{-1}$ and deg $r_1 \le \deg r_2 - 2$. Since each prime divisor of r_2 is of degree one, it follows from Lemma 5.6 that we can assume r_1 and r_2 are mutually prime. By (1) in Lemma 6.4 we have

(6.13)
$$s(\eta)\{1 - u(\eta) + r(\eta)\}w(\eta) = k(\eta)v(\eta)$$

Let N be the degree of the polynomial $k(\eta)v(\eta)$. We shall prove that srw is a plolynomial and deg $(srw) \le N - 2$. By (2) in Lemma 6.1 and (2.4) we have

(6.14)
$$u(\eta) = \sum_{\alpha \in \Delta(\omega)} a_{\omega}(\alpha) p_{\alpha}(\eta + \omega)^{-1}$$
$$= \sum_{\alpha \in \Delta_0(\omega)^*} 2|\alpha|^2 (2(\eta, \alpha) + |\alpha|^2)^{-1} + \sum_{\alpha \in \Delta_{-1}(\omega)} \frac{1}{2}|\alpha|^2 (\eta, \alpha)^{-1}$$

By this formula and (6.9) suw is a plynomial in η , and hence by (6.13), srw is also a polynomial and deg $(srw) \le N - 2$. Then it follows from (6.14) that

(6.15)

$$s(\eta + \omega; \omega)(1 - u(\eta) + r(\eta))w(\eta)$$

$$= \prod_{\alpha \in \Delta_0(\omega)^* \cup \Delta_{-1}(\omega)} (\eta, \alpha) - \sum_{\alpha \in \Delta_0(\omega)^*} |\alpha|^2 \prod_{\beta \in (\Delta_0(\omega)^* \setminus \{\alpha\}) \cup \Delta_{-1}(\omega)} (\eta, \beta)$$

$$- \sum_{\alpha \in \Delta_{-1}(\omega)^*} \frac{1}{2} |\alpha|^2 \prod_{\beta \in \Delta_0(\omega)^* \cup \Delta_{-1}(\omega) \setminus \{\alpha\}} (\eta, \beta) + \text{ the lower terms }.$$

Let us now determine the polynomial $k(\eta)$. By the functional equation of (2) in Lemma 6.4, we have

$$k(\eta) = c \prod_{\alpha \in \Delta_0(\omega)^*} (2(\eta, \alpha) + \varepsilon_{\alpha} |\alpha|^2),$$

where *c* is a constant and $\varepsilon_{\alpha} = \pm 1$. Comparing the highest and the second highest terms in (6.15) with $k(\eta)v(\eta)$, we have c = 1 and $\varepsilon_{\alpha} = -1$ for all $\alpha \in \Delta_0(\omega)^*$. Hence by (1) in Lemma 6.4 we have (2) in this theorem. Finally, let us consider the case $\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^* \neq \phi$. Since *G* is of the type G_2 (see (3) in Lemma 6.1). P_K and Σ_n are respectively given by

$$P_{K} = \{\beta, 2\gamma - 3\beta\}, \Sigma_{n} = \{\pm\gamma, \pm(\gamma - \beta), \pm(\gamma - 2\beta), \pm(\gamma - 3\beta)\}, \frac{2(\gamma, \beta)}{|\beta|^{2}} = 3.$$

Let α be an element in $\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^*$. Since $\omega \pm \alpha \in \Sigma$, we have $|\alpha| = |\omega|$ and ω is a short root. Therefore

$$\Delta_1(\omega)^* \cup \Delta_{-1}(\omega)^* = \{\beta\} \text{ and } \omega \in \{\pm(\gamma - \beta), \pm(\gamma - 2\beta)\}$$

Furthermore, we have

$$\hat{\Delta}(\gamma-\beta) = \Delta_1(\gamma-\beta)^* = \Delta_{-1}(\gamma-2\beta)^* = \{\beta\}, \, \hat{\Delta}(\gamma-2\beta) = \{\beta, 2\beta\}.$$

A direct calculation shows that

$$f(\eta + \gamma - \beta; \gamma - \beta) = 1 - \frac{3|\beta|^2}{2((\eta, \beta) + |\beta|^2)} = \frac{2(\eta, \beta) - |\beta|^2}{2((\eta, \beta) + |\beta|^2)},$$

$$f(\eta + \gamma - 2\beta; \gamma - 2\beta) = 1 - \frac{4|\beta|^2}{2(\eta, \beta)} + \frac{4|\beta|^2}{2(\eta, \beta)} \frac{3|\beta|^2}{2(2(\eta, \beta) + |\beta|^2)}$$

$$= \frac{(\eta + \gamma - 2\beta, \beta)}{(\eta, \beta)} \frac{2((\eta, \beta) - |\beta|^2)}{2(\eta, \beta) + |\beta|^2}.$$

Hence, for $\omega = \gamma - \beta$ or $= \gamma - 2\beta$, we have (3) of this theorem. For the case $-\omega = -\gamma + \beta$, $-\gamma + 2\beta$, we have also (3) by using the identity (5.8) in Theorem 5.4.

7. Main theorem

Let $\mu \in \Gamma_K$ and V_{μ} a simple *K*-module with the highest weight μ . By Lemma 3.4

$$\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu} = \bigoplus_{\omega \in \Sigma_n, \mu + \omega \in \Gamma_K} P_{\mu + \omega}(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}),$$

where $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) = \{0\}$ or is a simple *K*-module. In this section we shall prove that the *K*-module $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ is nontrivial if and only if $f(\lambda + \omega; \omega) > 0$, where $\lambda = \mu + \rho_K$.

DEFINITION 7.1. Let $\mu \in \Gamma_K$, and define the following six sets for $\lambda = \mu + \rho_K$.

$$\begin{split} w(\lambda) &= \{\lambda + \omega : \omega \in \Sigma_n\},\\ sw(\lambda) &= \left\{ \xi \in w(\lambda) : \prod_{\alpha \in P_K} (\xi, \alpha) = 0 \right\},\\ rw(\lambda) &= \left\{ \xi \in w(\lambda) : \prod_{\alpha \in P_K} (\xi, \alpha) \neq 0 \right\},\\ rw_0(\lambda) &= \left\{ \lambda + \omega \in rw(\lambda) : f(\lambda + \omega; \omega) = 0 \right\},\\ rw_+(\lambda) &= \left\{ \lambda + \omega : \mu + \omega \in \Gamma_K, f(\lambda + \omega; \omega) > 0 \right\},\\ rw_-(\lambda) &= rw(\lambda) \backslash (rw_0(\lambda) \cup rw_+(\lambda)). \end{split}$$

LEMMA 7.2. Assume that all noncompact roots in Σ have the same length. Then we have $w(\lambda) = sw(\lambda) \cup rw_+(\lambda)$.

PROOF. First we shall prove $\Delta_0(\omega)^* \cup \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$. Let α be an element in $\Delta(\omega)$. Since $|\omega + \alpha| = |\omega|$, we have $2(\omega, \alpha)|\alpha|^{-2} = -1$. This implies that $\Delta(\omega) = \Delta_{-1}(\omega)$. By the proof of (3) in Lemma 6.1 if $\alpha \in \Delta_{-1}(\omega)^*$, then $\omega - 2\alpha \in \Sigma_n$. Since $|\omega - 2\alpha|^2 > |\omega|^2$, our assumption implies $\Delta_{-1}(\omega)^* = \phi$, and hence, $\Delta_0(\omega)^* \cup \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$. Let

 $\lambda + \omega$ be an element in $w(\lambda)$. Then for $\alpha \in P_K$, we have $(\omega, \alpha) \ge 0$ or $(\omega, \alpha) < 0$. In the first case we have $(\lambda + \omega, \alpha) > 0$. For the later case we have $2(\omega, \alpha)|\alpha|^{-2} = -1$. Consequently we have $(\lambda + \omega, \alpha) = 0$ or $(\lambda + \omega, \alpha) > 0$. Suppose that $\lambda + \omega \notin sw(\lambda)$. Since $(\lambda + \omega, \alpha) > 0$ for all $\alpha \in P_K$, (1) in Theorem 6.5 implies $\lambda + \omega \in rw_+(\lambda)$.

For α in P_K we define a linear transformation s_{α} on $(\sqrt{-1}\mathfrak{b})^*$ by

$$s_{\alpha}(\eta) = \eta - 2(\eta, \alpha) |\alpha|^{-2} \alpha, \ \eta \in (\sqrt{-1}\mathfrak{b})^*.$$

The Weyl group W_K of $(\mathfrak{k}_{\mathbb{C}}, \mathfrak{b}_{\mathbb{C}})$ is generated by the set $\{s_{\alpha}; \alpha \in P_K\}$ (cf. Theorem 4.41 in [7]).

LEMMA 7.3. Assume that G is one of $S_p(n, \mathbf{R})$ and SO(2m, 2n + 1). Suppose that $\lambda + \omega \in rw_0(\lambda)$. Then there exists a unique compact simple short root α in P such that $(\mu, \alpha) = 0, \alpha \in \Delta_0(\omega)^*$ and $s_\alpha(\lambda + \omega) \in rw_-(\lambda)$.

PROOF. By the assumption for $\lambda + \omega$, $\lambda + \omega$ is P_K -regular and $f(\lambda + \omega; \omega) = 0$. We first prove that $\Delta_0(\omega)^* \neq \phi$. Suppose that $\Delta_0(\omega)^* = \phi$. By (2), (3) in Lemma 6.1 we can assume $\Delta_0(\omega)^* \cup \Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* = \phi$. Since $\lambda + \omega$ is P_K -regular, (1) in Theorem 6.5 implies a contradiction : $f(\lambda + \omega; \omega) \neq 0$. Thus $\Delta_0(\omega)^* \neq \phi$. By (2) in Theorem 6.5 there exists $\alpha \in P_K$ such that $(\omega, \alpha) = 0$ and $2(\lambda, \alpha) = |\alpha|^2$. Therefore ω and α are short roots, and

(7.1)
$$(\mu, \alpha) = 0, \ 2(\rho_K, \alpha)|\alpha|^{-2} = 1.$$

Let us prove that α is a simple root in *P*. Let $\Psi_K = \{\alpha_1, \alpha_2, \dots, \alpha_\ell\}$ be the simple root system of P_K . Then α is written by $\alpha = \sum_{i=1}^{\ell} m_i \alpha_i$, where m_i is a nonnegative integer. Consequently we have

$$1 = 2(\rho_K, \alpha) |\alpha|^{-2} = \sum_{i=1}^{\ell} m_i 2(\rho_K, \alpha_i) |\alpha_i|^{-2} (|\alpha_i|^2 |\alpha|^{-2}).$$

Since α is a short root, all $|\alpha_i|^2 |\alpha|^{-2}$'s are positive integers. This implies that $\alpha = \alpha_i$ for a suitable *i*. Hence α is a simple short root. Here we shall use the Dynkin diagrams (2.9) and (2.10). Consider the case G = SO(2m, 2n + 1). In view of the Dynkin diagram of P_K the simle short root α is unique. Furthermore, α is also a unique short root of the Dynkin diagram of *P*. Let us prove that $s_{\alpha}(\lambda + \omega) \in rw_{-}(\lambda)$. Since $2(\lambda + \omega, \alpha)|\alpha|^{-2} = 1$ and $\lambda + \omega$ is P_K -regular, we have $s_{\alpha}(\lambda + \omega) = \lambda + \omega - \alpha \in rw(\lambda)$. Since $\omega - \alpha$ is a noncompact long root, we have

$$\Delta_0(\omega-\alpha)^* \cup \Delta_{-1}(\omega-\alpha)^* \cup \Delta_1(\omega-\alpha)^* = \phi.$$

The formula (1) in Theorem 6.5 implies that $f(\lambda + \omega - \alpha; \omega - \alpha) \neq 0$. Moreover, since $2(\mu + \omega - \alpha, \alpha)|\alpha|^{-2} < 0$, we have $s_{\alpha}(\lambda + \omega) \in rw_{-}(\lambda)$. Consider the case $G = S_{p}(n, \mathbf{R})$. Let $\Psi = \{\alpha_{1}, \alpha_{2}, \dots, \alpha_{n}\}$ be the simple root system of the Dynkin diagram (2.9). Then all

 α_i 's $(1 \le i \le n-1)$ are compact simple short roots in P_K . The set of all noncompact positive short roots is given by

$$\{\alpha_k + \cdots + \alpha_{s-1} + 2\alpha_s + \cdots + 2\alpha_{n-1} + \alpha_n : 1 \le k < s < n\}.$$

Let γ be an element in this set. Then $\Delta_0(\gamma)$ is nonempty iff γ is of the form

$$\gamma_k = \alpha_k + 2\alpha_{k+1} + \cdots + 2\alpha_{n-1} + \alpha_n \ (1 \le k \le n) \,.$$

If $(\gamma_k, \alpha) = 0$ for a compact root α , then $\alpha = \alpha_k$. Especially, $\Delta_0(\gamma_k)^* = \{\alpha_k\}$. Moreover, we can prove that $s_\alpha(\lambda + \omega) \in rw_-(\lambda)$ by using the same argument as in the case of SO(2m, 2n + 1).

LEMMA 7.4. Let G be the same as in the previous lemma. Suppose that $\lambda + \omega \in rw_{-}(\lambda)$. Then there exists a unique compact simple short root $\alpha \in P$ such that $(\mu, \alpha) = 0$, $\alpha \in \Delta_{0}(\omega + \alpha)^{*}$ and $s_{\alpha}(\lambda + \omega) = \lambda + \omega + \alpha \in rw_{0}(\lambda)$.

PROOF. Let $\lambda + \omega$ be an element in $rw_{-}(\lambda)$. First we shall prove that there exists a simple root α in P_K such that $(\mu, \alpha) = 0$ and $2(\omega, \alpha)|\alpha|^{-2} = -2$. Since $\lambda + \omega \notin rw_0(\lambda) \cup$ $rw_{+}(\lambda)$, we have either $\mu + \omega \notin \Gamma_{K}$ and $f(\lambda + \omega; \omega) \neq 0$ or $f(\lambda + \omega; \omega) < 0$. If $\mu + \omega \notin \Gamma_K$, then there exists a simple root $\alpha \in P_K$ such that $(\mu + \omega, \alpha) < 0$. Since μ is P_K dominant, the pair $(2(\mu, \alpha)|\alpha|^{-2}, 2(\omega, \alpha)|\alpha|^{-2})$ is one of the followings: (0, -1), (0, -2)and (1, -2). For the cases (0, -1) and (1, -2) we have $(\lambda + \omega, \alpha) = 0$. If $\Delta_0(\omega)^* = \phi$, then (1) in Theorem 6.5 implies $f(\lambda + \omega; \omega) = 0$. When $\Delta_0(\omega)^* \neq \phi$, Lemma 6.1 implies that the case (1, -2) is impossible. Consider the case $\Delta_0(\omega)^* \neq \phi$ and (0, -1). Since $\alpha \in \Delta_{-}(\omega)$ and $(\lambda + \omega, \alpha) = 0$, (2) in Theorem 6.5 implies $f(\lambda + \omega; \omega) = 0$. Consequently if $\mu + \omega \notin \Gamma_K$ and $f(\lambda + \omega; \omega) \neq 0$, then $(\mu, \alpha) = 0$ and $2(\omega, \alpha)|\alpha|^{-2} = -2$. Let us consider the case $f(\lambda + \omega; \omega) < 0$. Since $\lambda + \omega$ is P_K -regular, it follows from (1) and (2) in Theorem 6.5 there exists a simple root α in P_K such that $(\lambda + \omega, \alpha) < 0$. Then we have also $(\mu, \alpha) = 0$ and $2(\omega, \alpha)|\alpha|^{-2} = -2$. Let us prove $s_{\alpha}(\lambda + \omega) \in rw_0(\lambda)$. Since $s_{\alpha}(\lambda + \omega) = \lambda + \omega + \alpha, \alpha \in \Delta_0(\omega + \alpha)^*$ and $2(\lambda + \omega + \alpha, \alpha)|\alpha|^{-2} = 1$, (2) in Theorem 6.5 implies that $f(\lambda + \omega + \alpha; \omega + \alpha) = 0$, and therefore, $s_{\alpha}(\lambda + \omega) \in rw_0(\lambda)$. It remains to prove that α is simple in P and is unique. In view of the proof of the previous lemma it is enough to consider the case $G = S_p(n, \mathbf{R})$. Then the set of all noncompact positive long roots is given by

$$\{\gamma_i = 2\alpha_i + 2\alpha_{i+1} + \dots + 2\alpha_{n-1} + \alpha_n : 1 \le i \le n\}.$$

If $2(\gamma_i, \alpha)|\alpha|^{-2} = -2$ for a compact root α , then $2 \le i \le n$ and $\alpha = \alpha_{i-1}$. Especially, $\Delta_0(\gamma_i + \alpha_{i-1})^* = \{\alpha_{i-1}\}.$

Let G be of the type G_2 . Then $P_K = \{\alpha, \beta\}$, α (resp. β) is short (resp. long), and α is simple and $(\alpha, \beta) = 0$ (see (2.11)).

LEMMA 7.5. Let G be of the type G_2 . Suppose that $\lambda + \omega \in rw_0(\lambda)$. Then we have $s_{\alpha}(\lambda + \omega) \in rw_{-}(\lambda)$. Conversely, suppose that $\lambda + \omega \in rw_{-}(\lambda)$. Then we have $s_{\alpha}(\lambda + \omega) \in rw_0(\lambda)$.

PROOF. Assume that $\lambda + \omega \in rw_0(\lambda)$. Since $\lambda + \omega$ is P_K -regular and $f(\lambda + \omega; \omega) = 0$, (1) in Theorem 6.5 and (2) in Lemma 6.1 imply that $\Delta_{-1}(\omega)^* \cup \Delta_1(\omega)^* \neq \phi$, and hence, ω is a short root. By (3) in Theorem 6.5 we have

$$\prod_{\delta \in \Delta_{-1}(\omega)^*} ((\lambda, \delta) - |\delta|^2) \prod_{\delta \in \Delta_1(\omega)^*} (2(\lambda, \delta) - |\delta|^2) = 0.$$

This implies that

$$(\lambda, \delta) = |\delta|^2$$
 for $\delta \in \Delta_{-1}(\omega)^*$ or $2(\lambda, \delta) = |\delta|^2$ for $\delta \in \Delta_1(\omega)^*$.

In both cases δ is a short root, and therefore $\delta = \alpha$. Consider the first case. Since $2(\lambda + \omega, \alpha)|\alpha|^{-2} = 1$, we have $s_{\alpha}(\lambda + \omega) = \lambda + \omega - \alpha$ and $2(\mu + \omega - \alpha, \alpha)|\alpha|^{-2} = -1$. Therefore $\mu + \omega - \alpha \notin \Gamma_K$. Since $\omega - \alpha$ is a long root, we have $\Delta_0(\omega - \alpha)^* \cup \Delta_{-1}(\omega - \alpha)^* \cup \Delta_1(\omega - \alpha)^* = \phi$. This implies that $f(\lambda + \omega - \alpha; \omega - \alpha) \neq 0$. Thus $s_{\alpha}(\lambda + \omega) \in rw_{-}(\lambda)$. Consider the second case. Since $\alpha \in \Delta_1(\omega)^*$, we have $s_{\alpha}(\lambda + \omega) = \lambda + \omega - 2\alpha$ and $\omega - 2\alpha \in \Sigma_n$. Since $\omega - 2\alpha$ is a long root and $2(\lambda + \omega - 2\alpha, \alpha)|\alpha|^{-2} = -2$, we have also $s_{\alpha}(\lambda + \omega) \in rw_{-}(\lambda)$. The converse follows from the same arguments.

THEOREM 7.6. Let $\omega \in \Sigma_n$ and $\mu \in \Gamma_K$. Assume that $\mu + \omega \in \Gamma_K$. Then the *K*-module $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu})$ is nontrivial if and only if $f(\lambda + \omega; \omega) > 0$, where $\lambda = \mu + \rho_K$.

PROOF. Assume that $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$. By Corollary 3.5 we have $P_{\mu+\omega}(X_{\omega} \otimes v(\mu)) \neq 0$. Hence by Theorem 5.5 we have $f(\lambda + \omega; \omega) > 0$. Let us prove the sufficiency of the theorem. Choosing a suitable covering group K^* of K, we can define the character ξ_{ρ_K} of the analytic subgroup B^* of K^* corresponding to \mathfrak{b} . Weyl's character formula (see (4.11)) implies that

$$(\Delta_K \operatorname{trace}(\operatorname{Ad} \otimes \pi_{\mu}))(\exp H) = \sum_{\lambda + \omega \in w(\lambda)} \sum_{t \in W_K} \varepsilon(t) e^{t(\lambda + \omega)(H)}$$

for all $\exp H \in B^*$, where (π_{μ}, V_{μ}) is a simple *K*-module with the highest weight μ and $w(\lambda)$ is the same as in Definition 7.1. We shall prove that

(7.2)
$$(\Delta_K \operatorname{trace}(\operatorname{Ad} \otimes \pi_{\mu}))(\exp H) = \sum_{\lambda + \omega \in rw_+(\lambda)} \sum_{t \in W_K} \varepsilon(t) e^{t(\lambda + \omega)(H)}.$$

If $\lambda + \omega \in w(\lambda)$ is P_K -singular, then

$$\sum_{t\in W_K}\varepsilon(t)e^{t(\lambda+\omega)(H)}=0\,.$$

CHARACTERISTIC FUNCTION OF THE TENSOR K-MODULE

Since $w(\lambda) = sw(\lambda) \cup rw_0(\lambda) \cup rw_-(\lambda) \cup rw_+(\lambda)$, it is enough to prove

(7.3)
$$\sum_{\lambda+\omega\in rw_0(\lambda)\cup rw_-(\lambda)}\sum_{t\in W_K}\varepsilon(t)e^{t(\lambda+\omega)(H)}=0.$$

If G satisfies that all noncompact roots have the same length, then Lemma 7.2 implies $rw_0(\lambda) \cup$ $rw_{-}(\lambda) = \phi$. Hence we can assume that G is one of $S_p(n, \mathbf{R})$ and SO(2m, 2n + 1), or G is of the type G_2 . Consider the case G_2 , and let α be the short root in P_K . By Lemma 7.5 we have $s_{\alpha}(rw_0(\lambda)) \subset rw_-(\lambda)$ and $s_{\alpha}(rw_-(\lambda)) \subset rw_0(\lambda)$. Since $(s_{\alpha})^2 = 1$, we have $s_{\alpha}(rw_0(\lambda)) = rw_{-}(\lambda)$. This implies (7.3). Let G be one of $S_p(n, \mathbf{R})$ and SO(2m, 2n + 1). We define the mappings $\psi : rw_0(\lambda) \to rw_-(\lambda)$ and $\psi' : rw_-(\lambda) \to rw_0(\lambda)$ by the followings. Let $\lambda + \omega$ be an element in $rw_0(\lambda)$. By Lemma 7.3 there exists a unique compact simple short root α such that $(\mu, \alpha) = 0, \alpha \in \Delta_0(\omega)^*$ and $s_\alpha(\lambda + \omega) \in rw_-(\lambda)$. We note that $s_{\alpha}(\lambda + \omega) = \lambda + \omega - \alpha$. We now put $\psi(\lambda + \omega) = s_{\alpha}(\lambda + \omega)$. Similarly, by using Lemma 7.4, we define a mapping ψ' . We shall prove $\psi'\psi$, $\psi\psi'$ are the identities on $rw_0(\lambda)$ and $rw_-(\lambda)$ respectively. Let $\lambda + \omega \in rw_0(\lambda)$ and $\psi(\lambda + \omega) = s_\alpha(\lambda + \omega)$. Since $\alpha \in \Delta_0((\omega - \alpha) + \alpha)^*$ and $(\mu, \alpha) = 0, \alpha$ is the unique compact simple short root determined by $\lambda + \omega - \alpha \in rw_{-}(\lambda)$. This implies that $\psi'\psi(\lambda+\omega) = \lambda + \omega$. Similarly we can prove $\psi\psi'$ is the identity. Hence ψ is bijective, and thus, $rw_{-}(\omega) = \psi(rw_{0}(\omega))$. Therefore, we have (7.3) for this case. Let $\lambda + \omega \in rw_+(\lambda)$ and $\pi_{\mu+\omega}$ a simple K-module with the highest weight $\mu + \omega$. By (7.2) we have

trace(Ad
$$\otimes \pi_{\mu}$$
)(k) = $\sum_{\mu+\omega\in\Gamma_{K}, f(\lambda+\omega;\omega)>0}$ trace $\pi_{\mu+\omega}(k)$.

Thus if $\mu + \omega \in \Gamma_K$ and $f(\lambda + \omega; \omega) > 0$ then $P_{\mu+\omega}(\mathfrak{p}_{\mathbb{C}} \otimes V_{\mu}) \neq \{0\}$ as claimed.

References

- [1] V. BARGMANN, Irreducible unitary representations of the Lorentz group Ann. of Math. 48 (1947), 568-640.
- [2] J. DEXIMIER, Représentation intégrables du groupe De Sitter, Bull. Soc. Math. 89 (1961), 9-41.
- [3] I. M. GELFAND and L. M. CEJTLIN, Finite dimensional representations of groups of orthogonal matrices, Doklady Aca. Nauk. SSSR 71 (1950), 1017–1020.
- [4] S. HELGASON, Differential Geometry and Symmetric Spaces, Acad. Press (1962).
- [5] T. Hirai, On infinitesimal operators of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 83–87.
- [6] T. HIRAI, On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 258–262.
- [7] A. W. KNAPP, Representation Theory of Semisimple Groups, Princeton Univ. Press.
- [8] A. U. KLIMYK and V. A. SHIROKOV, Representation of Lie groups SU(n, 1), IU(n) and their algebra I, preprint (1974).
- [9] N. TATSUUMA, Formal degree and Clebsch-Gordan coefficients, J. Math. Kyoto Univ. 18, (1978), 131–135.
- [10] L. H. THOMAS, On unitary representations of the group of De Sitter space, Ann. Math. 42 (1940), 113–126.
- [11] V. S. VARADARAJAN, Lie Groups, Lie Algebras, and their Representations, Springer.

Present Address: Department of Mathematics, Tsuda College, Kodaira, Tokyo, 187–8577 Japan.