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Abstract. In this paper, an upper bound of the average curvature of a convex curve in a simply connected
surface is obtained.

1. Introduction

In [1] M. Bridgeman defined the average curvature of a curve, and gave an upper bound
of the average curvature of a convex curve embedded in the hyperbolic plane H>. He also
proved that the average curvature of a bi-infinite convex curve in H? is bounded above by
one. It is natural to ask such a question: What is the upper bound of the average curvature of
a convex curve embedded in a surface? In this paper we establish this upper bound.

In this paper a surface means a 2-dimensional complete Riemannian manifold. A convex
curve in a surface is defined as following:

DEFINITION 1. Let M be a surface. A Jordan arc (i.e., a curve diffeomorphic to a
closed interval) @ in M is called convex curve if any minimal geodesic joining two points of
« intersects o only at those two points and if for any point p on «, there is no cut point of p
on o.

The average curvature of a curve « in the surface M is defined as following:

DEFINITION 2 ([1]). If « is a finite length curve in the surface M, the average curvature
K () of « is defined by

/‘; kgds Total curvature along o
K(a) = = ’
Length of «

where k is the geodesic curvature of o, and s is the arc-length along o.
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If « is an infinite length curve in the surface M, then the average curvature K («) is

defined by
K () = limsup{K (@) | & is a subarc of « of length L} .

L—o0
Let o be a finite length curve in the surface M, define
8(a) :=sup{d(p,q) | p,q € o},

where d(p, q) denotes the distance between p and g in M.
Denote by my(¢) the solution of the following differential equation

m’'(t)+km@) =0, m@O0) =0, m'0)=1,

where k is a constant.
The main result of this paper is:

THEOREM 1. Let M be a simply connected surface whose Gaussian curvature G sat-
isfies
ki <G =<ky, and k <0,

where k| and ky are constants. Set

+oo, if k<0,

T
., ifk>0.
Vka

If a is a convex curve of length L in M, and satisfies §(a) < d, then the average curvature
K (@) of u satisfies

d =

2 k 8
K@) < 2Z — K p (o Oy
L 2L mp, (8(a))
mi ! (4)
where f(t) = 2nm /0 ! mg, (p)dp, which is a monotonically increasing function on

(0, +00).

Some interesting corollaries of this theorem will be discussed in Section 3 of this paper.

2. Notations and lemmas

Let M be a simply connected surface whose Gaussian curvature G satisfies ky < G < kp,
ki1 < 0,and @ : [0, L] — M be a convex curve parameterized by arclength in M, whose
endpoints are x, y, and x = «(0). Join x and y by a unit-speed geodesic y such that y (0) = x.
Let Ty M be the tangent space of M at x, (p, 8) be the polar coordinate of Ty M, and the metric
in T, M be taken as ds? = dp? + p2d6?>.

Denote by §2 the closed domain bounded by « and y such that the minimal geodesic
joining x to the midpoint a(%L) of « lies in §£2. By the convexity of «, such a £2 can be
defined.
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LEMMA 1. For any distinct points p, q on the convex curve o, the minimal geodesic
Jjoining p and q lies in 2.

PROOF. For each s € [0, L], let Dy be the set of all parameter values ¢ € [0, L] such
that the minimal geodesic joining « () to «(s) lies in £2. It is easy to see that Dy is closed for
each s because §2 is closed. Since «(s) has no cut point on «, Dy is relatively open in [0, L].
Thus Dy is empty or [0, L] for each s € [0, L]. Since %L € Do, Do = [0, L]. This implies
0 € Dy. Therefore Dy = [0, L] for each s € [0, L]. Hence for any distinct points p, g on the
convex curve «, the minimal geodesic joining p and g lies in £2. a

Denote by 6y the interior angle formed by « and y at x, by 61 the interior angle formed
by @ and y at y. By the convexity of curve o, we can express o and 2 in the following way:
When we take the orthonormal basis {e}, e} of T M to be suitable,

a: exp.(p(@)cosBe; + p(f)sinfer), 0<6 <6y,
and

£2 = {exp,(pcosbe; + psinbfer) |0 < p < p(#), 0=06 =<0},

where p(f), 0 < 6 < 6, is a function of 6 satisfying p(6p) = 0. It is easy to see that
p@) <8 <L, 0=<6 =<0

LEMMA 2. The two angles 6y, 61 do not exceed .

PROOF. Assume that at least one of two angles 6, 61 is greater than 7. Since there are
no cut points of x and y on o and M is complete, we can extend the geodesic y to infinity
at both two directions. Denote the extended geodesic by y. If, for example, the angle 6 at
x is greater than 7, since the M is a simply connected complete manifold of dimension two,
there exist two points P; and P> on « such that they lies in the different sides of y. Since «
is a curve passing though P; and P, it must intersects y at least a point Pz which is different
from x and y. Let 8 be the part connecting three points x, y and P3 of geodesic y, and it can
be parameterized by arclength. Obviously, 8 lies in £2 since the angle 6 at x is greater than
7. Notice that Lemma 1 implies that there are no cut points of x and y on £2, hence § is a
minimal geodesic, and it intersects « at least three distinct points x, y and P3, this contradicts
that the curve « is convex. ]

We denote by Area(-) the area of a domain, and by Length(-) the length of a curve.

Let M (k1) be a simply connected surface of constant curvature k1. Take a fixed point O
in M (ky), and an orthonormal basis {e, ea} of To M (k). Let oy be the curve in M (k;) such
that

aj i expg(p(@)cosbe; + p(@)sinfey), 0=<6 <6,

where 6y and p(0) was defined above. We call o the curve associated with «. Furthermore,
set

21 = {expp(pcosbfe; + psinfer) |0 < p < p(0), 0 <0 < 0O}
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and
y1 =expp(pe1), 0=<p =<p(0),

so y1 is the unit-speed geodesic connecting the endpoints of o1, and £2; is the closed domain
bounded by «1 and y;.

LEMMA 3. Area($2) < Area($2y).

PROOF. Denote by % the vector field in 7x M which orthogonal to radical direction (we

use this notation all over this paper). Since the Gaussian curvature G of M satisfies G > kq,
by the Rauch comparison theorem we have

9
‘d expy ﬁ(p, )| < my, (p).

Since
o p(0) 9
Area($2) :/ d@/ d exp, —(p,@)‘dp,

0 0 a0

and
to p©)
Area($21) =/ dG/ m, (p)dp ,
0 0
we get the conclusion. O
LEMMA 4.

_ Mk (6(a))
= myg, (8(a))

where L(o) denotes the length of curve oy in M (k1) associated with a.

L(o),
PROOF. Let W (1) = m]_(t)my, (1) — m], (t)my,(t), then W (0) = 0. From
mu\ . W@
(m_k.) "= ml (0’

W' (1) = my (tymy, (1) — my, ()ymp, (1)
= (k1 = k)mp, (H)m, (1) <0, O0<t <d,

and

M, (1)
mg, (1)

we can see that W(t) < 0 (0 < t < d). Therefore, the function is monotonically

decreasing when 0 < ¢ < d. Obviously,

My (1)
t—0 my, (1) B
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By the Rauch comparison theorem, we have |d exp, %(p, 9)| > my,(p). Hence from
p@) <é(a) <d (0 <6 <6y we have

% / 2 0
L=/ P ©) + |[dexp, —(p,6)
) 26

0o
= [ o @ + it oo do

2
do

to my, (p(6))
= 2(0) + —2——m2 (p(6))db
/0 e mi,(pw))mk'(p o

. M (8(@)
— mg, (8(e0) Jo
M, (8 (o
ITRCICO
i, (8())
LEMMA 5. Let M (k) be a simply connected surface of constant curvature k (k < 0),

and C be a circle with circumference L in M (k). Then the area A(L) of the domain bounded
by C is

0o
o © +m (06))d6

A(L) = f(L),

where f(t) :==2m f(;nk () my(p)dp, which is a monotonically increasing function on (0, 0o).
PROOF. Assume that the radius of C is r. It is well known that
L =2mmi(r).
Notice that my(¢) is a strictly monotonic function, we have r = mk_l (%) Hence, the area

1L
my (5%)

A(L) = 271/0 mi(p)dp = 271/0 mi(p)dp .

LEMMA 6. LK(x) <2m —kiArea(82).

PROOF. By the Gauss-Bonnet theorem we have
/GdV—i—/ kgds +m —60p+m — 61 = 27w x(82),
2 aUy

where k, denotes the geodesic curvature.
Since y is a geodesic, kg = 0 on y. Obviously x (£2) = 1, hence

/ GdV+/kgds=90+91.
2 o
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By the assumption G > k; we have

kiArea($2) < 6y + 0 — / kgds .

o
Since [, kgds = LK (), from Lemma 2 we have
LK (x) <2m — k1Area(S2) .
O

LEMMA 7. 2Area($21) < f(2L(x1)), where f(t) is the function defined in Lemma 5,
and L(wy) denotes the length of the curve a1 in M (k1) associated with o.

PROOF. In M (ky), take the curve
ap: expp(p(|0])cosbe; + p(|0]) sinfer), —0p <6 <0,
and set
21 = {expy(pcosbe; + psinder) |0 < p < p(|0]), —6p <6 < 0}.
Graphically, curve &) and domain 2, are the reflection of o and £2; about y1 in M (ky)
respectively.

Notice that |d expo %(,o, 9)‘ = my, (p) in M (k1), where % also denotes the vector field
in To M (k1) which orthogonal to radical direction, we have

_ 6o p(©)
Area($21) = Area(§21) = / dG/ mg, (p)dp ,
0 0

and

0
Length(a) = Length(a;) = / ’ \/p’z(é?) + m,%I (p(B))do .
0

From isoperimetric inequality, Area(§21 U £21) is less than or equal to the area of the disk of
circumference Length(oy) + Length(ay) = 2L(«), from Lemma 5 we have

2Area(2)) = Area(21U 21) < f(L(x1)) .

3. Proof of the Theorem and discussions
PROOF OF THEOREM 1. From Lemma 6 we have
2k
K@) < — — —Area(82),
(@) < I "I (£2)
and from Lemma 4 we have

mp, (8(a))

L L———.
) =L @)
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Since k1 < 0 and f(¢) is a monotonically increasing function, from Lemma 7 we have

K< Z -8 rorey < Z -8y <2LM)
- L 2L 1)) = I 2L M (3(@) .

REMARK. Itis well known that the solution of differential equation
m’'(t)+km@) =0, m@O0) =0, m'0) =1,
is:
1
sinh(«/—kt), if k<O,
= Sinh(v=k)
mi(t) = 3¢, if k=0,

1
— sin(vkt) , if k>0,
N (Vkt)

Hence the estimate of upper bound of the average curvature in Theorem 1 can be expressed
explicitly according to the different cases of k.

When M is the hyperbolic plane H 2, taking k1 = ko = —1 in Theorem 1, we have
f\2
f@) :271( 14+ (—) — 1>.
2

COROLLARY 1. Ifa is a convex curve of length L in the hyperbolic plane H?, then

Hence we deduce that

K@) < 1+(%)2+%.

Furthermore, if o is a convex curve of infinite length, then K (x) < 1.

This corollary is Theorem 2 and Corollary 1 in [1].
When M is the Euclidean plane R2, taking k1 = k» = 0 in Theorem 1 we have

COROLLARY 2. The curvature k of convex curve « in the Euclidean plane R? satisfies

/kds§27t.
o

Hence the average curvature of a convex curve of infinite length in R? that is defined just
replacing kg by k in Definition 2 is bounded above by zero.

If M (k) is a surface of positive constant Gaussian curvature k, for any convex curve o

in M (k), it is easy to see that §(«) < 7/ vk naturally holds, taking k1 = 0 in Theorem 1 we
have
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COROLLARY 3. Let M(k) be a surface of constant Gaussian curvature k (k > 0). If o

is a convex curve in M (k), then the geodesic curvature of o satisfies

(1]
[2]
[3]
[4]
[5]
[6]

[7]

/@msh.
o
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