On a Characteristic Function of the Tensor K-module of Inner Type Noncompact Real Simple Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let \mathbf{C} (resp. \mathbf{R}) denote the complex (resp. real) number field. We consider a connected simply connected complex simple Lie group $G_{\mathbf{C}}$ and a connected noncompact inner type simple real form G of $G_{\mathbf{C}}$. Let K be a maximal compact subgroup of G. We denote the Lie algebras of G and K respectively by \mathfrak{g} and \mathfrak{k}. Let θ be the Cartan involution of \mathfrak{g} corresponding to \mathfrak{k}. Let's denote the eigensubspace of θ of \mathfrak{g} with the eigenvalue -1 by \mathfrak{p}. Then we have a Cartan decomposition: $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$. Consequently the Lie algebra $\mathfrak{g}_{\mathbf{C}}$ of $G_{\mathbf{C}}$ is also decomposed by $\mathfrak{g}_{\mathbf{C}}=\mathfrak{k}_{\mathbf{C}} \oplus \mathfrak{p}_{\mathbf{C}}$, where $\mathfrak{k}_{\mathbf{C}}$ (resp. $\mathfrak{p}_{\mathbf{C}}$) is the complexification of \mathfrak{k} (resp. \mathfrak{p}) in $\mathfrak{g}_{\mathbf{C}}$. Canonically K acts on the space $\mathfrak{p}_{\mathbf{C}}$. Let B be a maximal abelian subgroup of K. Since K is connected and G is an inner type simple Lie group, B is also a maximal abelian subgruop of G. Therefore B is a Cartan subgroup of G and K. Let $\mathfrak{b}_{\mathbf{C}}$ be the complexification of the Lie algebra \mathfrak{b} of B. Let Σ be the root system of the pair $\left(\mathfrak{g}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. Then we have $\Sigma=\Sigma_{K} \cup \Sigma_{n}$, where Σ_{K} (resp. Σ_{n}) is the set of all compact (resp. noncompact) roots of Σ. We shall fix a positive root system P_{K} of Σ_{K}. Let $\left(\pi_{\mu}, V_{\mu}\right)$ be a simple K-module with the highest weight μ. Then the tensor space $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ is a unitary K-module. Let v be a P_{K}-dominant integral form on ${ }^{b_{C}}$ and V_{ν} a simple K-module corresponding to ν. We define a projection operator P_{ν} on $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by

$$
P_{\nu}(Z)=\operatorname{deg} \pi_{v} \int_{K} k Z \overline{\operatorname{trace} \pi_{v}(k)} d k \quad \text { for } Z \text { in } \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}
$$

where $d k$ is the Haar measure on K normalized as $\int_{K} d k=1$. Let Γ_{K} be the set of all P_{K}-dominant integral form on $\mathfrak{b}_{\mathbf{C}}$. Then we have the following decomposition:

$$
\begin{equation*}
\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}=\oplus_{\omega \in \Sigma_{n}, \mu+\omega \in \Gamma_{K}} P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right), \tag{1.1}
\end{equation*}
$$

where $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)=\{0\}$ or is a simple K-module. The purpose of this paper is to characterize nontrivial K-module $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ by using a rational function. Let us state our results more precisely. We can prove that $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ is nontrivial if and only if

[^0]$\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \neq 0$, where $|*|$ is the norm on $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}, X_{\omega}$ is the root vector corresponding to a noncompact root ω and $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)|=1$. Assume that $2(\mu, \alpha)|\alpha|^{-2} \geq 3$ for all α in P_{K}. Then we can prove (see Lemma 4.7) that $\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}$ is given by a rational function $f(\lambda+\omega ; \omega)$ in $\lambda=\mu+\rho_{K}$, where ρ_{K} is one half the sum of all roots in P_{K}. Let $(\sqrt{-1} \mathfrak{b})^{*}$ be the dual space of the real vector space $\sqrt{-1} \mathfrak{b}$. Let $f(\eta ; \omega)$ be the rational function in $\eta \in(\sqrt{-1} \mathfrak{b})^{*}$ satisfying $f(\lambda+\omega ; \omega)=\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}$. We can calculate $f(\eta ; \omega)$ explicitely (see Theorem 6.5) by using the functional equations in Theorem 5.4. Finally in $\S 7$ we shall prove the following main theorem.

MAIN THEOREM. Let μ be a P_{K}-dominant integral form on $\mathfrak{b}_{\mathbf{C}}$ and V_{μ} the simple K-module with the highest weight μ. Suppose that $\mu+\omega$ is P_{K}-dominant for a noncompact root ω in Σ. Then the K-submodule $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ of $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ in $(1,1)$ is nontrivial if and only if $f(\lambda+\omega ; \omega)>0$.

The tensor K-modules $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ and $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ are closely related with the classification of irreducible infinitesimal unitary representations of G. For example, by using the ClebschGordan coefficients of these tensor K-modules, the complete classifications are obtained for the groups : $S L(2, \mathbf{R})$ in [1], De Sitter group in [2] and [10], $S O(2 n, 1)$ in [5], [6] and $S U(n, 1)$ in [8] and etc. In the subsequent paper we shall apply the main theorem to determine the multiplicity of V_{μ} in $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$.

Most parts of this article is reported in "Clebsch-Gordan coefficients for a tensor product representation $\mathrm{Ad} \otimes \pi$ of a maximal compact subgroup of real semisimple Lie group", Lect. in Math., Kyoto Univ. No. 14 pp. 149-175.

2. Preliminalies

Let G be the connected inner type noncompact real simple Lie group. We shall always fix a maximal compact subgroup K and the Cartan decomposition $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$. Let B be the maximal abelian subgroup of K. Since G is inner, B is a Cartan subgroup of K and G. A linear form α on $\mathfrak{b}_{\mathbf{C}}$ is said to be a root if there exists a nontrivial element X in $\mathfrak{g}_{\mathbf{C}}$ such that $[H, X] \equiv \operatorname{ad}(H) X=\alpha(H) X$ for all H in $\mathfrak{b}_{\mathbf{C}}$. Let Σ be the set of all roots on $\mathfrak{b}_{\mathbf{C}}$. Then Σ is a finite set. Furthermore, we have the following decomposition.

$$
\mathfrak{g}_{\mathbf{C}}=\mathfrak{b}_{\mathbf{C}} \oplus \sum_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}
$$

where \mathfrak{g}_{α} is a one dimensional eigenspace corresponding to α. The real subalgebra $\mathfrak{g}_{u}=\mathfrak{k} \oplus$ $\sqrt{-1} \mathfrak{p}$ of $\mathfrak{g}_{\mathbf{C}}$ is said to be a compact real form of $\mathfrak{g}_{\mathbf{C}}$. We choose a Weyl basis $X_{\alpha} \in \mathfrak{g}_{\alpha}, \alpha \in \Sigma$, satisfying the followings (cf. the proof of Theorem 6.3 in [4]).

$$
\begin{equation*}
X_{\alpha}-X_{-\alpha}, \sqrt{-1}\left(X_{\alpha}+X_{-\alpha}\right) \in \mathfrak{g}_{u} \quad \text { and } \quad \phi\left(X_{\alpha}, X_{-\alpha}\right)=1 \tag{2.1}
\end{equation*}
$$

where ϕ is the Killing form on $\mathfrak{g}_{\mathbf{C}}$. For the element $H_{\alpha}=a d\left(X_{\alpha}\right) X_{-\alpha}$ in $\sqrt{-1} \mathfrak{b}$, we have $\phi\left(H_{\alpha}, H\right)=\alpha(H)$ for all H in $\mathfrak{b}_{\mathbf{C}}$. Let μ be a linear form on $\sqrt{-1} \mathfrak{b}$. Then there exists a unique H_{μ} in $\sqrt{-1} \mathfrak{b}$ such that $\phi\left(H_{\mu}, H\right)=\mu(H)$ for all H in $\sqrt{-1} \mathfrak{b}$. Let $(\sqrt{-1} \mathfrak{b})^{*}$ be the dual space of $\sqrt{-1} \mathfrak{b}$. We define a positive definite bilinear form (λ, μ) by $(\lambda, \mu)=$ $\phi\left(H_{\mu}, H_{\lambda}\right)$ for $\lambda, \mu \in(\sqrt{-1} \mathfrak{b})^{*}$. We put, for each pair of α and β in Σ, a complex number $\langle\alpha, \beta\rangle$ by

$$
\langle\alpha, \beta\rangle= \begin{cases}\phi\left(\operatorname{ad}\left(X_{\alpha}\right) X_{\beta}, X_{-\alpha-\beta}\right) & \text { if } \alpha+\beta \in \Sigma \tag{2.2}\\ 0 & \text { otherwise }\end{cases}
$$

Then $\langle\alpha, \beta\rangle$ is a pure imaginary number. Let p and q be two nonnegative integers such that $\beta+j \alpha \in \Sigma$ if and only if $-q \leq j \leq p . \beta+j \alpha,-q \leq j \leq p$, is said to be the α-series containing β. We have (cf. the proof of Lemma 4.3.8 in [11])

$$
\begin{equation*}
2(\beta, \alpha)|\alpha|^{-2}=q-p \quad \text { and } \quad \beta-2(\beta, \alpha)|\alpha|^{-2} \alpha \in \Sigma \tag{2.3}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
|\langle\alpha, \beta\rangle|^{2}=q(p+1) \frac{|\alpha|^{2}}{2} \tag{2.4}
\end{equation*}
$$

and $p+q \leq 3$ (cf. Corollary 4.3.12 in [11]). Suppose that $|\alpha| \geq|\beta|$. Then

$$
\begin{equation*}
2(\alpha, \beta)|\beta|^{-2} \in\{0, \pm 1, \pm 2, \pm 3\} \tag{2.5}
\end{equation*}
$$

We remark that if $|\alpha|>|\beta|$, then $|\alpha|^{2}=2|\beta|^{2}$ or $|\alpha|^{2}=3|\beta|^{2}$. Especially if $2(\alpha, \beta)|\beta|^{2}=$ ± 2 (resp. ± 3), then $|\alpha|^{2}=2|\beta|^{2}$ (resp. $|\alpha|^{2}=3|\beta|^{2}$).

A root in Σ is compact (resp. noncompact) if $X_{\alpha} \in \mathfrak{E}_{\mathbf{C}}$ (resp. $X_{\alpha} \in \mathfrak{p}_{\mathbf{C}}$). Since ${ }^{\mathfrak{K}_{\mathbf{C}}}$ and $\mathfrak{p}_{\mathbf{C}}$ are invariant under $\operatorname{ad}(\mathfrak{b}), \Sigma$ is a disjoint union of the set of all compact roots Σ_{K} and the set of all noncompact roots Σ_{n}. Σ_{K} is also the root system of the pair $\left(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. Let P be a positive root system of Σ. Then $P_{K}=\Sigma_{K} \cap P$ is a positive root system of Σ_{K}. A linear form μ on $\mathfrak{b}_{\mathbf{C}}$ is integral if $2(\mu, \alpha)|\alpha|^{-2}$ is an integer for all $\alpha \in P$, and μ is P-dominant (resp. P_{K}-dominant) if $2(\mu, \alpha)|\alpha|^{-2} \geq 0$ for all $\alpha \in P$ (resp. P_{K}). We shall denote the set of all P-dominant (resp. P_{K}-dominant) integral forms on $\mathfrak{b}_{\mathbf{C}}$ by Γ (resp. Γ_{K}).

Let σ (resp. τ) be the conjugation of $\mathfrak{g}_{\mathbf{C}}$ with respect to the real form \mathfrak{g} (resp. \mathfrak{g}_{u}). By our choice for the Weyl basis of $\mathfrak{g}_{\mathbf{C}}$ we have

$$
\begin{equation*}
\sigma\left(X_{\alpha}\right)=-X_{-\alpha} \quad \text { for } \alpha \in \Sigma_{K}, \quad \sigma\left(X_{\alpha}\right)=X_{-\alpha} \quad \text { for } \alpha \in \Sigma_{n} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau\left(X_{\alpha}\right)=-X_{-\alpha} \quad \text { for } \alpha \in \Sigma \tag{2.7}
\end{equation*}
$$

The inner types noncompact real simple Lie groups (i.e. rank $G=\operatorname{rank} K$) are classified into three (cf. Table II, p. 354 in [4]):
(1) all noncompact roots have the same length,
(2) $S_{p}(n, \mathbf{R})$ and $S O(2 m, 2 n+1)$,
(3) the type G_{2}.

We shall use in $\S 6$ and $\S 7$ the following Dynkin diagrams of the simple root systems Ψ for the groups in (2) and (3), where a white circle indicates a compact root and a black circle does a noncompact root.

$$
\begin{align*}
& G=S_{p}(n, \mathbf{R}): \stackrel{\alpha_{1}}{\circ}-\stackrel{\alpha_{2}}{\circ}-\cdots \stackrel{\alpha_{n-2}}{\circ}-\stackrel{\alpha_{n-1}}{\circ} \Longleftarrow \stackrel{\alpha_{n}}{\circ}, \\
& K=U(n): \stackrel{\alpha_{1}}{\circ}-\stackrel{\alpha_{2}}{\circ}-\cdots \stackrel{\alpha_{n-2}}{\circ}-\stackrel{\alpha_{n-1}}{\circ} . \tag{2.9}
\end{align*}
$$

$$
\begin{gather*}
G=S O(2 m, 2 n+1): \stackrel{\alpha_{1}}{\circ}-\stackrel{\alpha_{2}}{\circ} \cdots-{\stackrel{\alpha}{\alpha_{m-1}}}_{\circ}^{\alpha_{0}}-\stackrel{\alpha_{m}}{\circ}-\stackrel{\alpha_{m+1}}{\circ} \ldots \stackrel{\alpha_{m+n-1}}{\circ} \Longrightarrow \stackrel{\alpha_{m+n}}{\circ}, \tag{2.10}\\
K=S O(2 m) \otimes S O(2 n+1): \stackrel{\alpha_{1}}{\circ}-\stackrel{\alpha_{2}}{\alpha_{2}} \ldots \stackrel{\alpha_{m-2}}{\circ}-\stackrel{\alpha_{m-1}}{\alpha_{0}} \stackrel{\alpha_{m+1}}{\circ}-\cdots \stackrel{\alpha_{m+n+1}}{\circ} \Longrightarrow \stackrel{\alpha_{m+n}}{\circ},
\end{gather*}
$$

where $\alpha_{0}=\alpha_{m-1}+2 \alpha_{m}+\cdots+2 \alpha_{m+n}$.

$$
\begin{equation*}
G=G_{2}: \stackrel{\alpha_{1}}{\bullet} \Longrightarrow \stackrel{\alpha_{2}}{\circ}, K=S U(2) \otimes S U(2): \stackrel{\alpha_{0}}{\circ} \stackrel{\alpha_{2}}{\circ}, \tag{2.11}
\end{equation*}
$$

where $\alpha_{0}=2 \alpha_{1}+3 \alpha_{2}$.

3. Decomposition of a tensor K-module

For the simplicity of our notations, the adjoint action $\operatorname{Ad}(k)(k \in K)$ on $\mathfrak{p}_{\mathbf{C}}$ will be denoted by $k X$ for X in $\mathfrak{p}_{\mathbf{C}}$. We define a hermitian structure (X, Y) on $\mathfrak{p}_{\mathbf{C}}$ by

$$
\begin{equation*}
(X, Y)=-\phi(X, \tau(Y)) \quad \text { for } X, Y \in \mathfrak{p}_{\mathbf{C}} . \tag{3.1}
\end{equation*}
$$

Then $\mathfrak{p}_{\mathbf{C}}$ is a unitary K-module with respect to this hermitian structure. For $\mu \in \Gamma_{K}$, there exists a unitary simple K-module $\left(\pi_{\mu}, V_{\mu}\right)$ with the highest weight μ. We also denote the action $\pi_{\mu}(k)(k \in K)$ of K on V_{μ} by $k v$ for $v \in V_{\mu}$. Let $d k$ be the Haar measure on K normalized as $\int_{K} d k=1$. We define a character χ_{μ} of the K-module $\left(\pi_{\mu}, V_{\mu}\right)$ by

$$
\begin{equation*}
\chi_{\mu}(k)=\operatorname{deg}\left(\pi_{\mu}\right) \operatorname{trace} \pi_{\mu}(k), \quad k \in K \tag{3.2}
\end{equation*}
$$

where $\operatorname{deg} \pi_{\mu}=\operatorname{dim} V_{\mu}$. Then we have

$$
\begin{equation*}
\int_{K} \chi_{\mu}\left(k^{-1} k^{\prime}\right) \chi_{\mu}(k) d k=\chi_{\mu}\left(k^{\prime}\right), \quad k^{\prime} \in K \tag{3.3}
\end{equation*}
$$

For a finite dimensional K-module V, we define a projection operator P_{μ} on V by

$$
\begin{equation*}
P_{\mu}(v)=\int_{K} k v \overline{\chi_{\mu}(k)} d k, \quad v \in V, \tag{3.4}
\end{equation*}
$$

where $\overline{\chi_{\mu}(k)}$ is the complex conjugate of $\chi_{\mu}(k)$.
Lemma 3.1. The projection operator P_{μ} on V satisfies the followings.

$$
\left(P_{\mu}\right)^{2}=P_{\mu} \quad \text { and } \quad k P_{\mu}=P_{\mu} k \quad \text { for all } k \in K
$$

Proof. Changing the variables and the order of integrals, we have for $v \in V$,

$$
\begin{aligned}
\left(P_{\mu}\right)^{2}(v) & =\int_{K} \int_{K} k^{\prime} k v \overline{\chi_{\mu}\left(k^{\prime}\right) \chi_{\mu}(k)} d k d k^{\prime} \\
& =\int_{K} \int_{K} k v \overline{\chi_{\mu}\left(\left(k^{\prime}\right)^{-1} k\right) \chi_{\mu}\left(k^{\prime}\right)} d k d k^{\prime} \\
& =\int_{K} k v \int_{K} \overline{\chi_{\mu}\left(\left(k^{\prime}\right)^{-1} k\right) \chi_{\mu}\left(k^{\prime}\right)} d k^{\prime} d k
\end{aligned}
$$

Hence by the formula (3.3), we have $\left(P_{\mu}\right)^{2}=P_{\mu}$. For $k \in K$ and $v \in V$ we have

$$
\begin{aligned}
k P_{\mu}(v) & =\int_{K} k k^{\prime} v \overline{\chi_{\mu}\left(k^{\prime}\right)} d k^{\prime} \\
& =\int_{K}\left(k k^{\prime} k^{-1}\right)(k v) \overline{\chi_{\mu}\left(k k^{\prime} k^{-1}\right)} d k^{\prime} \\
& =P_{\mu}(k v)
\end{aligned}
$$

Thus we can prove that $k P_{\mu} v=P_{\mu} k v$.
We now define an action of ${ }_{\mathbf{k}}^{\mathbf{C}}$ on V_{μ} by

$$
X v=\left.\frac{d}{d t} \exp (t X) v\right|_{t=0} \quad \text { for } X \in \mathfrak{k}_{\mathbf{C}} \text { and } v \in V_{\mu}
$$

By the choice of X_{α} in (2.1) we have

$$
\begin{equation*}
\left(X_{\alpha} v, w\right)=\left(v, X_{-\alpha} w\right) \quad \text { for all } \alpha \in \Sigma_{K} \text { and } v, w \in V_{\mu} \tag{3.5}
\end{equation*}
$$

We define a unitary K-module structure on $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by

$$
k(X \otimes v)=k X \otimes k v \quad \text { for } k \in K
$$

$$
\begin{equation*}
(X \otimes v, Y \otimes w)=(X, Y)(v, w) \quad \text { for } X, Y \in \mathfrak{p}_{\mathbf{C}} \text { and } v, w \in V_{\mu} \tag{3.6}
\end{equation*}
$$

Thereby $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ is a finite dimensional unitary K-module. Let ω be a noncompact root in Σ. Assume that $\mu+\omega$ is P_{K}-dominant. By the second property in Lemma 3.1 we have

$$
\begin{gather*}
Y P_{\mu+\omega}(X \otimes v)=P_{\mu+\omega}(a d(Y) X \otimes v)+P_{\mu+\omega}(X \otimes Y v) \\
\text { for all } Y \in \mathfrak{k}_{\mathbf{C}}, X \in \mathfrak{p}_{\mathbf{C}} \text { and } v \in V_{\mu} \tag{3.7}
\end{gather*}
$$

DEFINITION 3.2. Let p be a nonnegative integer. We define a set Π_{p} by $\Pi_{0}=\{\tilde{\phi}\}, \quad \Pi_{p}=\left\{\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right): \alpha_{i} \in P_{K}\right\} \quad$ for $p>1, \quad$ and put $\Pi=\bigcup_{p=0}^{\infty} \Pi_{p}$.

Let $I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right)$ and $J=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{q}\right)$ be two elements in Π. We define a multiplicative operation \star in Π by

$$
I \star J=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}, \beta_{1}, \beta_{2}, \cdots, \beta_{q}\right)
$$

Then Π is a semigroup with the identity $\tilde{\phi}$.
DEFINITION 3.3. Let $U\left(\mathfrak{k}_{\mathbf{C}}\right)$ be the universal enveloping algebra of ${ }^{\mathfrak{C}} \mathbf{C}$. For each I in Π we define an element $Q(I)$ in $U\left(\mathfrak{k}_{\mathbf{C}}\right)$ by

$$
Q(I)=1 \quad \text { for } I=\tilde{\phi} \quad \text { and } \quad Q(I)=X_{-\alpha_{1}} X_{-\alpha_{2}} \cdots X_{-\alpha_{p}} \quad \text { for } I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right)
$$

Then Q is a semigroup homomorphism of Π to $U\left(\mathfrak{k}_{\mathbf{C}}\right)$. Furthermore, $Q(I)$ acts on $\mathfrak{p}_{\mathbf{C}}$ by $Q(I) X=\operatorname{ad}(Q(I)) X$ for X in $\mathfrak{p}_{\mathbf{C}}$. We also define the adjoint operator $Q(I)^{*}$ of $Q(I)$ by $(Q(I) X, Y)=\left(X, Q(I)^{*} Y\right)$ for $X, Y \in \mathfrak{p}_{\mathbf{C}}$.

Lemma 3.4. Let $\mu \in \Gamma_{K}$ and V_{μ} a simple K-module with the highest weight μ. Then we have

$$
\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}=\bigoplus_{\omega \in \Sigma_{n}, \mu+\omega \in \Gamma_{K}} P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right),
$$

where $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)=\{0\}$ or is a simple K-module.
Proof. By Peter-Weyl's theorem, we have (cf. Theorem 1.12 (c) in [7])

$$
\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}=\bigoplus_{\lambda \in \Gamma_{K}} P_{\lambda}\left(\mathfrak{p} \mathbf{C} \otimes V_{\mu}\right)
$$

Let V_{λ} be a simple K-submodule of $P_{\lambda}\left(p_{\mathbf{C}} \otimes V_{\mu}\right)$. We shall prove that $V_{\lambda}=P_{\mu+\gamma}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ for a suitable noncompact root γ. We note that the simple K-module V_{μ} is generated by the set $\{Q(I) v(\mu): I \in \Pi\}$, where $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)|=1$. Moreover, it follows from (3.7) that

$$
\begin{equation*}
X_{\alpha} P_{\lambda}(X \otimes v)=P_{\lambda}\left(\operatorname{ad}\left(X_{\alpha}\right) X \otimes v\right)+P_{\lambda}\left(X \otimes X_{\alpha} v\right) \tag{3.8}
\end{equation*}
$$

for all $X \in \mathfrak{p}_{\mathbf{C}}, v \in V_{\mu}$ and $\alpha \in \Sigma_{K}$. Let $v(\lambda)$ be the highest weight vector of V_{λ}. It follows from (3.8) that $v(\lambda)$ is written by

$$
\begin{equation*}
v(\lambda)=\sum_{\omega \in \Sigma_{n}} \sum_{I \in \Pi} c_{\omega, I} Q(I) P_{\lambda}\left(X_{\omega} \otimes v(\mu)\right) \tag{3.9}
\end{equation*}
$$

where $c_{\omega, I}$ is a complex constant. Since $v(\lambda)$ is the highest weight vector, (3.5) implies that

$$
(v(\lambda), v(\lambda))=\sum_{\omega \in \Sigma_{n}} \overline{c_{\omega, \tilde{\phi}}}\left(v(\lambda), P_{\lambda}\left(X_{\omega} \otimes v(\mu)\right)\right)
$$

Consequently, we have $\lambda=\mu+\gamma$ for a noncompact root γ. Again by (3.9) we have

$$
v(\lambda)=\sum_{\omega \in \Sigma_{n}} \sum_{I \in \Pi} c_{\omega, I} Q(I) P_{\mu+\gamma}\left(X_{\omega} \otimes v(\mu)\right)
$$

Let ω be a noncompact root. When $\omega>\gamma$, we have $P_{\mu+\gamma}\left(X_{\omega} \otimes v(\mu)\right)=0$ because $\mu+\gamma$ is the highest weight in $P_{\mu+\gamma}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$. When $\omega<\gamma$, the weight of $Q(I) P_{\mu+\gamma}\left(X_{\omega} \otimes v(\mu)\right)$ is distinct to $\mu+\gamma$. Hence we have $v(\lambda)=c_{\gamma, \tilde{\phi}} P_{\mu+\gamma}\left(X_{\gamma} \otimes v(\mu)\right)$. This implies that $V_{\lambda}=P_{\mu+\gamma}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$.

In view of the proof of the above lemma we have the following.
Corollary 3.5. Let ω be a noncompact root in Σ. If $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$, then we have $P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right) \neq 0$.

LEMMA 3.6. Let ω be a noncompact root in Σ, and suppose that $\mu+\omega \in \Gamma_{K}$, $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$. If $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$ for a noncompact root γ, then we have

$$
\left(|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}\right)\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=\sum_{\alpha \in P_{K}} 2|\langle\alpha, \gamma\rangle|^{2}\left|P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right)\right|^{2},
$$

where $v(\mu)$ is the highest weight vector in $V_{\mu}, \lambda=\mu+\rho_{K}$ and ρ_{K} is one half the sum of all roots in P_{K}.

Proof. Let Ω_{K} be the Casimir operator on K given by

$$
\Omega_{K}=\sum_{i=1}^{\ell}\left(H_{i}\right)^{2}+H_{2 \rho_{K}}+\sum_{\alpha \in P_{K}} 2 X_{-\alpha} X_{\alpha},
$$

where $\left\{H_{1}, H_{2}, \cdots, H_{\ell}\right\}$ is an orthonormal basis of $\sqrt{-1} \mathfrak{b}$ with respect to the Killing form ϕ. Since $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ is a simple K-module, Ω_{K} is a scalar operator on this space. We can verify $\Omega_{K} v(\mu+\omega)=\left(|\lambda+\omega|^{2}-\left|\rho_{K}\right|^{2}\right) v(\mu+\omega)$, where $v(\mu+\omega)$ is the highest weight vector of $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$. Then we have for $\gamma \in \Sigma_{n}$,

$$
\Omega_{K} P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)=\left(|\lambda+\omega|^{2}-\left|\rho_{K}\right|^{2}\right) P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) .
$$

On the other hand, since

$$
\begin{aligned}
\Omega_{K} P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)= & \left(|\lambda+\gamma|^{2}-\left|\rho_{K}\right|^{2}\right) P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \\
& +\sum_{\alpha \in P_{K}} 2\langle\alpha, \gamma\rangle X_{-\alpha} P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right),
\end{aligned}
$$

we have

$$
\left(|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}\right) P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)=\sum_{\alpha \in P_{K}} 2\langle\alpha, \gamma\rangle X_{-\alpha} P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right) .
$$

Consequently, by (3.5) we have

$$
\begin{aligned}
& \left(|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}\right)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \\
& \quad=\sum_{\alpha \in P_{K}} 2\langle\alpha, \gamma\rangle\left(X_{-\alpha} P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right) \\
& \quad=\sum_{\alpha \in P_{K}} 2|\langle\gamma, \alpha\rangle|^{2}\left|P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right)\right|^{2} .
\end{aligned}
$$

DEFINITION 3.7. Let γ and ω be two noncompact roots. We put

$$
\Pi(\gamma ; \omega)=\left\{I \in \Pi: Q(I)^{*} X_{\gamma} \in \mathfrak{g}_{\omega} \backslash\{0\}\right\}
$$

Lemma 3.8. Suppose that $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$ for $\omega \in \Sigma_{n}$, and let γ be a root in Σ_{n}. Then $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$ if and only if $\Pi(\gamma ; \omega) \neq \phi$. Moreover if $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$, then $|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}>0$.

Proof. By Corollary $3.5 P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)$ is the highest weight vector of the simple K-module $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes v(\mu)\right)$. Assume that $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$. When $\omega=\gamma$ we have $\tilde{\phi} \in \Pi(\omega ; \omega)$. Suppose $\omega \neq \gamma$. Since $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)$ is not the highest weight vector,

$$
\begin{equation*}
\text { there is } \beta \in P_{K} \text { such that } X_{\beta} P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0 . \tag{3.10}
\end{equation*}
$$

Similarly, since the dimension of the space of the highest vectors is one, we can choose $I \in \Pi$ satisfying $Q(I)^{*} P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \in \mathbf{C} P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right) \backslash\{0\}$. Since $X_{\alpha} v(\mu)=0$ for $\alpha \in P_{K}$, we have

$$
Q(I)^{*} P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)=P_{\mu+\omega}\left(Q(I)^{*} X_{\gamma} \otimes v(\mu)\right),
$$

and hence, $I \in \Pi(\gamma ; \omega)$. Conversely assume that $I \in \Pi(\gamma ; \omega)$. Since $Q(I)^{*} X_{\gamma} \in \mathfrak{g}_{\omega} \backslash\{0\}$, we have $Q(I)^{*} P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$. This implies that $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$. The inequality $|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}>0$ for $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$ follows from Lemma 3.6 and (3.10).

4. Rational function associated with the coefficient $\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}$

The purpose of this section is to prove Lemma 4.7. In order to prove this lemma we shall prepare three lemmas after the following two definitions.

Definition 4.1. For a generic point η in $(\sqrt{-1} \mathfrak{b})^{*}, \omega \in \Sigma_{n}$ and $I \in \Pi$, we define $R(\eta ; I), S(\eta ; I), T(\eta ; I), a_{\omega}(I)(I \in \Pi)$ and $f(\eta ; \omega)$ as follows:

$$
R(\eta ; \tilde{\phi})=S(\eta ; \tilde{\phi})=T(\eta ; \tilde{\phi})=a_{\omega}(\tilde{\phi})=1
$$

and for $I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right) \in \Pi$

$$
\begin{align*}
R(\eta ; I) & =\left(|\eta+\langle I\rangle|^{2}-|\eta|^{2}\right)^{-1}, \\
S(\eta ; I) & =\prod_{J, L \in \Pi, J \star L=I, J \neq \tilde{\phi}} R(\eta ; J), \\
T(\eta ; I) & =\prod_{J, L \in \Pi, J \star L=I} R(\eta+\langle J\rangle ; L), \tag{4.1}\\
a_{\omega}(I) & =2^{\sharp I}\left|\phi\left(Q(I)^{*} X_{\omega}, X_{-\omega-\langle I\rangle}\right)\right|^{2}, \\
f(\eta ; \omega) & =\sum_{I \in \Pi}(-1)^{\sharp I} a_{\omega}(I) S(\eta ; I),
\end{align*}
$$

where $\sharp I=p$ and $\langle I\rangle=\sum_{i=1}^{p} \alpha_{i}$.
For $\gamma \in \Sigma_{n}, \alpha \in P_{K}$ and $J, L \in \Pi$, we have

$$
\begin{align*}
a_{\gamma}(\alpha) a_{\gamma+\alpha}(J) & =a_{\gamma}(\alpha \star J) \tag{4.2}\\
R(\eta ; J)+R(\eta+\langle J\rangle ; L) & =R(\eta+\langle J\rangle ; L) R(\eta ; J) R(\eta ; J \star L)^{-1}, \tag{4.3}\\
S(\eta ; L \star \alpha) & =S(\eta ; L) R(\eta ; L \star \alpha) \tag{4.4}\\
T(\eta ; \alpha \star J) & =T(\eta+\alpha ; J) R(\eta ; \alpha \star J) \tag{4.5}
\end{align*}
$$

DEFINITION 4.2. Let ω and γ be two noncompact roots. When $\Pi(\gamma ; \omega) \neq \phi$ (see Definition 3.7), we define $n(\gamma ; \omega)$ as the maximal integer of the set $\{\sharp I: I \in \Pi(\gamma ; \omega)\}$.

Lemma 4.3. Assume that $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes v(\mu)\right) \neq\{0\}$ for a noncompact root ω. If $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$, then we have

$$
\begin{equation*}
\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=\sum_{I \in \Pi(\gamma ; \omega)} a_{\gamma}(I) T(\lambda+\gamma ; I)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \tag{4.6}
\end{equation*}
$$

Proof. By Lemma $3.8 P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$ if and only if $n(\gamma ; \omega) \geq 0$. We shall prove (4.6) by using an induction on $n(\gamma ; \omega) \geq 0$. When $n(\gamma ; \omega)=0$, our assertion is obvious. Assume that the lemma is true for all $\delta \in \Sigma_{n}$ satisfying $0 \leq n(\delta ; \omega)<n(\gamma ; \omega)$. Let α be an element in P_{K} satisfying $n(\gamma+\alpha ; \omega) \geq 0$. Since $\alpha \star I \in \Pi(\gamma ; \omega)$ for $I \in \Pi(\gamma+\alpha ; \omega)$, we have $0 \leq n(\gamma+\alpha ; \omega)<n(\gamma ; \omega)$. By the hypothesis of our induction we have

$$
\begin{align*}
& \left|P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right)\right|^{2} \\
& \quad=\sum_{I \in \Pi(\gamma+\alpha ; \omega)} a_{\gamma+\alpha}(I) T(\lambda+\gamma+\alpha ; I)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} . \tag{4.7}
\end{align*}
$$

Since $|\mu+\omega|^{2}-|\mu+\gamma|^{2}>0$ (see Lemma 3.8), (4.2) and (4.5) imply

$$
\begin{aligned}
& \frac{2|\langle\alpha, \gamma\rangle|^{2}}{|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}} a_{\gamma+\alpha}(I) T(\lambda+\gamma+\alpha ; I) \\
& \quad=a_{\gamma}(\alpha) a_{\gamma+\alpha}(I) R(\lambda+\gamma ; \alpha \star I) T(\lambda+\gamma+\alpha ; I) \\
& \quad=a_{\gamma}(\alpha \star I) T(\lambda+\gamma ; \alpha \star I)
\end{aligned}
$$

Hence by Lemma 3.6 and (4.7), we have

$$
\begin{aligned}
& \left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} \\
& \quad=\sum_{\alpha \in P_{K}} \sum_{I \in \Pi(\gamma+\alpha ; \omega)} a_{\gamma}(\alpha \star I) T(\lambda+\gamma ; \alpha \star I)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \\
& \quad=\sum_{I \in \Pi(\gamma ; \omega)} a_{\gamma}(I) T(\lambda+\gamma ; I)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} .
\end{aligned}
$$

Let P be a positive root system containing P_{K} and $\Psi=\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{\ell}\right\}$. We define $\lambda_{i} \in(\sqrt{-1} \mathfrak{b})^{*}$ by

$$
\begin{equation*}
2\left(\lambda_{i}, \beta_{j}\right)\left|\beta_{j}\right|^{-2}=\delta_{i, j}, \quad 1 \leq i, j \leq \ell \tag{4.8}
\end{equation*}
$$

where $\delta_{i, j}$ is Kronecker's delta. For $\eta \in(\sqrt{-1} \mathfrak{b})^{*}$ we have

$$
\eta=\sum_{i=1}^{\ell} \eta_{i} \lambda_{i}, \eta_{i}=2\left(\eta, \beta_{i}\right)\left|\beta_{i}\right|^{-2}
$$

Let $\mathbf{R}[\eta]=\mathbf{R}\left[\eta_{1}, \eta_{2}, \cdots, \eta_{\ell}\right]$ be the ring of all polynomials in $\eta_{1}, \eta_{2}, \cdots, \eta_{\ell}$ over the real number field \mathbf{R}. The quotient field of $\mathbf{R}[\eta]$ will be denoted by $\mathbf{R}(\eta)$.

Lemma 4.4. Let $I(\neq \tilde{\phi})$ be an element in Π. Then we have

$$
(-1)^{(\sharp I)-1} S(\eta ; I)=\sum_{J, L \in \Pi, J \star L=I, J \neq \tilde{\phi}}(-1)^{\sharp L} T(\eta ; J) S(\eta+\langle J\rangle ; L) .
$$

Proof. We put $F(\eta ; I)=\sum_{J \star L=I}(-1)^{\sharp L} T(\eta ; J) S(\eta+\langle J\rangle ; L)$. Then the identity of this lemma is equivalent to $F(\eta ; I)=0$ in $\mathbf{R}(\eta)$. We shall prove that $F(\eta ; I)=0$ by using an induction on $\sharp I$. When $\sharp I=1$ our assertion is obvious. Suppose that $\sharp I>1$ and $F(\eta ; J)=0$ for all J in $\Pi_{(\sharp I)-1}$. We put $I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right)$. By the definition of F, we have
(4.9) $F(\eta ; I)=\sum_{J \star L=I, J \neq \tilde{\phi}, L \neq \tilde{\phi}}(-1)^{\sharp L} T(\eta ; J) S(\eta+\langle J\rangle ; L)+(-1)^{\sharp I} S(\eta ; I)+T(\eta ; I)$.

We now put $I^{\prime}=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p-1}\right)$ and $I^{\prime \prime}=\left(\alpha_{2}, \alpha_{3}, \cdots, \alpha_{p}\right)$. By (4.4) and (4.5) we have

$$
\begin{equation*}
S(\eta ; I)=S\left(\eta ; I^{\prime}\right) R(\eta ; I), \quad T(\eta ; I)=T\left(\eta+\alpha_{1} ; I^{\prime \prime}\right) R(\eta ; I) \tag{4.10}
\end{equation*}
$$

By the hypothesis of our induction we have the followings.

$$
\begin{aligned}
& (-1)^{p-2} S\left(\eta ; I^{\prime}\right)=\sum_{J \star L=I^{\prime}, J \neq \tilde{\phi}}(-1)^{\sharp L} T(\eta ; J) S(\eta+\langle J\rangle ; L), \\
& (-1)^{p-2} S\left(\eta+\alpha_{1} ; I^{\prime \prime}\right) \\
& \quad=\sum_{J \star L=I^{\prime \prime}, J \neq \tilde{\phi}}(-1)^{\sharp L} T\left(\eta+\alpha_{1} ; J\right) S\left(\eta+\alpha_{1}+\langle J\rangle ; L\right) \\
& \quad=T\left(\eta+\alpha_{1} ; I^{\prime \prime}\right)+\sum_{J \star L=I^{\prime \prime}, J \neq \tilde{\phi}, L \neq \tilde{\phi}}(-1)^{\sharp L} T\left(\eta+\alpha_{1} ; J\right) S\left(\eta+\alpha_{1}+\langle J\rangle ; L\right) .
\end{aligned}
$$

These two identities imply that

$$
\begin{aligned}
&(-1)^{p} S\left(\eta ; I^{\prime}\right)+T\left(\eta+\alpha_{1} ; I^{\prime \prime}\right) \\
&= \sum_{J \star L=I^{\prime}, J \neq \tilde{\phi}}(-1)^{\sharp L} T(\eta ; J) S(\eta+\langle J\rangle ; L) \\
&+(-1)^{p-2} S\left(\eta+\alpha_{1} ; I^{\prime \prime}\right)-\sum_{J \star L=I^{\prime \prime}, J \neq \tilde{\phi}, L \neq \tilde{\phi}}(-1)^{\sharp L} T\left(\eta+\alpha_{1} ; J\right) S\left(\eta+\alpha_{1}+\langle J\rangle ; L\right) \\
&= \sum_{J \star L=I^{\prime}, J \neq \tilde{\phi}}(-1)^{\sharp L} T(\eta ; J) S(\eta+\langle J\rangle ; L) \\
&-\sum_{J \star L=I^{\prime \prime}, L \neq \tilde{\phi}}(-1)^{\sharp L} T\left(\eta+\alpha_{1} ; J\right) S\left(\eta+\alpha_{1}+\langle J\rangle ; L\right) .
\end{aligned}
$$

We put $I^{\prime \prime \prime}=\left(\alpha_{2}, \alpha_{3}, \cdots, \alpha_{p-1}\right)$. Then by (4.4) and (4.5) we have

$$
\begin{array}{rl}
(-1)^{p} & S\left(\eta ; I^{\prime}\right)+T\left(\eta+\alpha_{1} ; I^{\prime \prime}\right) \\
= & \sum_{J^{\prime} \star L=I^{\prime \prime \prime \prime}}(-1)^{\sharp L} T\left(\eta ; \alpha_{1} \star J^{\prime}\right) S\left(\eta+\alpha_{1}+\left\langle J^{\prime}\right\rangle ; L\right) \\
& +\sum_{J \star L^{\prime}=I^{\prime \prime \prime}}(-1)^{\sharp L^{\prime}} T\left(\eta+\alpha_{1} ; J\right) S\left(\eta+\alpha_{1}+\langle J\rangle ; L^{\prime} \star \alpha_{p}\right) \\
= & \sum_{J^{\prime} \star L^{\prime}=I^{\prime \prime \prime}}(-1)^{\sharp L^{\prime}} T\left(\eta+\alpha_{1} ; J^{\prime}\right) R\left(\eta ; \alpha_{1} \star J^{\prime}\right) S\left(\eta+\left\langle\alpha_{1} \star J^{\prime}\right\rangle ; L^{\prime}\right) \\
& +\sum_{J^{\prime} \star L^{\prime}=I^{\prime \prime \prime \prime}}(-1)^{\sharp L^{\prime}} T\left(\eta+\alpha_{1} ; J^{\prime}\right) S\left(\eta+\left\langle\alpha_{1} \star J\right\rangle ; L^{\prime}\right) R\left(\eta+\left\langle\alpha_{1} \star J^{\prime}\right\rangle ; L^{\prime} \star \alpha_{p}\right) \\
= & \sum_{J^{\prime} \star L^{\prime}=I^{\prime \prime \prime}}(-1)^{\sharp L^{\prime}} T\left(\eta+\alpha_{1} ; J^{\prime}\right) S\left(\eta+\left\langle\alpha_{1} \star J^{\prime}\right\rangle ; L^{\prime}\right) \\
& \times\left\{R\left(\eta ; \alpha_{1} \star J^{\prime}\right)+R\left(\eta+\left\langle\alpha_{1} \star J^{\prime}\right\rangle ; L^{\prime} \star \alpha_{p}\right)\right\} .
\end{array}
$$

By (4.3) and (4.10) we have

$$
\begin{aligned}
(-1)^{\sharp I} S & S(\eta) I)+T(\eta ; I) \\
= & \sum_{J^{\prime} \star L^{\prime}=I^{\prime \prime \prime}}(-1)^{\sharp L^{\prime}} T\left(\eta+\alpha_{1} ; J^{\prime}\right) R\left(\eta ; \alpha_{1} \star J^{\prime}\right) \\
& \times S\left(\eta+\left\langle\alpha_{1} \star J^{\prime}\right\rangle ; L^{\prime}\right) R\left(\eta+\left\langle\alpha_{1} \star J^{\prime}\right\rangle ; L^{\prime} \star \alpha_{p}\right) \\
= & -\sum_{J \star L=I, J \neq \tilde{\phi}, L \neq \tilde{\phi}}(-1)^{\sharp L} T(\eta ; J) S(\eta+\langle J\rangle ; L) .
\end{aligned}
$$

Consequently, by (4.9) we have $F(\eta ; I)=0$ as claimed.
We now choose a positve root system P of Σ as follows. If (G, K) is a hermitian pair, then we choose P for which (cf. Proposition 7.2 in [4]) $\mathfrak{p}_{\mathbf{C}}=\mathfrak{p}^{+} \oplus \mathfrak{p}^{-}$, where $\mathfrak{p}^{ \pm}$is the subspace of $\mathfrak{p}_{\mathbf{C}}$ generated by the root vectors corresponding to the noncompact positive (resp. negative) roots. If (G, K) is nonhermitian, then we choose a positive root system P containing P_{K}.

DEFINITION 4.5. We put, for the hermitian case, $\mathfrak{v}=\mathfrak{p}^{ \pm}$and for nonhermitian case $\mathfrak{v}=\mathfrak{p}_{\mathbf{C}} \cdot \mathfrak{v}$ is a simple K-module. The set of all weights (roots) in \mathfrak{v} will be denoted by $\Sigma_{\mathfrak{v}}$.

REMARK. If (G, K) is hermitian, then we have $\mathfrak{p}_{\mathbf{C}}=\mathfrak{v} \oplus \tau(\mathfrak{v})$ and $U\left(\mathfrak{k}_{\mathbf{C}}\right) \mathfrak{v} \subset \mathfrak{v}$. These imply that $\Pi(\omega ; \gamma)=\phi$ for $\omega \in \Sigma_{\mathfrak{v}}$ and $\gamma \in \Sigma_{\tau(\mathfrak{v})}$. Moreover since $\mathfrak{v} \otimes V_{\mu}$ and $\tau(\mathfrak{v}) \otimes V_{\mu}$ are orthogonal with respect to the hermitian product in (3.6), $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}=\mathfrak{v} \otimes V_{\mu} \oplus \tau(\mathfrak{v}) \otimes V_{\mu}$ as K modules. By these properties the conclusions of Lemma 3.8 and Lemma 4.3, replacing $\mathfrak{p}_{\mathbf{C}}$ and Σ_{n} respectively with \mathfrak{v} and $\Sigma_{\mathfrak{v}}$, are also true. Let W_{K} be the Weyl group of the pair $\left(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. Each s in W_{K} is realized by $s=\left.\operatorname{Ad}(k)\right|_{\mathfrak{b}_{\mathrm{C}}}, k \in N_{K}(B)$, where $N_{K}(B)$ is the normalizer of B in K and $\left.\operatorname{Ad}(k)\right|_{\mathfrak{b}_{\mathbf{C}}}$ the restriction of $\operatorname{Ad}(k)$ to $\mathfrak{b}_{\mathbf{C}}$. Thereby $\Sigma_{\mathfrak{v}}$ is W_{K}-invariant.

LEMMA 4.6. Let $\left(\pi_{\mu}, V_{\mu}\right)$ be a unitary simple K-module with the highest weight μ. Assume that $\mu+\omega \in \Gamma_{K}$ for all noncompact root ω in $\Sigma_{\mathfrak{v}}$. Then we have

$$
\mathfrak{v} \otimes V_{\mu}=\oplus_{\omega \in \Sigma_{\mathfrak{v}}} P_{\mu+\omega}\left(\mathfrak{v} \otimes V_{\mu}\right), P_{\mu+\omega}\left(\mathfrak{v} \otimes V_{\mu}\right) \neq\{0\}
$$

Proof. There exists a finite covering group K^{*} of K such that the function $\xi_{\rho_{K}}(\exp H)$ $=e^{\rho_{K}(H)}(H \in \mathfrak{b})$ is well- defined, where $X \rightarrow \exp (X)$ is the exponential mapping of \mathfrak{k} to K^{*}. Let B^{*} be the Cartan subgroup of K^{*} corresponding to \mathfrak{b}. Define a function Δ_{K} on B^{*} by

$$
\Delta_{K}(\exp H)=\prod_{\alpha \in P_{K}}\left(e^{\frac{1}{2} \alpha(H)}-e^{-\frac{1}{2} \alpha(H)}\right) .
$$

Applying Weyl's character formula to π_{μ} (cf. Theorem 4.46 in [7]), we have

$$
\left(\Delta_{K} \operatorname{trace}\left(\left.\operatorname{Ad}\right|_{\mathfrak{v}} \otimes \pi_{\mu}\right)\right)(\exp H)=\left(\sum_{\omega \in \Sigma_{\mathfrak{v}}} e^{\omega(H)}\right)\left(\sum_{t \in W_{K}} \varepsilon(t) e^{t\left(\mu+\rho_{K}\right)(H)}\right),
$$

where $\varepsilon(t)$ is the signature of t and $\left.\operatorname{Ad}\right|_{\mathfrak{v}}$ is the restriction of the adjoint representation of K to \mathfrak{v}. Since

$$
\sum_{\omega \in \Sigma_{\mathfrak{v}}} e^{\omega(H)}=\sum_{\omega \in \Sigma_{\mathfrak{v}}} e^{t \omega(H)} \quad \text { for all } t \in W_{K}
$$

it follows that

$$
\begin{equation*}
\left(\Delta_{K} \operatorname{trace}\left(\left.\mathrm{Ad}\right|_{\mathfrak{v}} \otimes \pi_{\mu}\right)\right)(\exp H)=\sum_{\omega \in \Sigma_{\mathfrak{v}}} \sum_{t \in W_{K}} \varepsilon(t) e^{t\left(\mu+\omega+\rho_{K}\right)(H)} . \tag{4.11}
\end{equation*}
$$

We now assume that $\mu+\omega \in \Gamma_{K}$ for all $\omega \in \Sigma_{\mathfrak{v}}$, and let $\pi_{\mu+\omega}$ be the simple K-module with the highest weight $\mu+\omega$. By (4.11) we have

$$
\operatorname{trace}\left(\left.\operatorname{Ad}\right|_{\mathfrak{v}} \otimes \pi_{\mu}\right)(k)=\sum_{\omega \in \Sigma_{\mathfrak{v}}} \operatorname{trace} \pi_{\mu+\omega}(k) \quad \text { for all } k \in K
$$

and thus, the assertion of this lemma.
Lemma 4.7. Assume that $\mu+\delta \in \Gamma_{K}$ for all noncompact roots δ. Then for ω in Σ_{n} we have

$$
\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=f(\lambda+\omega ; \omega)
$$

where $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)|=1$ and $\lambda=\mu+\rho_{K}$.
Proof. We choose a K-module \mathfrak{v} satisfying $\omega \in \Sigma_{\mathfrak{v}}$, and let γ_{0} be the highest root in $\Sigma_{\mathfrak{v}}$. Since \mathfrak{v} is a simple K-module, we have $n\left(\omega ; \gamma_{0}\right) \geq 0$. We shall prove the identity in this lemma by using an induction on $n\left(\omega ; \gamma_{0}\right)$. By Lemma 4.6 we have

$$
X_{\omega} \otimes v(\mu)=\sum_{\gamma \in \Sigma_{\mathfrak{v}}} P_{\mu+\gamma}\left(X_{\omega} \otimes v(\mu)\right)
$$

This implies that

$$
\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=1-\sum_{\gamma \in \Sigma_{\mathfrak{v}}, \gamma \neq \omega}\left|P_{\mu+\gamma}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
$$

Moreover, since $P_{\mu+\gamma}\left(\mathfrak{v} \otimes V_{\mu}\right) \neq\{0\}$ for all $\gamma \in \Sigma_{\mathfrak{v}}$, Lemma 3.8 implies that $P_{\mu+\gamma}\left(X_{\omega} \otimes\right.$ $v(\mu)) \neq 0$ iff $\Pi(\omega ; \gamma) \neq \phi$. When $\omega=\gamma_{0}$ we have $\Pi\left(\gamma_{0} ; \gamma\right)=\phi$ for all $\gamma \neq \gamma_{0}, \gamma \in \Sigma_{\mathfrak{v}}$. Therefore $\left|P_{\mu+\gamma_{0}}\left(X_{\gamma_{0}} \otimes v(\mu)\right)\right|^{2}=1$. On the other hand, since $\gamma_{0}+\alpha \notin \Sigma_{\mathfrak{v}}$ for all $\alpha \in P_{K}$, we have $a_{\gamma_{0}}(I)=0$ for all $I \neq \tilde{\phi}, I \in \Pi$. Thus by (4.1)

$$
f\left(\lambda+\gamma_{0} ; \gamma_{0}\right)=1=\left|P_{\mu+\gamma_{0}}\left(X_{\gamma_{0}} \otimes v(\mu)\right)\right|^{2} .
$$

Let us now assume that the formula is true for all roots γ in $\Sigma_{\mathfrak{v}}$ satisfying $0 \leq n\left(\gamma ; \gamma_{0}\right)<$ $n\left(\omega ; \gamma_{0}\right)$. To apply our inductive hypothesis we shall prove that if $\Pi(\omega ; \gamma) \neq \phi$ and $\gamma \neq \omega$, then $n\left(\gamma ; \gamma_{0}\right)<n\left(\omega ; \gamma_{0}\right)$. Let I be an elemen in $\Pi(\omega ; \gamma)$. Then $Q(I)^{*} X_{\omega} \in \mathfrak{g}_{\gamma} \backslash\{0\}$. Since $Q(J)^{*} X_{\gamma} \in \mathfrak{g}_{\gamma_{0}} \backslash\{0\}$ for $J \in \Pi\left(\gamma ; \gamma_{0}\right)$, we have $Q(I \star J)^{*} X_{\omega}=Q(J)^{*} Q(I)^{*} X_{\omega} \in \mathfrak{g}_{\gamma_{0}} \backslash\{0\}$.

This implies that $I \star J \in \Pi\left(\omega ; \gamma_{0}\right)$ for all $J \in \Pi\left(\gamma ; \gamma_{0}\right)$. Since $n\left(\omega ; \gamma_{0}\right) \geq \sharp(I \star J)=\sharp I+\sharp J$ and $\sharp I \geq 1$, we have $n\left(\gamma ; \gamma_{0}\right)<n\left(\omega ; \gamma_{0}\right)$. Applying Lemma 4.3 to $P_{\mu+\gamma}\left(X_{\omega} \otimes v(\mu)\right)$ for $\gamma \neq \omega, \gamma \in \Sigma_{\mathfrak{v}}$ satisfying $\Pi(\omega ; \gamma) \neq \phi$ we have

$$
\begin{aligned}
& \left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \\
& \quad=1-\sum_{\gamma \in \Sigma_{\mathfrak{v}}, \gamma \neq \omega} \sum_{J \in \Pi(\omega ; \gamma)} a_{\omega}(J) T(\lambda+\omega ; J)\left|P_{\mu+\gamma}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2},
\end{aligned}
$$

hence by the inductive hypothesis,

$$
\begin{aligned}
& =1-\sum_{\gamma \neq \omega, J \in \Pi(\omega ; \gamma)} \sum_{L \in \Pi}(-1)^{\sharp L} \times a_{\omega}(J) a_{\gamma}(L) T(\lambda+\omega ; J) S(\lambda+\gamma ; L) \\
& =1-\sum_{\gamma \neq \omega, J \in \Pi(\omega ; \gamma)} \sum_{L \in \Pi}(-1)^{\sharp L} \times a_{\omega}(J) a_{\gamma}(L) T(\lambda+\omega ; J) S(\lambda+\omega+\langle J\rangle ; L) .
\end{aligned}
$$

Since $a_{\omega}(J) a_{\gamma}(L)=a_{\omega}(J \star L)$ and $\cup_{\gamma \in \Sigma_{\mathfrak{v}}, \gamma \neq \omega} \Pi(\omega ; \gamma)=\left\{J \in \Pi: J \neq \tilde{\phi}, a_{\omega}(J) \neq 0\right\}$, we have from Lemma 4.4

$$
\begin{aligned}
\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} & =1-\sum_{\sharp I \geq 1} \sum_{J \star L=I, J \neq \tilde{\phi}}(-1)^{\sharp L} a_{\omega}(I) T(\lambda+\omega ; J) S(\lambda+\omega+\langle J\rangle ; L) \\
& =\sum_{I \in \Pi} \sum_{J \star L=I, J \neq \tilde{\phi}}(-1)^{\sharp I} a_{\omega}(I) S(\lambda+\omega ; I) \\
& =f(\lambda+\omega ; \omega) .
\end{aligned}
$$

REMARK. The assumption of this lemma is crucial to apply our induction. For example, it is not trivial that $P_{\mu+\omega}(\mathfrak{v} \otimes v(\mu))=0$ for $\omega \in \Sigma_{\mathfrak{v}}, \mu+\omega \in \Gamma_{K}$ implies $f(\lambda+\omega ; \omega)=0$.

The following two lemmas will be applied to prove Theorem 5.5.
Lemma 4.8. Let $\omega \in \Sigma_{n}$ and $\mu \in \Gamma_{K}$. Assume that $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes\right.$ $\left.V_{\mu}\right) \neq\{0\}$. Then we have

$$
\sum_{\gamma \in \Sigma_{n}}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=f(-\lambda-\omega ;-\omega)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
$$

Proof. We can assume that $\omega \in \Sigma_{\mathfrak{v}}$. Since $P_{\mu+\omega}\left(\tau(\mathfrak{v}) \otimes V_{\mu}\right)=\{0\}$, it is sufficient to prove that

$$
\sum_{\gamma \in \Sigma_{\mathfrak{v}}}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=f(-\lambda-\omega ;-\omega)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
$$

Let γ be an element in $\Sigma_{\mathfrak{v}}$ satisfying $n(\gamma ; \omega) \geq 1$. First we define a mapping ψ of $\Pi(\gamma ; \omega)$ to $\Pi(-\omega ;-\gamma)$ by

$$
\psi(I)=\left(\alpha_{p}, \alpha_{p-1}, \cdots, \alpha_{1}\right) \quad \text { for } I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right) \in \Pi(\gamma ; \omega)
$$

Actually, since

$$
\begin{aligned}
\phi\left(\operatorname{ad}\left(Q(I)^{*}\right) X_{\gamma}, X_{-\omega}\right) & =\phi\left(\operatorname{ad}\left(X_{\alpha_{p}} X_{\alpha_{p-1}} \cdots X_{\alpha_{1}}\right) X_{\gamma}, X_{-\omega}\right) \\
& =(-1)^{p} \phi\left(X_{\gamma}, \operatorname{ad}\left(X_{\alpha_{1}} X_{\alpha_{2}} \cdots X_{\alpha_{p}}\right) X_{-\omega}\right) \\
& =(-1)^{p} \phi\left(Q(\psi(I))^{*} X_{-\omega}, X_{\gamma}\right),
\end{aligned}
$$

Definition 3.7 implies that $\psi(I) \in \Pi(-\omega,-\gamma)$. Furthermore, we have (see Definition 4.1)

$$
\begin{equation*}
a_{\gamma}(I)=a_{-\omega}(\psi(I)) \quad \text { for } \quad I \in \Pi(\gamma ; \omega) \tag{4.12}
\end{equation*}
$$

and ψ is bijective, because ψ^{2} is the identity on $\Pi(\gamma, \omega)$. Next we shall prove that

$$
\begin{align*}
& T(\lambda+\gamma ; I)=(-1)^{\sharp I} S(-\lambda-\omega ; \psi(I)) \quad \text { for all } \gamma \in \Sigma_{\mathfrak{v}} \text { and } \\
& I \in \Pi(\gamma ; \omega) \text { satisfying } n(\gamma ; \omega) \geq 1, \tag{4.13}
\end{align*}
$$

by an induction on $n(\gamma ; \omega) \geq 1$. Suppose that $n(\gamma ; \omega)=1$. Then we have immediately $T(\lambda+\gamma ; I)=-S(-\lambda-\omega ; I)$. Let γ be an elemaent in $\Sigma_{\mathfrak{v}}$ satisfying $1<n(\gamma, \omega)$. Let us assume that the identity (4.13) is true for all δ in $\Sigma_{\mathfrak{v}}$ satisfying $1 \leq n(\delta ; \omega)<n(\gamma, \omega)$. Let I be an element in $\Pi(\gamma ; \omega)$. We can assume that $I=\alpha \star I^{\prime}$ for $\alpha \in P_{K}$ and $I^{\prime} \in \Pi(\gamma+\alpha ; \omega)$. Then by (4.5)

$$
\begin{equation*}
T(\lambda+\gamma ; I)=R(\lambda+\gamma ; I) T\left(\lambda+\gamma+\alpha ; I^{\prime}\right) \tag{4.14}
\end{equation*}
$$

Since $n(\gamma+\alpha ; \omega)<n(\gamma ; \omega)$, the inductive hypothesis implies that

$$
T\left(\lambda+\gamma+\alpha ; I^{\prime}\right)=(-1)^{\sharp I^{\prime}} S\left(-\lambda-\omega ; \psi\left(I^{\prime}\right)\right) .
$$

Since $\gamma+\langle I\rangle=\omega$, we have $R(\lambda+\gamma ; I)=-R(-\lambda-\omega ; \psi(I))$. Consequently, by (4.14) and (4.4) we conclude that

$$
\begin{aligned}
T(\lambda+\gamma ; I) & =(-1)^{\sharp I} R(-\lambda-\omega ; \psi(I)) S\left(-\lambda-\omega ; \psi\left(I^{\prime}\right)\right) \\
& =(-1)^{\sharp I} S(-\lambda-\omega ; \psi(I)) .
\end{aligned}
$$

Hence we have (4.13). Let us now prove this lemma. By using Lemma 4.3, we have

$$
\begin{aligned}
\sum_{\gamma \in \Sigma_{\mathfrak{v}}}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} & =\sum_{\gamma \in \Sigma_{\mathfrak{v}}} \sum_{I \in \Pi(\gamma ; \omega)} a_{\gamma}(I) T(\lambda+\gamma ; I)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \\
& =\sum_{\gamma \in \Sigma_{n}} \sum_{I \in \Pi(\gamma ; \omega)} a_{\gamma}(I) T(\lambda+\gamma ; I)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \\
& =\sum_{I \in \Pi}(-1)^{\sharp I} a_{-\omega}(I) S(-\lambda-\omega ; I)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \\
& =f(-\lambda-\omega ;-\omega)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
\end{aligned}
$$

Here we used (4.12) and (4.13). By Lemma 4.7 and Lemma 4.8 we have immediately the following lemma.

Corollary 4.9. Let $\mu \in \Gamma_{K}$, and assume that $\mu+\delta \in \Gamma_{K}$ for all $\delta \in \Sigma_{n}$. Then we have

$$
\sum_{\gamma \in \Sigma_{n}}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=f(-\lambda-\omega ;-\omega) f(\lambda+\omega ; \omega)
$$

for each ω in Σ_{n}.

5. Functional equations of $f(\eta ; \omega)$

For each ω in Σ_{n}, we shall consider the rational function $f(\eta ; \omega)$ in η (see (4.1)). Our purpose of this section is to prove Theorem 5.4 and Theorem 5.5. We note that Theorem 5.5 is a refinement of Lemma 4.7.

Lemma 5.1. Let $\mu \in \Gamma_{K}$, and assume that $\mu+\omega \in \Gamma_{K}, P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$ for a noncompact root $\omega \in \Sigma_{n}$. Then we have

$$
\begin{gather*}
\prod_{\alpha \in P_{K}}(\lambda, \alpha)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=\prod_{\alpha \in P_{K}}(\lambda+\omega, \alpha)\left|P_{\mu}\left(X_{-\omega} \otimes v(\mu+\omega)\right)\right|^{2} \tag{5.1}\\
\sum_{\gamma \in \Sigma_{n}}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=\prod_{\alpha \in P_{K}} \frac{(\lambda+\omega, \alpha)}{(\lambda, \alpha)} \tag{5.2}
\end{gather*}
$$

where $v(\mu)($ resp. $v(\mu+\omega))$ is a highest weight vector in $V_{\mu}\left(\right.$ resp. $\left.V_{\mu+\omega}\right)$ normalized as $|v(\mu)|=|v(\mu+\omega)|=1$, and $\lambda=\mu+\rho_{K}$.

REmARK. The identity (5.1) is due to N. Tatsuuma (cf. [9]).
Proof of Lemma 5.1. By Schur orthogonality relation we have

$$
\begin{aligned}
C & =\int_{K}\left(k\left(X_{\omega} \otimes v(\mu)\right), X_{\omega} \otimes v(\mu)\right) \overline{(k v(\mu+\omega), v(\mu+\omega))} d k \\
& =\int_{K}\left(k P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right) \overline{(k v(\mu+\omega), v(\mu+\omega))} d k \\
& =\left(\operatorname{deg} \pi_{\mu+\omega}\right)^{-1}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
C & =\int_{K}\left(k X_{\omega}, X_{\omega}\right)(k v(\mu), v(\mu)) \overline{(k v(\mu+\omega), v(\mu+\omega))} d k \\
& =\int_{K}(k v(\mu), v(\mu)) \overline{\left(k\left(X_{-\omega} \otimes v(\mu+\omega)\right), X_{-\omega} \otimes v(\mu+\omega)\right)} d k \\
& =\int_{K}(k v(\mu), v(\mu)) \overline{\left(k P_{\mu}\left(X_{-\omega} \otimes v(\mu+\omega)\right), P_{\mu}\left(X_{-\omega} \otimes v(\mu+\omega)\right)\right)} d k \\
& =\left(\operatorname{deg} \pi_{\mu}\right)^{-1}\left|P_{\mu}\left(X_{-\omega} \otimes v(\mu+\omega)\right)\right|^{2} .
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\operatorname{deg} \pi_{\mu}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=\operatorname{deg} \pi_{\mu+\omega}\left|P_{\mu}\left(X_{-\omega} \otimes v(\mu+\omega)\right)\right|^{2} \tag{5.3}
\end{equation*}
$$

Bearing in mind deg $\pi_{\mu}=\prod_{\alpha \in P_{K}} \frac{(\lambda, \alpha)}{\left(\rho_{K}, \alpha\right)}$ and the corresponding formula for $\operatorname{deg} \pi_{\mu+\omega}$, (5.3) implies the identity (5.1). Let us prove the identity (5.2). Let $\left\{u_{i}: 1 \leq i \leq N\right\}, N=$ $\operatorname{deg} \pi_{\mu+\omega}$, be an orthonormal basis of $V_{\mu+\omega}$. By using Schur orthogonality relation, we have

$$
\begin{align*}
E & =\sum_{\gamma \in \Sigma_{n}} \sum_{i=1}^{N} \int_{K}\left(k\left(X_{\gamma} \otimes v(\mu)\right), X_{\gamma} \otimes v(\mu)\right) \overline{\left(k u_{i}, u_{i}\right)} d k \\
& =\sum_{\gamma \in \Sigma_{n}} \sum_{i=1}^{N} N^{-1}\left(P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right), u_{i}\right) \overline{\left(P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right), u_{i}\right)} \tag{5.4}\\
& =N^{-1} \sum_{\gamma \in \Sigma_{n}}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} .
\end{align*}
$$

On the other hand, we have

$$
\begin{aligned}
E & =\int_{K}(k v(\mu), v(\mu)) \sum_{\gamma \in \Sigma_{n}} \sum_{i=1}^{N} \overline{\left(k X_{-\gamma}, X_{-\gamma}\right)\left(k u_{i}, u_{i}\right)} d k \\
& =\int_{K}(k v(\mu), v(\mu)) \overline{\operatorname{trace}\left(\operatorname{Ad} \otimes \pi_{\mu+\omega}\right)(k)} d k \\
& =m(\mu) \int_{K}(k v(\mu), v(\mu)) \overline{\operatorname{trace} \pi_{\mu}(k)} d k \\
& =m(\mu)\left(\operatorname{deg} \pi_{\mu}\right)^{-1} .
\end{aligned}
$$

Here we used

$$
\operatorname{trace}\left(\operatorname{Ad} \otimes \pi_{\mu+\omega}\right)(k)=\sum_{\gamma \in \Sigma_{n}, \mu+\omega+\gamma \in \Gamma_{K}} m(\mu+\omega+\gamma) \operatorname{trace}\left(\pi_{\mu+\omega+\gamma}(k)\right),
$$

where $m(\mu+\omega+\gamma)=1$ or $=0$ (see Lemma 3.4). Hence by (5.4) we have the identity (5.2).
We define a subset D of Γ by

$$
\begin{equation*}
D=\left\{\mu \in \Gamma: 2\left(\mu, \beta_{i}\right)\left|\beta_{i}\right|^{-2} \geq 9 \text { for all } i=1,2, \cdots, \ell\right\} \tag{5.5}
\end{equation*}
$$

where $\Psi=\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{\ell}\right\}$ is the same as in (4.8).
Lemma 5.2. Let μ be an element in D. Then we have $\mu+\omega \in \Gamma$ for all $\omega \in \Sigma_{n}$. Furthermore, we have $6 n \lambda_{i}+\mu \in D$ for all positive integers n and $i=1,2, \cdots, \ell$.

Proof. Let ω be a noncompact root in Σ. Since μ and ω are integral, $\mu+\omega$ is also an integral form on $\mathfrak{b}_{\mathbf{C}}$. We shall prove $\mu+\omega$ is P-dominant. Let α be a root in P. By (2.5) we have

$$
\begin{equation*}
2(\mu+\omega, \alpha)|\alpha|^{-2} \geq 2(\mu, \alpha)|\alpha|^{-2}-3 \tag{5.6}
\end{equation*}
$$

Let $\alpha=\sum_{i=1}^{\ell} m_{i} \beta_{i}$ be the expression of α by the simple roots in Ψ. Then all $m_{i}^{\prime} \mathrm{s}$ are nonnegative integers. Furthermore, we can assume that $m_{k}>0$ for $k, 1 \leq k \leq \ell$. Since $\left|\beta_{k}\right|^{2}|\alpha|^{-2} \geq 1 / 3$ and $2\left(\mu, \beta_{k}\right)\left|\beta_{k}\right|^{-2} \geq 9$, we have

$$
2(\mu, \alpha)|\alpha|^{-2} \geq m_{k}\left(2\left(\mu, \beta_{k}\right)\left|\beta_{k}\right|^{-2}\right)\left(\left|\beta_{k}\right|^{2}|\alpha|^{-2}\right) \geq 3
$$

Hence by (5.6), we have $2(\mu+\omega, \alpha)|\alpha|^{-2} \geq 0$. Thus $\mu+\omega \in \Gamma$ as claimed. Let us prove the second assertion of this lemma. It is sufficient to prove that $6 n \lambda_{i} \in \Gamma$. Let α be as above. If $m_{i}=0$, we have $2\left(6 n \lambda_{i}, \alpha\right)=0$. Assume that $m_{i}>0$. Since

$$
2\left(6 n \lambda_{i}, \alpha\right)|\alpha|^{-2}=6 m_{i} n\left(\left|\beta_{i}\right|^{2}|\alpha|^{-2}\right)
$$

(2.5) implies that $6 n \lambda_{i}$ is a P-dominant integral form on $\mathfrak{b}_{\mathbf{C}}$.

Lemma 5.3. Let F be an element in $\mathbf{R}[\eta]$. Suppose that $F(\lambda)=0$ for all $\lambda \in D+\rho_{K}$. Then we have $F \equiv 0$.

Proof. F is written by

$$
\begin{equation*}
F(\eta)=\sum_{i=0}^{m}\left(\eta_{1}\right)^{i} F_{i}\left(\eta_{2}, \cdots, \eta_{\ell}\right) \tag{5.7}
\end{equation*}
$$

Let $\lambda=\mu+\rho_{K}$ be an element in $D+\rho_{K}$. We put $\lambda=\sum_{i=1}^{\ell} p_{i} \lambda_{i}$. Then p_{i} is a rational number. We shall prove the assertion by using an induction on ℓ. We first assume that $F(\eta)=$ $F\left(\eta_{1}\right)$. By Lemma 5.2 we have $6 n \lambda_{1}+\lambda \in D+\rho_{K}$ for all positive integers n. Hence by our assumption for F, we have $F\left(\left(6 n+p_{1}\right) \lambda_{1}\right)=0$. Since the polynomial $F\left(\eta_{1}\right)$ has the infinitely many zeros, we have $F \equiv 0$. Let F be the same as in (5.7). Since $\sum_{i=0}^{m}(6 n+$ $\left.p_{1}\right)^{i} F_{i}\left(p_{2}, \cdots, p_{\ell}\right)=0$ for all positive integers n,

$$
F_{i}\left(p_{2}, \cdots, p_{\ell}\right)=0 \quad \text { for all } i=0, \quad 1, \cdots, m
$$

We have $F_{i}(\lambda)=0$ for all i and $\lambda \in D+\rho_{K}$. Thus by the hypothesis of our induction we conclude that $F \equiv 0$.

Let η be an element in $(\sqrt{-1} \mathfrak{b})^{*}$ and α an element in P_{K}. We put $\alpha=\sum_{i=1}^{\ell} m_{i} \beta_{i}$, where m_{i} is a nonnegative integer. Then

$$
(\eta, \alpha)=\sum_{i=1}^{\lambda} \frac{m_{i}}{2}\left|\beta_{i}\right|^{2} \eta_{i}
$$

Especially, $(\eta, \alpha) \in \mathbf{R}[\eta]$ for all $\alpha \in P_{K}$.

THEOREM 5.4. Let ω be an element in Σ_{n}. Then we have the following functional equations in $\mathbf{R}(\eta)$.

$$
\begin{align*}
\prod_{\alpha \in P_{K}}(\eta, \alpha) f(\eta+\omega ; \omega) & =\prod_{\alpha \in P_{K}}(\eta+\omega, \alpha) f(\eta ;-\omega), \tag{5.8}\\
f(\eta+\omega ; \omega) f(-\eta-\omega ;-\omega) & =\prod_{\alpha \in P_{K}}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} . \tag{5.9}
\end{align*}
$$

Proof. We put

$$
f(\eta+\omega ; \omega)=\frac{q(\eta)}{p(\eta)} \text { and } f(\eta ;-\omega)=\frac{s(\eta)}{r(\eta)}
$$

where $p, q, r, s \in \mathbf{R}[\eta]$. By Lemma 4.7 and Lemma 5.1 we have

$$
\prod_{\alpha \in P_{K}}(\lambda, \alpha) f(\lambda+\omega ; \omega)=\prod_{\alpha \in P_{K}}(\lambda+\omega, \alpha) f(\lambda ;-\omega) \quad \text { for all } \lambda \in D+\rho_{K}
$$

This implies that

$$
\prod_{\alpha}(\lambda, \alpha) r(\lambda) q(\lambda)-\prod_{\alpha}(\lambda+\omega, \alpha) s(\lambda) p(\lambda)=0 \quad \text { for all } \lambda \in D+\rho_{K}
$$

By Lemma 5.3 this identity holds for all $\eta \in(\sqrt{-1} \mathfrak{b})^{*}$, and therefore, we have the identity (5.8). The identity (5.9) is also proved by using the same arguments as above.

Theorem 5.5. Let $\mu \in \Gamma_{K}$ and $\omega \in \Sigma_{n}$. Suppose that $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes\right.$ $\left.V_{\mu}\right) \neq\{0\}$ for a noncompact root ω. Then we have

$$
\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=f(\lambda+\omega ; \omega) .
$$

Proof. Combining Lemma 4.8 with Lemma 5.1 we have

$$
f(-\lambda-\omega ;-\omega)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=\prod_{\alpha \in P_{K}}(\lambda+\omega, \alpha)(\lambda, \alpha)^{-1} .
$$

By the second identity in Theorem 5.4, we conclude that

$$
\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=f(\lambda+\omega ; \omega)
$$

The following lemma will be used to calculate the explicit formula of $f(\eta ; \omega)$.
Lemma 5.6. Let $f_{i}, h_{i}(i=1,2)$ be four polynomials in $\mathbf{R}[\eta]$. We assume that $\operatorname{deg} h_{1}=\operatorname{deg} h_{2}=1$ and $f_{1} h_{1}=f_{2} h_{2}$. If h_{2} is distinct to a non-zero constant multiple of h_{1}, then f_{2} is divisible by h_{1}.

Proof. Since $\operatorname{deg} h_{1}=1$, there exists a number $i, 1 \leq i \leq \ell$, such that the first partial derivative $\frac{\partial h_{1}}{\partial \eta_{i}}$ is a non-zero constant. We can assume that $i=1$, and put $\zeta_{1}=h_{1}, \zeta_{i}=\eta_{i}$ for
$2 \leq i \leq \ell$. Then we have $\mathbf{R}[\zeta]=\mathbf{R}\left[\zeta_{1}, \zeta_{2}, \cdots, \zeta_{\ell}\right]=\mathbf{R}[\eta]$. Let $g_{i}(i=1,2)$ and h be three polynomials in $\mathbf{R}[\zeta]$ satisfying $g_{i}(\zeta)=f_{i}(\eta)$ and $h(\zeta)=h_{2}(\eta)$. We put

$$
h(\zeta)=\sum_{i=1}^{\ell} c_{i} \zeta_{i}+c_{0}, g_{1}(\zeta)=\sum_{j=0}^{m} \zeta_{1}^{j} r_{j}(\zeta) \quad \text { and } \quad g_{2}(\zeta)=\sum_{j=0}^{m} \zeta_{1}^{j} s_{j}(\zeta),
$$

where $r_{j}, s_{j} \in \mathbf{R}\left[\zeta_{2}, \cdots, \zeta_{\ell}\right]$ and $c_{i} \in \mathbf{R}$. Since

$$
\begin{aligned}
0 & =f_{1}(\eta) h_{1}(\eta)-f_{2}(\eta) h_{2}(\eta) \\
& =\sum_{j=0}^{m} \zeta_{1}^{j+1} r_{j}(\zeta)-\sum_{j=0}^{m} \zeta_{1}^{j} s_{j}(\zeta)\left(h(\zeta)-c_{1} \zeta_{1}\right)-\sum_{j=0}^{m} c_{1} \zeta_{1}^{j+1} s_{j}(\zeta)
\end{aligned}
$$

we have

$$
\sum_{j=0}^{m} \zeta_{1}^{j+1}\left(r_{j}(\zeta)-c_{1} s_{j}(\zeta)\right)=\sum_{j=0}^{m} \zeta_{1}^{j} s_{j}(\zeta)\left(h(\zeta)-c_{1} \zeta_{1}\right)
$$

Bearing in mind $h(\zeta)-c_{1} \zeta_{1}, s_{j}, r_{j} \in \mathbf{R}\left[\zeta_{2}, \cdots, \zeta_{\ell}\right]$, it follows that $s_{0}(\zeta)\left(h(\zeta)-c_{1} \zeta_{1}\right)=0$. On the other hand, since $h(\zeta)=h_{2}(\eta)$ is not a constant multiple of $\zeta_{1}=h_{1}(\eta)$, we have $h(\zeta)-c_{1} \zeta_{1} \neq 0$. Since $\mathbf{R}[\zeta]$ is an integral domain, we conclude that $s_{0}(\zeta)=0$. Thus $f_{2}(\eta)=\sum_{j=1}^{m} \zeta_{1}^{j} s_{j}(\zeta)$ is divisible by $\zeta_{1}=h_{1}(\eta)$. This completes our proof.

6. Product formula for $f(\eta+\omega ; \omega)$

For each $\omega \in \Sigma_{n}$ we define a rational function $f(\eta ; \omega)$ and a real number $a_{\omega}(I), I \in \Pi$, by Definition 4.1. In this section we shall prove that $f(\eta ; \omega)$ has a product formula. First we define a subset $\hat{\Delta}(\omega)$ in $(\sqrt{-1} \mathfrak{b})^{*}$ by

$$
\begin{equation*}
\hat{\Delta}(\omega)=\left\{\langle I\rangle: a_{\omega}(I) \neq 0, I \in \Pi \backslash \Pi_{0}\right\} . \tag{6.1}
\end{equation*}
$$

We define the polynomials $p_{\xi}(\eta)(\xi \in \hat{\Delta}(\omega))$ and $p(\eta ; \omega)$ in $\mathbf{R}[\eta]$ by

$$
\begin{equation*}
p_{\xi}(\eta)=2(\eta, \xi)+|\xi|^{2}, \quad p(\eta ; \omega)=\prod_{\xi \in \hat{\Delta}(\omega)} p_{\xi}(\eta) \tag{6.2}
\end{equation*}
$$

Since $p(\eta ; \omega)$ is the least common multiple of the denominators of fractional terms $S(\eta ; I)$ $(I \in \Pi)$ in $f(\eta ; \omega)$, there exists a polynomial $g(\eta ; \omega)$ such that

$$
\begin{equation*}
p(\eta ; \omega) f(\eta ; \omega)=g(\eta ; \omega) \tag{6.3}
\end{equation*}
$$

We put $\Delta_{ \pm}(\omega)=\left\{\alpha \in P_{K}: \pm(\omega, \alpha)>0\right\}$. By Theorem 5.4 we have

$$
\begin{align*}
& p(\eta ;-\omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)}(\eta, \alpha) g(\eta+\omega ; \omega) \\
= & p(\eta+\omega ; \omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)}(\eta+\omega, \alpha) g(\eta ;-\omega) \tag{6.4}
\end{align*}
$$

We now define the subsets $\Delta(\omega), \Delta_{m}(\omega)$ and $\Delta_{m}(\omega)^{*}$ of P_{K}, where m is an integer, by

$$
\begin{aligned}
\Delta(\omega) & =\left\{\alpha \in P_{K}: \omega+\alpha \in \Sigma\right\} \\
\Delta_{m}(\omega) & =\left\{\alpha \in P_{K}: 2(\omega, \alpha)|\alpha|^{-2}=m, \omega+\alpha \in \Sigma\right\}, \\
\Delta_{m}(\omega)^{*} & =\left\{\alpha \in \Delta_{m}(\omega): \omega-\alpha \in \Sigma\right\} .
\end{aligned}
$$

We note that $\Delta(\omega) \subset \hat{\Delta}(\omega)$.
Lemma 6.1. Let G be an inner type noncompact real simple Lie group and ω a noncompact root in Σ. Then we have the followings.
(1) $\quad \Delta(\omega)=\Delta_{-}(\omega) \cup \Delta_{0}(\omega) \cup \Delta_{1}(\omega), \quad \Delta_{0}(\omega)=\Delta_{0}(\omega)^{*}$ and $\Delta_{1}(\omega)=\Delta_{1}(\omega)^{*}$.
(2) If $\Delta_{0}(\omega)^{*} \neq \phi$, then G is one of $S_{p}(n, \mathbf{R})$ and $\operatorname{SO}(2 m, 2 n+1)$,
and $\Delta(\omega)=\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)$.
(3) If $\Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*} \neq \phi$, then G is of the type G_{2}.

Proof. Let α be an element in P_{K} and $\omega+j \alpha(-q \leq j \leq p)$ the α-series containing ω. We put $A=\Delta_{-}(\omega) \cup \Delta_{0}(\omega) \cup \Delta_{1}(\omega)$. We first prove that $\Delta(\omega)=A$. Let α be an element in A. Since $\Delta_{0}(\omega) \cup \Delta_{1}(\omega) \subset \Delta(\omega)$, we can assume $\alpha \in \Delta_{-}(\omega)$. Then by (2.3) we have $\alpha \in \Delta(\omega)$, and hence, $A \subset \Delta(\omega)$. Let us now assume that $\alpha \in \Delta(\omega)$. Since $p \geq 1$ and $p+q \leq 3$, (2.3) implies that $\alpha \in A$. Thus $A=\Delta(\omega)$. Moreover, we have $\Delta_{0}(\omega)=\Delta_{0}(\omega)^{*}$ and $\Delta_{1}(\omega)^{*}=\Delta_{1}(\omega)$. Let us prove (2) and (3). Suppose that $\alpha \in \Delta_{0}(\omega)^{*}$. Then $\omega+\alpha \in \Sigma$ and $2(\omega+\alpha, \alpha)|\alpha|^{-2}=2$. In view of (2.8), (2.9), (2.10) and (2.11) we have G is one of $S O(2 m, 2 n+1)$ and $S_{p}(n, \mathbf{R})$. It remains to prove that if $\Delta_{0}(\omega)^{*} \neq \phi$, then $\Delta(\omega)=\Delta_{0}(\omega) \cup \Delta_{-1}(\omega)$. By (1) it is sufficient to prove $\Delta_{-}(\omega)=\Delta_{-1}(\omega)$ and $\Delta_{1}(\omega)=\phi$. If $\Delta_{0}(\omega) \neq \phi$, then ω is a short root. By (2.9) and (2.10) we have $\left.|2(\omega, \alpha)| \alpha\right|^{-2} \mid \leq 1$ for all $\alpha \in P_{K}$. This implies $\Delta_{-}(\omega)=\Delta_{-1}(\omega)$. Suppose that $\alpha \in \Delta_{1}(\omega)$. Since $\omega+\alpha \in \Sigma_{n}$ and $2(\omega+\alpha, \alpha)|\alpha|^{-2}=3, G$ is of the type G_{2}. This implies that $\Delta_{1}(\omega)=\phi$ for the case $\Delta_{0}(\omega)^{*}=\phi$. Consider the case $\Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*} \neq \phi$. When $\Delta_{1}(\omega)^{*}=\Delta_{1}(\omega) \neq \phi$, the above argument implies G is of type G_{2}. If $\alpha \in \Delta_{-1}(\omega)^{*}$, then we have $2(\omega-\alpha, \alpha)|\alpha|^{-2}=$ -3 . This implies also the same conclusion.

Lemma 6.2. Consider a noncompact root ω and a compact root α in P_{K}. Then for each $\xi \in \hat{\Delta}(\omega)$ and $\zeta \in \hat{\Delta}(-\omega)$ we have the followings.
(1) $\quad p_{\xi}(\eta+\omega)$ is divisible by (η, α) iff $\alpha \in \Delta_{-}(\omega)$ and $\xi=-\frac{2(\omega, \alpha)}{|\alpha|^{2}} \alpha$.
(2) $p_{\zeta}(\eta)$ is divisible by $(\eta+\omega, \alpha)$ iff $\alpha \in \Delta_{+}(\omega)$ and $\zeta=\frac{2(\omega, \alpha)}{|\alpha|^{2}} \alpha$.
(3) $\quad p_{\xi}(\eta+\omega)$ is divisible by $p_{\zeta}(\eta)$ iff one of the following three cases;
(i) $\xi=\zeta \in \Delta_{0}(\omega)^{*}, \quad$ (ii) $\xi \in \Delta_{1}(\omega)^{*}$ and $\zeta=2 \xi$,
(iii) $\zeta \in \Delta_{-1}(\omega)^{*}$ and $\xi=2 \zeta$.

Proof. Let us prove (1). Assume that there exists a nonzero real number k such that $p_{\xi}(\eta+\omega)=2 k(\eta, \alpha)$. Then we have $\xi=k \alpha$ and $2(\omega, \alpha)+k|\alpha|^{2}=0$. On the other hand, since $\xi \in \hat{\Delta}(\omega)$, there is $I \in \Pi \backslash \Pi_{0}$ such that $\xi=\langle I\rangle$. This implies that k is a positive real number. Consequently, we have $\alpha \in \Delta_{-}(\omega)$ and $\xi=-\frac{2(\omega, \alpha)}{|\alpha|^{2}} \alpha$. Conversely if α and ξ satisfy these conditions, then we can prove that $p_{\xi}(\eta+\omega)$ is a non-zero constant multiple of (η, α). Similarly by using the same arguments we can prove (2). We shall prove (3). Suppose that there exists a nonzero real number k such that $k p_{\xi}(\eta+\omega)=p_{\zeta}(\eta)$. Then we have

$$
\begin{equation*}
\zeta=k \xi \text { and } 2(\omega, \xi)=(k-1)|\xi|^{2} \tag{6.5}
\end{equation*}
$$

By the first identity in (6.5), k is positive. We put $\delta=\omega+\xi$. Since $\xi \in \hat{\Delta}(\omega)$, it follows from the definition in (6.1) that $\delta \in \Sigma$. We have

$$
\begin{equation*}
|\delta|^{2}-|\omega|^{2}=2(\omega, \xi)+|\xi|^{2}=k|\xi|^{2} \tag{6.6}
\end{equation*}
$$

This implies that $|\delta|^{2}>|\omega|^{2}$. On the other hand, since $|\xi|^{2}=|\delta|^{2}-2(\omega, \delta)+|\omega|^{2}$, we have

$$
\begin{equation*}
2(\omega, \delta)=\left(1+\frac{1}{k}\right)|\omega|^{2}+\left(1-\frac{1}{k}\right)|\delta|^{2} \tag{6.7}
\end{equation*}
$$

When $|\delta|^{2}=2|\omega|^{2}$, we have $k=1$ and $\frac{2(\delta, \omega)}{|\omega|^{2}}=2$. Therefore $\xi=\zeta \in \Delta_{0}(\omega)^{*}$ which is the case (i). When $|\delta|^{2}=3|\omega|^{2}$, (6.7) implies that $2(\omega, \delta)=(4-2 / k)|\omega|^{2}$. Since

$$
\frac{2(\delta, \omega)}{|\omega|^{2}} \in\{0, \pm 3\}
$$

it follows that $k=2$ or $k=1 / 2$ or $k=2 / 7$. In the first case, we have $\delta-\omega=\xi \in \Delta_{1}(\omega)^{*}$ and $\zeta=2 \xi$. Let us consider the second case: $\frac{2(\delta, \omega)}{|\omega|^{2}}=0$ and $k=1 / 2$. We put $\delta^{\prime}=-\omega+\zeta$. Then we have $\delta^{\prime} \in \Sigma$. Furthermore, by (6.5) we have

$$
2(\omega, \zeta)=-\frac{1}{4}|\xi|^{2}=-\frac{1}{4}|\delta-\omega|^{2}=-|\omega|^{2}
$$

Therefore

$$
2\left(\delta^{\prime}, \omega\right)=2(\zeta, \omega)-2|\omega|^{2}=-3|\omega|^{2}
$$

Hence we have $\zeta=\delta^{\prime}+\omega \in \Sigma$ and $2(\zeta, \omega)=-|\omega|^{2}=-|\zeta|^{2}$. Thus $\zeta \in \Delta_{-1}(\omega)^{*}$ and $\xi=2 \zeta$. Suppose that $k=2 / 7$. Since $\xi \in \hat{\Delta}(\omega)$, there are two nonnegative integers p, q such that $\xi=p \alpha_{0}+q \alpha_{2}$, where $\left\{\alpha_{0}, \alpha_{2}\right\}$ is the positive root system P_{K} of type G_{2} (see (2.11)). Since $|\delta|^{2}=3|\omega|^{2}$, the equation in (6.6) implies that $\xi=\alpha_{0}+2 \alpha_{2}$. Then, $\zeta=\frac{2}{7} \xi \notin \hat{\Delta}(-\omega)$. This is contradict to the assumption $\zeta \in \hat{\Delta}(-\omega)$. Thus the final case does not occur.

Let ω be a fixed noncompact root in Σ_{n}. In order to calculate a product formula for $f(\eta ; \omega)$ we shall consider two cases: $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*}$ is empty or not. For the first case
we define two polynomials $p(\eta ; \omega)$ and $g(\eta ; \omega)$ as in (6.3). We now put

$$
\begin{aligned}
p^{\prime}(\eta+\omega ; \omega) & =p(\eta+\omega ; \omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)}(\eta+\omega, \alpha), \\
p^{\prime}(\eta ;-\omega) & =p(\eta ;-\omega) \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)}(\eta, \alpha) .
\end{aligned}
$$

Then by (6.4) we have

$$
\begin{equation*}
p^{\prime}(\eta ;-\omega) g(\eta+\omega ; \omega)=p^{\prime}(\eta+\omega ; \omega) g(\eta ;-\omega) \tag{6.8}
\end{equation*}
$$

We also define two polynomials $s(\eta ; \omega)$ and $q(\eta ; \omega)$ in $\mathbf{R}[\eta]$ by

$$
\begin{align*}
& s(\eta ; \omega)=\prod_{\alpha \in \Delta_{0}(\omega)^{*}}\left(2(\eta, \alpha)+|\alpha|^{2}\right) \\
& q(\eta ; \omega)=s(\eta ; \omega) \prod_{\alpha \in \Delta_{-}(\omega)}(\eta-\omega, \alpha) \prod_{\alpha \in \Delta_{+}(\omega)}(\eta, \alpha) \tag{6.9}
\end{align*}
$$

Since $q(\eta ; \omega)$ and $s(\eta ; \omega)$ are invariant under the transformation: $(\eta, \omega) \rightarrow(\eta-\omega,-\omega)$, we can define $q(\eta ;-\omega)$ and $s(\eta ;-\omega)$ by

$$
\begin{equation*}
q(\eta ;-\omega)=q(\eta+\omega ; \omega) \quad \text { and } \quad s(\eta ;-\omega)=s(\eta+\omega ; \omega) . \tag{6.10}
\end{equation*}
$$

Lemma 6.3. Assume that $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*}=\phi$. Then the greatest common divisor of $p^{\prime}(\eta+\omega ; \omega)$ and $p^{\prime}(\eta ;-\omega)$ is given by $q(\eta+\omega ; \omega)=q(\eta ;-\omega)$.

Proof. By (6.2) we have $p(\eta+\omega ; \omega)=\prod_{\xi \in \hat{\Delta}(\omega)} p_{\xi}(\eta+\omega)$. The polynomials $p_{\xi}(\eta)$ and $p_{\zeta}(\eta)$ are mutually prime for two distinct ξ and ζ in $\hat{\Delta}(\omega)$. Actually, if $p_{\xi}(\eta)=c p_{\zeta}(\eta)$ for a non-zero real number c, then $\xi=c \zeta$ and $|\xi|^{2}=c|\zeta|^{2}$. These imply $c=1$ and $\xi=\zeta$. Let p be a common prime divisor of $p^{\prime}(\eta+\omega ; \omega)$ and $p^{\prime}(\eta ;-\omega)$. Since p is a divisor of $p^{\prime}(\eta+\omega ; \omega)$, we can assume that $p=p_{\xi}(\eta+\omega)(\xi \in \hat{\Delta}(\omega))$ or $p=(\eta+\omega, \alpha)\left(\alpha \in \Delta_{-}(\omega) \cup\right.$ $\left.\Delta_{+}(\omega)\right)$. If $p=p_{\xi}(\eta+\omega)$, then the formula of $p^{\prime}(\eta ;-\omega)$ implies that $c p=(\eta, \beta), \beta \in$ $\Delta_{-}(\omega) \cup \Delta_{+}(\omega)$ or $c p=p_{\zeta}(\eta), \zeta \in \hat{\Delta}(-\omega)$, where c is a constant. In the first case, (1) in Lemma 6.2 implies $c p=(\eta, \beta), \beta \in \Delta_{-}(\omega)$. For the second case, from (3) in Lemma 6.2 it follows that $c p=2(\eta, \beta)+|\beta|^{2}, \beta \in \Delta_{0}(\omega)^{*}$. If $p=(\eta+\omega, \alpha), \alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)$, then by (2) in Lemma 6.2 we have $\alpha \in \Delta_{+}(\omega)$. Therefore, p is a divisor of

$$
q(\eta+\omega ; \omega)=\prod_{\gamma \in \Delta_{-}(\omega)}(\eta, \gamma) \prod_{\gamma \in \Delta_{+}(\omega)}(\eta+\omega, \gamma) \prod_{\gamma \in \Delta_{0}(\omega)^{*}}\left(2(\eta, \gamma)+|\gamma|^{2}\right) .
$$

Thus $q(\eta+\omega ; \omega)$ is divisible by all common prime divisors of $p^{\prime}(\eta+\omega ; \omega)$ and $p^{\prime}(\eta ;-\omega)$. Again by Lemma $6.2 q(\eta+\omega ; \omega)$ is a common divisor of $p^{\prime}(\eta+\omega ; \omega)$ and $p^{\prime}(\eta ;-\omega)$ which implies the conclusion of this lemma.

We keep the assumption $\Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$, and put $h(\eta ; \omega)=p^{\prime}(\eta ; \omega) q(\eta ; \omega)^{-1}$, $h(\eta ;-\omega)=p^{\prime}(\eta ;-\omega) q(\eta ;-\omega)^{-1}$. By (6.8) we have

$$
\begin{equation*}
h(\eta ;-\omega) g(\eta+\omega ; \omega)=h(\eta+\omega ; \omega) g(\eta ;-\omega) \tag{6.11}
\end{equation*}
$$

By Lemma 6.3, $h(\eta+\omega ; \omega)$ and $h(\eta ;-\omega)$ are mutually prime. Therefore, it follows from Lemma 5.6 that there are two polynomials $k(\eta ; \omega)$ and $k(\eta ;-\omega)$ such that

$$
\begin{equation*}
g(\eta+\omega ; \omega)=k(\eta+\omega ; \omega) h(\eta+\omega ; \omega), \quad g(\eta ;-\omega)=k(\eta ;-\omega) h(\eta ;-\omega) . \tag{6.12}
\end{equation*}
$$

Substituting the first identity for (6.3), we have

$$
\begin{aligned}
f(\eta+\omega ; \omega) & =g(\eta+\omega ; \omega) p(\eta+\omega ; \omega)^{-1} \\
& =k(\eta+\omega ; \omega) h(\eta+\omega ; \omega) p(\eta+\omega ; \omega)^{-1} \\
& =k(\eta+\omega ; \omega) p^{\prime}(\eta+\omega ; \omega)(q(\eta+\omega ; \omega) p(\eta+\omega ; \omega))^{-1} \\
& =k(\eta+\omega ; \omega) \prod_{\alpha \in \Delta_{-}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} s(\eta+\omega ; \omega)^{-1}
\end{aligned}
$$

Lemma 6.4. Assume that $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*}=\phi$. Then we have $k(\eta+\omega ; \omega)=$ $k(\eta ;-\omega)$ and the following identities.
(1) $f(\eta+\omega ; \omega)=k(\eta+\omega ; \omega) \prod_{\alpha \in \Delta_{-}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} s(\eta+\omega ; \omega)^{-1}$,

$$
f(\eta ;-\omega)=k(\eta ;-\omega) \prod_{\alpha \in \Delta_{+}(\omega)}(\eta, \alpha)(\eta+\omega, \alpha)^{-1} s(\eta ;-\omega)^{-1} .
$$

(2) $k(-\eta-\omega ;-\omega) k(\eta+\omega ; \omega)=s(-\eta-\omega ;-\omega) s(\eta+\omega ; \omega)$.

Proof. The first identity in (1) is already shown, and the second one also follows from the same calculation. It remains to prove the identities $k(\eta+\omega ; \omega)=k(\eta ;-\omega)$ and (2). By using the first identity in Theorem 5.4 we have

$$
\prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)}(\eta, \alpha) f(\eta+\omega ; \omega)=\prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)}(\eta+\omega, \alpha) f(\eta ;-\omega)
$$

Hence by (6.10) and the identities in (1), we have $k(\eta+\omega ; \omega)=k(\eta ;-\omega)$. By the second identity in (1) we have

$$
f(-\eta-\omega ;-\omega)=k(-\eta-\omega ;-\omega) \prod_{\alpha \in \Delta_{+}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} s(-\eta-\omega,-\omega)^{-1}
$$

and then, by the first identity in (1) we have

$$
\begin{aligned}
f(\eta+\omega ; \omega) f(-\eta-\omega ;-\omega)= & k(\eta+\omega ; \omega) k(-\eta-\omega ;-\omega)\{s(\eta+\omega ; \omega) s(-\eta-\omega ;-\omega)\}^{-1} \\
& \times \prod_{\alpha \in \Delta_{-}(\omega) \cup \Delta_{+}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1}
\end{aligned}
$$

Therefore, the second identity in Theorem 5.4 implies the assertion of (2).
ThEOREM 6.5. Let G be an inner type noncompact real simple Lie group and ω a noncompact root. We define $f(\eta ; \omega)$ by (4.1). Then $f(\eta ; \omega)$ has one of the following product formulae.
(1) If $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$, then

$$
f(\eta+\omega ; \omega)=\prod_{\alpha \in \Delta_{-}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1}
$$

(2) If $\Delta_{0}(\omega)^{*} \neq \phi$, then $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*}=\phi$ and

$$
\begin{aligned}
f(\eta+\omega ; \omega)= & \prod_{\alpha \in \Delta_{0}(\omega)^{*}}\left(2(\eta, \alpha)-|\alpha|^{2}\right)\left(2(\eta, \alpha)+|\alpha|^{2}\right)^{-1} \\
& \times \prod_{\alpha \in \Delta_{-1}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1}
\end{aligned}
$$

(3) If $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \neq \phi$, then $\Delta_{0}(\omega)^{*}=\phi$ and

$$
\begin{aligned}
f(\eta+\omega ; \omega)= & \prod_{\alpha \in \Delta_{-}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} \prod_{\alpha \in \Delta_{1}(\omega)^{*}}\left(2(\eta, \alpha)-|\alpha|^{2}\right)\left\{2\left((\eta, \alpha)+|\alpha|^{2}\right)\right\}^{-1} \\
& \times \prod_{\alpha \in \Delta_{-1}(\omega)^{*}} 2\left((\eta, \alpha)-|\alpha|^{2}\right)\left(2(\eta, \alpha)+|\alpha|^{2}\right)^{-1}
\end{aligned}
$$

Proof. If $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$, then by (6.9) we have $s(\eta+\omega ; \omega)=1$. (2) in Lemma 6.4 implies that $k(\eta+\omega ; \omega)=c$, where c is a real constant. Hence by (1) in Lemma 6.4

$$
f(\eta+\omega ; \omega)=c \prod_{\alpha \in \Delta_{-}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1}
$$

We shall prove $c=1$. Let λ_{0} be a P_{K}-regular dominant integral form on $\mathfrak{b}_{\mathbf{C}}$. By the above identity, we have

$$
\lim _{a \rightarrow+\infty} f\left(a \lambda_{0}+\omega ; \omega\right)=c .
$$

Let $S(\eta ; I), I \in \Pi$, be the rational function as in Definition 4.1. Since $\lim _{a \rightarrow+\infty} S\left(a \lambda_{0} ; I\right)=$ 0 for $I \neq \tilde{\phi}$, we have $\lim _{a \rightarrow+\infty} f\left(a \lambda_{0}+\omega\right)=1$. Hence we can prove (1). Let us assume that $\Delta_{0}(\omega)^{*} \neq \phi$. By (2), (3) in Lemma 6.1 we have $\Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$ and $\Delta_{-}(\omega)=$ $\Delta_{-1}(\omega)$. We put

$$
\begin{aligned}
& s(\eta)=s(\eta+\omega ; \omega), \quad k(\eta)=k(\eta+\omega ; \omega), \\
& u(\eta)=\sum_{\alpha \in \Pi_{1}} a_{\omega}(\alpha) p_{\alpha}(\eta+\omega)^{-1}, \\
& v(\eta)=\prod_{\alpha \in \Delta_{-1}(\omega)}(\eta+\omega, \alpha),
\end{aligned}
$$

$$
\begin{aligned}
& w(\eta)=\prod_{\alpha \in \Delta_{-1}(\omega)}(\eta, \alpha) \\
& r(\eta)=f(\eta+\omega ; \omega)-1+u(\eta)
\end{aligned}
$$

By (4.1) there exist two polynomials r_{1}, r_{2} in $\mathbf{R}[\eta]$ such that $r=r_{1} r_{2}^{-1}$ and $\operatorname{deg} r_{1} \leq \operatorname{deg} r_{2}-$ 2. Since each prime divisor of r_{2} is of degree one, it follows from Lemma 5.6 that we can assume r_{1} and r_{2} are mutually prime. By (1) in Lemma 6.4 we have

$$
\begin{equation*}
s(\eta)\{1-u(\eta)+r(\eta)\} w(\eta)=k(\eta) v(\eta) . \tag{6.13}
\end{equation*}
$$

Let N be the degree of the polynomial $k(\eta) v(\eta)$. We shall prove that $s r w$ is a plolynomial and $\operatorname{deg}(s r w) \leq N-2$. By (2) in Lemma 6.1 and (2.4) we have

$$
\begin{align*}
u(\eta) & =\sum_{\alpha \in \Delta(\omega)} a_{\omega}(\alpha) p_{\alpha}(\eta+\omega)^{-1} \\
& =\sum_{\alpha \in \Delta_{0}(\omega)^{*}} 2|\alpha|^{2}\left(2(\eta, \alpha)+|\alpha|^{2}\right)^{-1}+\sum_{\alpha \in \Delta_{-1}(\omega)} \frac{1}{2}|\alpha|^{2}(\eta, \alpha)^{-1} \tag{6.14}
\end{align*}
$$

By this formula and (6.9) suw is a plynomial in η, and hence by (6.13), srw is also a polynomial and $\operatorname{deg}(s r w) \leq N-2$. Then it follows from (6.14) that

$$
\begin{align*}
s(\eta+\omega ; \omega) & (1-u(\eta)+r(\eta)) w(\eta) \\
= & \prod_{\alpha \in \Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)}(\eta, \alpha)-\sum_{\alpha \in \Delta_{0}(\omega)^{*}}|\alpha|^{2} \prod_{\beta \in\left(\Delta_{0}(\omega)^{*} \backslash\{\alpha\}\right) \cup \Delta_{-1}(\omega)}(\eta, \beta) \tag{6.15}\\
& -\sum_{\alpha \in \Delta_{-1}(\omega)^{*}} \frac{1}{2}|\alpha|^{2} \prod_{\beta \in \Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega) \backslash\{\alpha\}}(\eta, \beta)+\text { the lower terms }
\end{align*}
$$

Let us now determine the polynomial $k(\eta)$. By the functional equation of (2) in Lemma 6.4, we have

$$
k(\eta)=c \prod_{\alpha \in \Delta_{0}(\omega)^{*}}\left(2(\eta, \alpha)+\varepsilon_{\alpha}|\alpha|^{2}\right)
$$

where c is a constant and $\varepsilon_{\alpha}= \pm 1$. Comparing the highest and the second highest terms in (6.15) with $k(\eta) v(\eta)$, we have $c=1$ and $\varepsilon_{\alpha}=-1$ for all $\alpha \in \Delta_{0}(\omega)^{*}$. Hence by (1) in Lemma 6.4 we have (2) in this theorem. Finally, let us consider the case $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \neq$ ϕ. Since G is of the type G_{2} (see (3) in Lemma 6.1). P_{K} and Σ_{n} are respectively given by

$$
P_{K}=\{\beta, 2 \gamma-3 \beta\}, \Sigma_{n}=\{ \pm \gamma, \pm(\gamma-\beta), \pm(\gamma-2 \beta), \pm(\gamma-3 \beta)\}, \frac{2(\gamma, \beta)}{|\beta|^{2}}=3
$$

Let α be an element in $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*}$. Since $\omega \pm \alpha \in \Sigma$, we have $|\alpha|=|\omega|$ and ω is a short root. Therefore

$$
\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*}=\{\beta\} \quad \text { and } \quad \omega \in\{ \pm(\gamma-\beta), \pm(\gamma-2 \beta)\}
$$

Furthermore, we have

$$
\hat{\Delta}(\gamma-\beta)=\Delta_{1}(\gamma-\beta)^{*}=\Delta_{-1}(\gamma-2 \beta)^{*}=\{\beta\}, \hat{\Delta}(\gamma-2 \beta)=\{\beta, 2 \beta\}
$$

A direct calculation shows that

$$
\begin{aligned}
f(\eta+\gamma-\beta ; \gamma-\beta) & =1-\frac{3|\beta|^{2}}{2\left((\eta, \beta)+|\beta|^{2}\right)}=\frac{2(\eta, \beta)-|\beta|^{2}}{2\left((\eta, \beta)+|\beta|^{2}\right)}, \\
f(\eta+\gamma-2 \beta ; \gamma-2 \beta) & =1-\frac{4|\beta|^{2}}{2(\eta, \beta)}+\frac{4|\beta|^{2}}{2(\eta, \beta)} \frac{3|\beta|^{2}}{2\left(2(\eta, \beta)+|\beta|^{2}\right)} \\
& =\frac{(\eta+\gamma-2 \beta, \beta)}{(\eta, \beta)} \frac{2\left((\eta, \beta)-|\beta|^{2}\right)}{2(\eta, \beta)+|\beta|^{2}} .
\end{aligned}
$$

Hence, for $\omega=\gamma-\beta$ or $=\gamma-2 \beta$, we have (3) of this theorem. For the case $-\omega=$ $-\gamma+\beta,-\gamma+2 \beta$, we have also (3) by using the identity (5.8) in Theorem 5.4.

7. Main theorem

Let $\mu \in \Gamma_{K}$ and V_{μ} a simple K-module with the highest weight μ. By Lemma 3.4

$$
\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}=\oplus_{\omega \in \Sigma_{n}, \mu+\omega \in \Gamma_{K}} P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right),
$$

where $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)=\{0\}$ or is a simple K-module. In this section we shall prove that the K-module $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ is nontrivial if and only if $f(\lambda+\omega ; \omega)>0$, where $\lambda=\mu+\rho_{K}$.

DEFINITION 7.1. Let $\mu \in \Gamma_{K}$, and define the following six sets for $\lambda=\mu+\rho_{K}$.

$$
\begin{aligned}
w(\lambda) & =\left\{\lambda+\omega: \omega \in \Sigma_{n}\right\}, \\
s w(\lambda) & =\left\{\xi \in w(\lambda): \prod_{\alpha \in P_{K}}(\xi, \alpha)=0\right\}, \\
r w(\lambda) & =\left\{\xi \in w(\lambda): \prod_{\alpha \in P_{K}}(\xi, \alpha) \neq 0\right\}, \\
r w_{0}(\lambda) & =\{\lambda+\omega \in r w(\lambda): f(\lambda+\omega ; \omega)=0\}, \\
r w_{+}(\lambda) & =\left\{\lambda+\omega: \mu+\omega \in \Gamma_{K}, f(\lambda+\omega ; \omega)>0\right\}, \\
r w_{-}(\lambda) & =r w(\lambda) \backslash\left(r w_{0}(\lambda) \cup r w_{+}(\lambda)\right)
\end{aligned}
$$

Lemma 7.2. Assume that all noncompact roots in Σ have the same length. Then we have $w(\lambda)=s w(\lambda) \cup r w_{+}(\lambda)$.

Proof. First we shall prove $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$. Let α be an element in $\Delta(\omega)$. Since $|\omega+\alpha|=|\omega|$, we have $2(\omega, \alpha)|\alpha|^{-2}=-1$. This implies that $\Delta(\omega)=\Delta_{-1}(\omega)$. By the proof of (3) in Lemma 6.1 if $\alpha \in \Delta_{-1}(\omega)^{*}$, then $\omega-2 \alpha \in \Sigma_{n}$. Since $|\omega-2 \alpha|^{2}>|\omega|^{2}$, our assumption implies $\Delta_{-1}(\omega)^{*}=\phi$, and hence, $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$. Let
$\lambda+\omega$ be an element in $w(\lambda)$. Then for $\alpha \in P_{K}$, we have $(\omega, \alpha) \geq 0$ or $(\omega, \alpha)<0$. In the first case we have $(\lambda+\omega, \alpha)>0$. For the later case we have $2(\omega, \alpha)|\alpha|^{-2}=-1$. Consequently we have $(\lambda+\omega, \alpha)=0$ or $(\lambda+\omega, \alpha)>0$. Suppose that $\lambda+\omega \notin \operatorname{sw}(\lambda)$. Since $(\lambda+\omega, \alpha)>0$ for all $\alpha \in P_{K}$, (1) in Theorem 6.5 implies $\lambda+\omega \in r w_{+}(\lambda)$.

For α in P_{K} we define a linear transformation s_{α} on $(\sqrt{-1} \mathfrak{b})^{*}$ by

$$
s_{\alpha}(\eta)=\eta-2(\eta, \alpha)|\alpha|^{-2} \alpha, \eta \in(\sqrt{-1} \mathfrak{b})^{*} .
$$

The Weyl group W_{K} of $\left(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$ is generated by the set $\left\{s_{\alpha} ; \alpha \in P_{K}\right\}$ (cf. Theorem 4.41 in [7]).

Lemma 7.3. Assume that G is one of $S_{p}(n, \mathbf{R})$ and $S O(2 m, 2 n+1)$. Suppose that $\lambda+\omega \in r w_{0}(\lambda)$. Then there exists a unique compact simple short root α in P such that $(\mu, \alpha)=0, \alpha \in \Delta_{0}(\omega)^{*}$ and $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$.

Proof. By the assumption for $\lambda+\omega, \lambda+\omega$ is P_{K}-regular and $f(\lambda+\omega ; \omega)=0$. We first prove that $\Delta_{0}(\omega)^{*} \neq \phi$. Suppose that $\Delta_{0}(\omega)^{*}=\phi$. By (2), (3) in Lemma 6.1 we can assume $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$. Since $\lambda+\omega$ is P_{K}-regular, (1) in Theorem 6.5 implies a contradiction : $f(\lambda+\omega ; \omega) \neq 0$. Thus $\Delta_{0}(\omega)^{*} \neq \phi$. By (2) in Theorem 6.5 there exists $\alpha \in P_{K}$ such that $(\omega, \alpha)=0$ and $2(\lambda, \alpha)=|\alpha|^{2}$. Therefore ω and α are short roots, and

$$
\begin{equation*}
(\mu, \alpha)=0,2\left(\rho_{K}, \alpha\right)|\alpha|^{-2}=1 \tag{7.1}
\end{equation*}
$$

Let us prove that α is a simple root in P. Let $\Psi_{K}=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{\ell}\right\}$ be the simple root system of P_{K}. Then α is written by $\alpha=\sum_{i=1}^{\ell} m_{i} \alpha_{i}$, where m_{i} is a nonnegative integer. Consequently we have

$$
1=2\left(\rho_{K}, \alpha\right)|\alpha|^{-2}=\sum_{i=1}^{\ell} m_{i} 2\left(\rho_{K}, \alpha_{i}\right)\left|\alpha_{i}\right|^{-2}\left(\left|\alpha_{i}\right|^{2}|\alpha|^{-2}\right)
$$

Since α is a short root, all $\left|\alpha_{i}\right|^{2}|\alpha|^{-2}$, s are positive integers. This implies that $\alpha=\alpha_{i}$ for a suitable i. Hence α is a simple short root. Here we shall use the Dynkin diagrams (2.9) and (2.10). Consider the case $G=S O(2 m, 2 n+1)$. In view of the Dynkin diagram of P_{K} the simle short root α is unique. Furthermore, α is also a unique short root of the Dynkin diagram of P. Let us prove that $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$. Since $2(\lambda+\omega, \alpha)|\alpha|^{-2}=1$ and $\lambda+\omega$ is P_{K}-regular, we have $s_{\alpha}(\lambda+\omega)=\lambda+\omega-\alpha \in r w(\lambda)$. Since $\omega-\alpha$ is a noncompact long root, we have

$$
\Delta_{0}(\omega-\alpha)^{*} \cup \Delta_{-1}(\omega-\alpha)^{*} \cup \Delta_{1}(\omega-\alpha)^{*}=\phi
$$

The formula (1) in Theorem 6.5 implies that $f(\lambda+\omega-\alpha ; \omega-\alpha) \neq 0$. Moreover, since $2(\mu+\omega-\alpha, \alpha)|\alpha|^{-2}<0$, we have $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$. Consider the case $G=S_{p}(n, \mathbf{R})$. Let $\Psi=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}\right\}$ be the simple root system of the Dynkin diagram (2.9). Then all
α_{i} 's $(1 \leq i \leq n-1)$ are compact simple short roots in P_{K}. The set of all noncompact positive short roots is given by

$$
\left\{\alpha_{k}+\cdots+\alpha_{s-1}+2 \alpha_{s}+\cdots+2 \alpha_{n-1}+\alpha_{n}: 1 \leq k<s<n\right\} .
$$

Let γ be an element in this set. Then $\Delta_{0}(\gamma)$ is nonempty iff γ is of the form

$$
\gamma_{k}=\alpha_{k}+2 \alpha_{k+1}+\cdots+2 \alpha_{n-1}+\alpha_{n}(1 \leq k \leq n) .
$$

If $\left(\gamma_{k}, \alpha\right)=0$ for a compact root α, then $\alpha=\alpha_{k}$. Especially, $\Delta_{0}\left(\gamma_{k}\right)^{*}=\left\{\alpha_{k}\right\}$. Moreover, we can prove that $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$ by using the same argument as in the case of $S O(2 m, 2 n+$ 1).

Lemma 7.4. Let G be the same as in the previous lemma. Suppose that $\lambda+\omega \in$ $r w_{-}(\lambda)$. Then there exists a unique compact simple short root $\alpha \in P$ such that $(\mu, \alpha)=0$, $\alpha \in \Delta_{0}(\omega+\alpha)^{*}$ and $s_{\alpha}(\lambda+\omega)=\lambda+\omega+\alpha \in r w_{0}(\lambda)$.

Proof. Let $\lambda+\omega$ be an element in $r w_{-}(\lambda)$. First we shall prove that there exists a simple root α in P_{K} such that $(\mu, \alpha)=0$ and $2(\omega, \alpha)|\alpha|^{-2}=-2$. Since $\lambda+\omega \notin r w_{0}(\lambda) \cup$ $r w_{+}(\lambda)$, we have either $\mu+\omega \notin \Gamma_{K}$ and $f(\lambda+\omega ; \omega) \neq 0$ or $f(\lambda+\omega ; \omega)<0$. If $\mu+\omega \notin \Gamma_{K}$, then there exists a simple root $\alpha \in P_{K}$ such that $(\mu+\omega, \alpha)<0$. Since μ is $P_{K^{-}}$ dominant, the pair $\left(2(\mu, \alpha)|\alpha|^{-2}, 2(\omega, \alpha)|\alpha|^{-2}\right)$ is one of the followings: $(0,-1),(0,-2)$ and $(1,-2)$. For the cases $(0,-1)$ and $(1,-2)$ we have $(\lambda+\omega, \alpha)=0$. If $\Delta_{0}(\omega)^{*}=\phi$, then (1) in Theorem 6.5 implies $f(\lambda+\omega ; \omega)=0$. When $\Delta_{0}(\omega)^{*} \neq \phi$, Lemma 6.1 implies that the case $(1,-2)$ is impossible. Consider the case $\Delta_{0}(\omega)^{*} \neq \phi$ and $(0,-1)$. Since $\alpha \in \Delta_{-}(\omega)$ and $(\lambda+\omega, \alpha)=0$, (2) in Theorem 6.5 implies $f(\lambda+\omega ; \omega)=0$. Consequently if $\mu+\omega \notin \Gamma_{K}$ and $f(\lambda+\omega ; \omega) \neq 0$, then $(\mu, \alpha)=0$ and $2(\omega, \alpha)|\alpha|^{-2}=-2$. Let us consider the case $f(\lambda+\omega ; \omega)<0$. Since $\lambda+\omega$ is P_{K}-regular, it follows from (1) and (2) in Theorem 6.5 there exists a simple root α in P_{K} such that $(\lambda+\omega, \alpha)<0$. Then we have also $(\mu, \alpha)=0$ and $2(\omega, \alpha)|\alpha|^{-2}=-2$. Let us prove $s_{\alpha}(\lambda+\omega) \in r w_{0}(\lambda)$. Since $s_{\alpha}(\lambda+\omega)=\lambda+\omega+\alpha, \alpha \in \Delta_{0}(\omega+\alpha)^{*}$ and $2(\lambda+\omega+\alpha, \alpha)|\alpha|^{-2}=1$, (2) in Theorem 6.5 implies that $f(\lambda+\omega+\alpha ; \omega+\alpha)=0$, and therefore, $s_{\alpha}(\lambda+\omega) \in r w_{0}(\lambda)$. It remains to prove that α is simple in P and is unique. In view of the proof of the previous lemma it is enough to consider the case $G=S_{p}(n, \mathbf{R})$. Then the set of all noncompact positive long roots is given by

$$
\left\{\gamma_{i}=2 \alpha_{i}+2 \alpha_{i+1}+\cdots+2 \alpha_{n-1}+\alpha_{n}: 1 \leq i \leq n\right\} .
$$

If $2\left(\gamma_{i}, \alpha\right)|\alpha|^{-2}=-2$ for a compact root α, then $2 \leq i \leq n$ and $\alpha=\alpha_{i-1}$. Especially, $\Delta_{0}\left(\gamma_{i}+\alpha_{i-1}\right)^{*}=\left\{\alpha_{i-1}\right\}$.

Let G be of the type G_{2}. Then $P_{K}=\{\alpha, \beta\}, \alpha$ (resp. β) is short (resp. long), and α is simple and $(\alpha, \beta)=0($ see $(2.11))$.

Lemma 7.5. Let G be of the type G_{2}. Suppose that $\lambda+\omega \in r w_{0}(\lambda)$. Then we have $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$. Conversely, suppose that $\lambda+\omega \in r w_{-}(\lambda)$. Then we have $s_{\alpha}(\lambda+\omega) \in$ $r w_{0}(\lambda)$.

Proof. Assume that $\lambda+\omega \in r w_{0}(\lambda)$. Since $\lambda+\omega$ is P_{K}-regular and $f(\lambda+\omega ; \omega)=0$, (1) in Theorem 6.5 and (2) in Lemma 6.1 imply that $\Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*} \neq \phi$, and hence, ω is a short root. By (3) in Theorem 6.5 we have

$$
\prod_{\delta \in \Delta_{-1}(\omega)^{*}}\left((\lambda, \delta)-|\delta|^{2}\right) \prod_{\delta \in \Delta_{1}(\omega)^{*}}\left(2(\lambda, \delta)-|\delta|^{2}\right)=0
$$

This implies that

$$
(\lambda, \delta)=|\delta|^{2} \quad \text { for } \delta \in \Delta_{-1}(\omega)^{*} \quad \text { or } \quad 2(\lambda, \delta)=|\delta|^{2} \text { for } \delta \in \Delta_{1}(\omega)^{*}
$$

In both cases δ is a short root, and therefore $\delta=\alpha$. Consider the first case. Since $2(\lambda+$ $\omega, \alpha)|\alpha|^{-2}=1$, we have $s_{\alpha}(\lambda+\omega)=\lambda+\omega-\alpha$ and $2(\mu+\omega-\alpha, \alpha)|\alpha|^{-2}=-1$. Therefore $\mu+\omega-\alpha \notin \Gamma_{K}$. Since $\omega-\alpha$ is a long root, we have $\Delta_{0}(\omega-\alpha)^{*} \cup \Delta_{-1}(\omega-\alpha)^{*} \cup \Delta_{1}(\omega-\alpha)^{*}=$ ϕ. This implies that $f(\lambda+\omega-\alpha ; \omega-\alpha) \neq 0$. Thus $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$. Consider the second case. Since $\alpha \in \Delta_{1}(\omega)^{*}$, we have $s_{\alpha}(\lambda+\omega)=\lambda+\omega-2 \alpha$ and $\omega-2 \alpha \in \Sigma_{n}$. Since $\omega-2 \alpha$ is a long root and $2(\lambda+\omega-2 \alpha, \alpha)|\alpha|^{-2}=-2$, we have also $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$. The converse follows from the same arguments.

Theorem 7.6. Let $\omega \in \Sigma_{n}$ and $\mu \in \Gamma_{K}$. Assume that $\mu+\omega \in \Gamma_{K}$. Then the K-module $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ is nontrivial if and only if $f(\lambda+\omega ; \omega)>0$, where $\lambda=\mu+\rho_{K}$.

Proof. Assume that $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$. By Corollary 3.5 we have $P_{\mu+\omega}\left(X_{\omega} \otimes\right.$ $v(\mu)) \neq 0$. Hence by Theorem 5.5 we have $f(\lambda+\omega ; \omega)>0$. Let us prove the sufficiency of the theorem. Choosing a suitable covering group K^{*} of K, we can define the character $\xi_{\rho_{K}}$ of the analytic subgroup B^{*} of K^{*} corresponding to \mathfrak{b}. Weyl's character formula (see (4.11)) implies that

$$
\left(\Delta_{K} \operatorname{trace}\left(\operatorname{Ad} \otimes \pi_{\mu}\right)\right)(\exp H)=\sum_{\lambda+\omega \in w(\lambda)} \sum_{t \in W_{K}} \varepsilon(t) e^{t(\lambda+\omega)(H)}
$$

for all $\exp H \in B^{*}$, where $\left(\pi_{\mu}, V_{\mu}\right)$ is a simple K-module with the highest weight μ and $w(\lambda)$ is the same as in Definition 7.1. We shall prove that

$$
\begin{equation*}
\left(\Delta_{K} \operatorname{trace}\left(\operatorname{Ad} \otimes \pi_{\mu}\right)\right)(\exp H)=\sum_{\lambda+\omega \in r w_{+}(\lambda)} \sum_{t \in W_{K}} \varepsilon(t) e^{t(\lambda+\omega)(H)} . \tag{7.2}
\end{equation*}
$$

If $\lambda+\omega \in w(\lambda)$ is P_{K}-singular, then

$$
\sum_{t \in W_{K}} \varepsilon(t) e^{t(\lambda+\omega)(H)}=0
$$

Since $w(\lambda)=s w(\lambda) \cup r w_{0}(\lambda) \cup r w_{-}(\lambda) \cup r w_{+}(\lambda)$, it is enough to prove

$$
\begin{equation*}
\sum_{\lambda+\omega \in r w_{0}(\lambda) \cup r w_{-}(\lambda)} \sum_{t \in W_{K}} \varepsilon(t) e^{t(\lambda+\omega)(H)}=0 . \tag{7.3}
\end{equation*}
$$

If G satisfies that all noncompact roots have the same length, then Lemma 7.2 implies $r w_{0}(\lambda) \cup$ $r w_{-}(\lambda)=\phi$. Hence we can assume that G is one of $S_{p}(n, \mathbf{R})$ and $S O(2 m, 2 n+1)$, or G is of the type G_{2}. Consider the case G_{2}, and let α be the short root in P_{K}. By Lemma 7.5 we have $s_{\alpha}\left(r w_{0}(\lambda)\right) \subset r w_{-}(\lambda)$ and $s_{\alpha}\left(r w_{-}(\lambda)\right) \subset r w_{0}(\lambda)$. Since $\left(s_{\alpha}\right)^{2}=1$, we have $s_{\alpha}\left(r w_{0}(\lambda)\right)=r w_{-}(\lambda)$. This implies (7.3). Let G be one of $S_{p}(n, \mathbf{R})$ and $S O(2 m, 2 n+1)$. We define the mappings $\psi: r w_{0}(\lambda) \rightarrow r w_{-}(\lambda)$ and $\psi^{\prime}: r w_{-}(\lambda) \rightarrow r w_{0}(\lambda)$ by the followings. Let $\lambda+\omega$ be an element in $r w_{0}(\lambda)$. By Lemma 7.3 there exists a unique compact simple short root α such that $(\mu, \alpha)=0, \alpha \in \Delta_{0}(\omega)^{*}$ and $s_{\alpha}(\lambda+\omega) \in r w_{-}(\lambda)$. We note that $s_{\alpha}(\lambda+\omega)=\lambda+\omega-\alpha$. We now put $\psi(\lambda+\omega)=s_{\alpha}(\lambda+\omega)$. Similarly, by using Lemma 7.4, we define a mapping ψ^{\prime}. We shall prove $\psi^{\prime} \psi, \psi \psi^{\prime}$ are the identities on $r w_{0}(\lambda)$ and $r w_{-}(\lambda)$ respectively. Let $\lambda+\omega \in r w_{0}(\lambda)$ and $\psi(\lambda+\omega)=s_{\alpha}(\lambda+\omega)$. Since $\alpha \in \Delta_{0}((\omega-\alpha)+\alpha)^{*}$ and $(\mu, \alpha)=0, \alpha$ is the unique compact simple short root determined by $\lambda+\omega-\alpha \in r w_{-}(\lambda)$. This implies that $\psi^{\prime} \psi(\lambda+\omega)=\lambda+\omega$. Similarly we can prove $\psi \psi^{\prime}$ is the identity. Hence ψ is bijective, and thus, $r w_{-}(\omega)=\psi\left(r w_{0}(\omega)\right)$. Therefore, we have (7.3) for this case. Let $\lambda+\omega \in r w_{+}(\lambda)$ and $\pi_{\mu+\omega}$ a simple K-module with the highest weight $\mu+\omega$. By (7.2) we have

$$
\operatorname{trace}\left(\operatorname{Ad} \otimes \pi_{\mu}\right)(k)=\sum_{\mu+\omega \in \Gamma_{K}, f(\lambda+\omega ; \omega)>0} \operatorname{trace} \pi_{\mu+\omega}(k)
$$

Thus if $\mu+\omega \in \Gamma_{K}$ and $f(\lambda+\omega ; \omega)>0$ then $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$ as claimed.

References

[1] V. Bargmann, Irreducible unitary representations of the Lorentz group Ann. of Math. 48 (1947), 568-640.
[2] J. Deximier, Représentation intégrables du groupe De Sitter, Bull. Soc. Math. 89 (1961), 9-41.
[3] I. M. Gelfand and L. M. Cejtlin, Finite dimensional representations of groups of orthogonal matrices, Doklady Aca. Nauk. SSSR 71 (1950), 1017-1020.
[4] S. Helgason, Differential Geometry and Symmetric Spaces, Acad. Press (1962).
[5] T. Hirai, On infinitesimal operators of irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 83-87.
[6] T. Hirai, On irreducible representations of the Lorentz group of n-th order, Proc. Japan Acad. 38 (1962), 258-262.
[7] A. W. KnApp, Representation Theory of Semisimple Groups, Princeton Univ. Press.
[8] A. U. Klimyk and V. A. Shirokov, Representation of Lie groups $S U(n, 1), I U(n)$ and their algebra I, preprint (1974).
[9] N. Tatsuuma, Formal degree and Clebsch-Gordan coefficients, J. Math. Kyoto Univ. 18, (1978), 131-135.
[10] L. H. Thomas, On unitary representations of the group of De Sitter space, Ann. Math. 42 (1940), 113-126.
[11] V. S. Varadarajan, Lie Groups, Lie Algebras, and their Representations, Springer.

Present Address:
Department of Mathematics, Tsuda College,
Kodaira, Tokyo, 187-8577 Japan.

[^0]: Received February 15, 2002; revised November 27, 2002

