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Introduction

All manifolds considered in this paper are in the smooth category, and they are all unori-
ented, with or without boundary. Z; denotes the cyclic group of order 2.

We will consider families of submanifolds of a manifold, and define the SK-group of
such families. We will investigate the relationship between the S K -group of families and the
SK-group of Z,-manifolds.

Let m > 0 be an integer. Let P and Q be m-dimensional compact manifolds with
boundary d P and 9 Q, respectively, and ¢ : 0P — 9 Q be a diffeomorphism. Pasting P and
Q along the boundary by ¢, we obtain a closed manifold P U, Q. For another diffeomorphism
Y : 9P — 00 we obtain another closed manifold P Uy Q. The two closed manifolds P U, Q
and P Uy Q are said to be obtained from each other by cutting and pasting (Schneiden und
Kleben in German). Two m-dimensional closed manifolds M and N are said to be SK-
equivalent to each other, if there is an m-dimensional closed manifold L such that the disjoint
union M + L is obtained from N + L by a finite sequence of cuttings and pastings. This is an
equivalence relation on 91,,, the set of m-dimensional closed manifolds. Note that if M and
N are SK-equivalent then x (M) = x (NN) since

x(P Uy Q) = x(P)+ x(Q) — x(@P) = x(P Uy Q),

where x denotes the Euler characteristic. Denote by [M] the equivalence class represented
by M, and by 901, /SK the quotient set of 2, by the SK-equivalence. 2,,/SK becomes a
semigroup with the addition induced from the disjoint union of manifolds. The Grothendieck
group of 9, /SK is called the SK-group of m-dimensional closed manifolds and is denoted
by SK,,. This group has been introduced and observed by Karras, Kreck, Neumann and Ossa
[7]. Note that [M] = [N] in SK,, if and only if M, N are SK -equivalent to each other.

Let fm%ﬁ be the set of m-dimensional closed Z;-manifolds. Taking Z,-equivariant diffeo-
morphisms as pasting diffeomorphisms, we can perform Z;-equivariant cuttings and pastings

. 7 . .. . . . v/
in 9,2 in a similar way as in 91,,, and define an S K -equivalence relation on 91,,;>. Then we
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obtain the SK-group SK, ,%2 of m-dimensional closed Z,-manifolds. See for details Karras et
al [7] and Kosniowski [14].
The fixed point set M%2 of a Z,-manifold M is a submanifold of M with various dimen-

sions. Let M,.Z 2 be the i-dimensional component of MZ2 for0 <i < m = dimM. Then

we have a family of submanifolds of M, denoted by (M; M2, Mm% ., MOZ ). An equi-

m—1°
variant cutting and pasting on M induces a cutting and pasting on each MZ.ZZ. Taking this into
account, we introduce the following definitions.

Let P be an m-dimensional compact manifold. For any i with 0 < i < m let P; be an
i-dimensional submanifold of P such that 0P, = P,NdP and P, N P; = Pif i # j. We
write P = (P; Py, Py—1, -+, Pp) for a family of such submanifolds, and call this an m-
dimensional family. For another such family Q = (Q; Om, Om-1,-++,Qo),letp : 0P —
d Q be a diffeomorphism which restricts to a diffeomorphism ¢; = ¢|dP; : dP; — 9Q; for
any i. Then we obtain a family of submanifolds of a closed manifold,

ﬁUwQZ(PUw Q;PmU(pm Qm7""P0U(p0 Qo) .

Here Py Uy, Qo is a finite set which is the disjoint union of Py and Qp. Let ¢ : 9P — 00 be
another diffeomorphism which restricts to a diffeomorphism v; : 9 P; — 9 Q; for any i. We
obtain another family

PUy Q= (PUy Q; Py Uy, Om, -, Py Uy, Qo).

The two families P Uy 0 and P Uy Q are said to be obtained from each other by cutting and
pasting. Let sz be the set of m-dimensional family of submanifolds of closed manifolds.
Two families M, N € 9/ are said to be SK -equivalent to each other, if there is an L € 90/
such that M + L is obtained from N + L by a finite sequence of cuttings and pastings, where
M + L is the disjoint union of M and I:, ie.,

M+Z4=(M+L,Mm+Lm7’MO+L0)

for M = (M; M,,,---, Mp) and L= (L; Ly, -+ -, Lo). The quotient set DJT,],;—/SK by this
S K -equivalence becomes a semigroup with the addition induced from the disjoint union
of families. The SK-group of m-dimensional families of submanifolds is defined as the
Grothendieck group of 90t/ /SK and is denoted by SK;7 . Any element x € SK;/ is written in
the form x = [M] — [N] for some M = (M; My, --- , Mo), N = (N; Ny, -+ , No) € 9.
Define x(x) = x(M) — x(N) and x;(x) = x(M;) — x(N;) for 0 < i < m. This is well-
defined since a cutting and pasting operation keeps the Euler characteristic invariant.

We have a natural correspondence i)ﬁ%ﬁ — zmﬁ which assigns to a Z,-manifold M €
MZ the family (M; ME .. MOZZ) € M. This induces a homomorphism 7 : SKZ
SK ,{ . In this paper we will obtain the following results:
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o Two families M = M; My, ---, My) and N = (N; Ny, - -+, No) are SK -equivalent
in zm,f ifand only if x(M) = x(N) and x (M;) = x(N;) for anyi with0 <i < m.

o The homomorphism 1 : SK,%2 — San is injective.

e An element x € SK,{ is in the image of 1 if and only if x (x) = Y /L xi(x) mod 2.

This implies the following:

e 2x € Imn foranyx € SK;Z{—, and

e 1 induces an isomorphism SK,%2 R Z[1/2] = SK,Z: ® Z[1/2], where Z[1/2] is the
subring of the rationals Q generated by 1/2.

NOTE. Not only the case of Z;, but in a similar way we can also discuss the case of Z,
the cyclic group of prime order p. But this case is treated in a more general setting, i.e., in the
setting of odd order abelian group, in a separate paper (see Komiya [11]). Komiya [9],[10]
treated a cutting and pasting for Z,-manifolds and pairs of manifolds. Hara [1], [2], [3], Hara
and Koshikawa [4], [5], [6], Koshikawa [12], [13] are also relevant to our present work.

ACKNOWLEDGEMENT. The author would like to thank the referee for pointing out a
couple of errors in the manuscript to be corrected.

1. Homomorphisms

For 0 < i < m+ 1, let S)ﬁﬁi be the subset of zmﬁ consisting of those M =
(M; My, -+, My) € zmgj for which M; = ) for any j < i. For the simplicity we denote
(M; My, -, M, 8, ---,0) by (M; M,,,---, M;). We have a sequence of subsets of M~

m?

F F F F
My, = Dﬁm,m—H - S)ﬁm,m c---C DJTm,O = E)ﬁm .

F

m,i*
Then SK;Z:O = SK,Z: and SKn];er] = SK,,. Let Li]: : SK;Z; — SK;Z:FI be the homomor-
f

m,i—1"

As in the Introduction we can define the SK-group from im,f ;» which is denoted by SK

phism induced from the inclusion zm,{f ;, CI

PROPOSITION 1.1. The homomorphism L;?: : SKn];l. — SKn];l.f1 is injective.
PROOF. Take an element [M] — [1\7] S SKn{l. where M = M; M, -, M;),
N = (N:Np.--.N;)) € M., and assume 7 ((M] — [N]) = 0 in SK7, . Then

there is L = (L; Ly, -+, Li—1) € M| such that in M .\, (M: My, -+ . M, ) +
(L; Ly, -+, Li—y1) is obtained from (N; Ny, -+, Ni, @)+ (L; Ly, -+, Li—1) by a finite
sequence of cuttings and pastings. If we forget here the (i — 1)-dimensional component,

we see that (M; M,,,---, M;) + (L; Ly,,---,L;) is obtained from (N; Ny, ---, N;)+
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(L; Lpm,---,L;i) by a finite sequence of cuttings and pastings in 93"(5 ;- This implies
[M]—[N]=0in SKn{l.. Hence ¢/ is injective. ]

i

Let pi}— : SK f . — SK; be the homomorphism induced from the correspondence

N
ms . — 9; which sends (M; M,,, --- , M;) to M;. Let an (m — i)-dimensional closed man-

m,i

ifold S with a base point * be arbitrarily fixed, and consider the correspondence 91; — smﬁ ;
whichsends N €e M to (S X N; @, --- ,0,{x} x N) € zm,f, This induces a homomorphism
yi]: 1 SK; — SK;;:[. We see pi]: o yl.]: = id, and obtain

PROPOSITION 1.2. The homomorphism ,ol.}— :SKT . — SK;is surjective. In fact, pi]:

m,1

has a right inverse yl.}— :SK; — SK,ii.

2. Exact sequences

In this section we will prove the following theorem.

THEOREM 2.1. Foranyi with 0 <i < m we have the split short exact sequence

F F
0—> Sk, L skZ. 2 sk —> 0.

m,i+1 m,i

We already know from Propositions 1.1 and 1.2 that Ll.]:—H is injective and pi]: has a right

inverse. For a proof of Theorem 2.1 it is sufficient to show Im LfH = Ker pi]: . This will be
shown in Proposition 2.3.

Given (M; My, -+ . M;) € 9 .. let v(M;) be the normal bundle of M; in M, and
consider the projective space bundle R P (v(M;) ®R) associated to v(M;) ® R, where R is the
trivial line bundle over M;. Then RP (v(M;) & R) contains M; (= R P(R)) as a submanifold,
and we have a family (RP(v(M;) ® R); @, --- ,0, M;) € zmgfl Let T and T’ be closed

tubular neighborhoods of M; in M and in RP (v(M;) & R), respectively. Here we assume T
is sufficiently small so that 7 N M; = @ for any j withi < j < m. Since T and T’ are

diffeomorphic to each other, we have a diffeomorphism ¢ : (M — To) — d(RP(v(M;) ®
R)— TO’), and have an m-dimensional closed manifold (M — ;) Uy (RP(v(M;) ® R)— To’),

where 70‘ and 70‘/ are the interiors of T and T’, respectively. We have a family
(M= T) Uy (RPO(M;) ®R)— T'); My, -+, Miy1,0) € M.
Here M,,, - - - , M; are contained in the part M — f‘ . We also have a family

(M= T) Uig (M= T); 2Myy. - -+ . 2M; 11, 0) € MT

m,i >’
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where 2M; = M; + M;. In SKn];l. we see

() [M: My, . ... M1+ [(M—T) Uy (RPO(M;) ® R)— T'): My, -+ . Mi 41, 0]
= [RPO(M) ®R): 0, -+ 0, Mi1+ [(M— T) Ui (M— T); 2Myp, - -+, 2Mi 41, 41,

since

(M;Mm,...,Mi):(T/;Q,"‘ 7@1Ml')u(/)(M_ T;Mms"'vMi+11®)‘

LEMMA 2.2. Given (M; M,,,--- ,M;), (N; Ny, ---,N;) € z):n,ﬁ,., if [M;] = [N;] in
SK;, then

[RPO(M;) ®R); F, -, 0, Mi] =[RP(v(N;) ®R); 4, -+, 0, Ni]

in SKZ

m,i*

To prove the lemma we introduce the SK-equivalence for vector bundles and the SK-
group of singular manifolds in a space X.

Let E and F be k-dimensional vector bundles over m-dimensional compact manifolds
P and Q, respectively, and ¢ : E|0P — F|dQ be a bundle isomorphism which induces
a diffeomorphism ¢ : 3P — 9d(Q. Then we have a k-dimensional vector bundle £ U, F
over an m-dimensional closed manifold P Uz Q. As in the usual way we can define the
S K -equivalence for vector bundles.

An m-dimensional singular manifold (A, f) in a space X is a continuous map f : A —
X with A € IM,,,. We can define the SK-group SK,,(X) of such singular manifolds (A, f)
in X. See for details Karras et al [7] or Kosniowski [14]. The correspondence (A, f) — A
induces a homomorphism ¢ : SK;,(X) — SK,,. It is known that ¢ is an isomorphism for
some spaces X.

PROOF OF LEMMA 2.2. Let f: M; - BO(m —i)and g : N; - BO(m — i) be
classifying maps for the (m — i)-dimensional vector bundles v(M;) and v(N;), respectively.
Since ¢ : SK;(BO(m —i)) — SK; is an isomorphism ([7, Theorem 2.11], [14, Theorem
3.5.1]), the assumption [M;] = [N;] shows [M;, f] = [N;, gl in SK;(BO(m — i)). This
implies that v(M;) and v(N;) are SK -equivalent as bundles, and then that R P (v(M;)®R) and
RP(v(N;)®R) are SK -equivalent in 91,,,. The cutting and pasting operation performing from
RP(v(M;) ® R) to RP(v(N;) @ R) restricts to that from M; (= RP(R)) to N; (= RP(R)).
This implies

[RP(v(M;) ®R); 4, -+ ¥, Mi] = [RP(v(N;) @ R); 0, ---, 0, Ni]
in SK;Z:[. O

PROPOSITION 2.3. In the sequence in Theorem 2.1, Im Ll.]:—H = Ker pi]:.
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PROOF. Im L;-7: 1 C Ker ,ol.]: is easily shown. To show the reversed inclusion, assume

+
p7 (x) = 0forx = [M; My, -, Mi] = [N; Ny, --- , Ni1 € SK7 . ie., [M;] = [N;] in

m,i’

SK;. Using the equality () and Lemma 2.2, we see
x=[M;My,---,M;]—[N; Ny,---,N;]

= [(M—T) Uig (M= T); 2My, - - . 2Mi 11, 9]
— (M= T)U, (RP(:(M;) ® R)— T'): My, -+ . Mi 41, 9]
—[(N= U) Uig (N= U): 2Ny, - -+, 2Ni11, 9]

+ [(N= U) Uy (RPO(N;) ® R)— U'); Ny, -+ Nig1, 9],

where v, U and U’ are ones obtained in the same way as ¢, T and T'. This shows

F |

X € Im‘i+1'

From Propositions 1.1, 1.2 and 2.3 we obtain Theorem 2.1.

COROLLARY 2.4. M = (M; My, --- ,Mo), N = (N; Ny, --- , No) € M) are SK-
equivalent if and only if x(M) = x(N) and x (M;) = x (N;) foranyi with0 <i < m.

PROOF. If M and N are SK -equivalent, then it is easily shown y (M) = x(N) and
x (M;) = x(N;) since a cutting and pasting operation keeps the Euler characteristic invariant.
The converse is shown by showing the following assertion A(i) forany i with0 <i <m + 1
by downward induction.

AG):  If x(M) = x(N) and x(Mj) = x(Nj) for any j withi < j < m, then

m,i*

Since SK7

m,m+
As the induction hypothesis we assume A(i + 1) holds, and also assume the assumption in

A(i). In the sequence in Theorem 2.1 we see in SK;,

| = SKy, the assertion A(m + 1) is already known from Karras et al. [7].

pl (IM: My, -+ Mi] = [N: Ny, -+ . Nil) = [M;] = [N;]=0.

Hence we have (M'; M’

me

kl Ml/+])’ (N/; N/

me

/ F
Nl.+1) € zmmm such that

(M5 M,

me

M 1=IN"s Ny N D = M My, -+, Mi1— N5 N, -+, Ni]
in SKn{l., ie.,

[M; My, -+, Mi1+[N"; Ny - Ni g 81 = [N5 N, -+, Nil+ M5 My, -+ ML, 0]
From this and the assumption in A(i) we have x(M') = x(N') and x(M}) = x(N}) for
i+1<j<m AG+1)says [M; M), --- M/ ]1=I[N;N,,--- N lin SK .
Hence we have [M; My, -+ , Mi] = [N; Ny, -+, N;1in SK; . This proves A(i). O
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3. SK-group of Z,-manifolds

ForO0 <i <m+ 1, let fm,%fl be the subset of fm%ﬁ consisting of those M € i)ﬁ%f for

which MjZ2 = @ for any j < i. Then we have a sequence of subsets of e,

oz

m,m—+

4 Z,
lcmmz,m Cf)ﬁ 0_9Jt

As in the same way for i)ﬁ%,z we can define the SK-equivalence in EITIZZ and then define the

SK-group § K . as the Grothendieck group of the semigroup mz /SK. S Km ; 1s the same

m, i
group as SKnZ1 [.7-',,,_,-] in his notation in Kosniowski [14, §5.3].
The inclusion fm ; C zmm ;_p induces a homomorphlsmz - SkL o sk&

m,i m,i—1"
It is well-known that x(M) = x (M%) mod 2forM € fm (see for example Kawakubo
[8, Chapter 5]). For M € fmmzm | we see x (M, 1) = 0 mod 2. This is seen as follows. If

m is even, then X(Mm—l) = 0. If m is odd, then
0=x(M)=x(M?*) mod?2

= x(M2 )+ y(MP) = y(M%2 ).

Hence we have M’ € 9,1 such that x(M') = X(M ° 1)/2. Hence the correspondence

M +— M’ induces a homomorphism pmil Sszm | = SKpu—1. Fori # m — 1 we define

a homomorphism ,ol.Z2 : SK 221 — SK; by the correspondence M +—> Ml.Z 2
THEOREM 3.1. Foranyi with 0 <i < m we have the split short exact sequence

Zz
SK i;)SK — 0.

I+l

0— SK,%.ZH

PROOF. Let SKZ2 [F;] and SK,%2 [crj] be the ones in Kosniowski [14, §5.3]. We see
SK; = SK,, Z, [om—i], and S KL — g K 2[Fm—i] as noted before. Therefore the sequence in

m, i
the theorem is already shown in Kosniowski [14, §5.3] to be split short exact. O

4. Relations of SK7 to SK2

In this section we will prove the results stated in the Introduction.

We have a correspondence Dﬁﬁz ;= mﬁ ; which assigns to a Z;-manifold M € zmm ;

the family (M; Man, e ,MiZZ) € 9)?51 This induces a homomorphism 7; : SKm’l. —
SK;” .. Note that o = n : SKZ — 9F . Define 6; : SK; — SK; by 6; =idifi #m — 1,



410 KATSUHIRO KOMIYA

and by 6; = 2 (the multiplication by 2) if i = m — 1. Then we have the following commutative
diagram for any i with 0 <i < m,

Zy Zy
7, Lit1 7, Pi )
0 — SKm,i+1 SKm,i — SK; — 0

(D) l'h#l lm le,-

F Liﬁl F /’if
0 — SKm)l.Jrl — SKmJ. — SK; — 0.

7 . . . 7 ~
The correspon(;ence ﬁﬁm’m 4 My, M — M/Z,, induces an isomorphism S Km) el =
2

SKu, since M, > 4 is the set of m-dimensional closed free Z,-manifolds, where M /Z,
denotes the orbit space of M € Dﬁﬁfm+l. We see 741 : SK:_?mH — Sl(f_’mJrl is injective,

since nu1([M]) = [M] = 2[M/Zs] for M € M2, ..

using the diagram (D) we have the following theorem by downward induction for i.

0; is injective for any i. Therefore,

THEOREM 4.1. The homomorphism 1 : SKZ2 SK is injective.

For any x € Im n we see x(x) = Z;ﬂ:o xi(x) mod 2, since x (M) = x(M%) mod 2
for M € szf. The following theorem shows that this congruence is also sufficient for x €

SK? to be in the image of 7.

THEOREM 4.2. An element x € SKn]f to be in the image of n if and only if x(x) =

Yo xi(x) mod 2. In particular, 2x € Im n for any x € San.

PROOF. It is sufficient to prove the following assertion B(i) for any i with 0 < i <
m+ 1:

BG): Ifx(x) = ZT:; xj(x) mod 2 forx € SK7 ., then x € Im ;.

m,i’

We prove this by downward induction fori. If i = m+1, then the hypothesisis x (x) =0
mod 2. Putx = [M] — [N]for M, N € 9MM,,, then x(M) — x(N) =0 mod 2. If m > 0, or
if m = 0and x(x) > 0, we have L € 9, such that x (L) = (x (M) — x(N))/2. Then, for
7, x L € imfme we have 9,,,+1([Z2 X L]) = [M]—[N]=x.Ilf m = 0and x(x) < 0O, then
consider —x. This proves B(m + 1).

As the induction hypothesis, assume B(i + 1) holds. Let x € SKn]Zl. be as in B(i). Then
we see p,.]:(x) € Im 6; evenifi = m — 1, since we see X(pi}—(x)) =0 mod2asin §3. Bya
diagram chasing in (D), we have y € SK,%zi and 7 € SK,Z:H_l such that L;?__;_l(z) =x—ni(y).
Then

x @) = x(x —n:(y)

m
= Z Xxj(x —n;i(y)) mod2 by the assumption of B(i),
j=i
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m m
=Y x@ = Y %@ (xR =0.
j=i j=it1
Using B(i 4+ 1), we have w € SK;ZI._|rl such that 1; 41 (w) = z. Using the diagram (D) again,
we have
Z
ni (2 () = (i) = @) =x —ni(y).
This shows x € Im 7;. O

From Corollary 2.4 we know that SK nf has no torsion. Hence, tensoring Z[1/2] with the

monomorphism 7 : SK2? — SK7, we have

COROLLARY 4.3. SKZ2 ®7[1/2]1= SKT ® Z[1/2].
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