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Abstract. We treat the extended rings according to Beurling. Especially, Theorems VII and X in [1] are
extended to the case of n-dimensional euclidean space Rn.

1. Introduction

Beurling [1] considered a class of functions on R1, each member of which is the Fourier
transform of an integrable function. The purpose of this paper is to extend his results to the
class of functions on Rn.

Let us start to describe notations, definitions and theorems, which we shall ask for. Ac-
cording to Beurling [1], we consider a normed familyΩ of strictly positive functions ω(x) on
Rn which are measurable with respect to the ordinary Lebesgue measure dx, and furthermore,
together with the norm N(ω), satisfy the following conditions:

(I) For each ω ∈ Ω , N(ω) takes a finite value,

0 <
∫
ωdx ≤ N(ω) .

(II) If λ is a positive number and ω ∈ Ω , then λω ∈ Ω and

N(λω) = λN(ω) .

(III) If ω1, ω2 ∈ Ω , then the sum ω1 + ω2 as well as the convolution ω1 ∗ ω2 are also
in Ω and

N(ω1 + ω2) ≤ N(ω1)+N(ω2) ,

N(ω1 ∗ ω2) ≤ N(ω1)N(ω2) .

(IV) Ω is complete under the norm N in the sense that for any sequence {ωn}∞1 ⊂ Ω

such that
∑∞

1 N(ωn) < ∞, ω = ∑∞
1 ωn is in Ω and

N(ω) ≤
∞∑
1

N(ωn) .

Received May 10, 2001; revised February 12, 2002



276 KAZUO ANZAI, KENJI HORIE AND SUMIYUKI KOIZUMI

We associate with each ω ∈ Ω , the Banach space L2
ω−1 of measurable functions F on

Rn with the finite norms

‖F‖L2
ω−1

=
(∫

Rn
ωdx

∫
Rn

|F |2
ω
dx

)1/2

.

From these spaces, we define a family of functions A2 = A2(Rn,Ω) by

A2 =
⋃
ω∈Ω

L2
ω−1

and a norm

‖F‖ = ‖F‖A2 = inf
ω∈Ω ‖F‖L2

ω−1
.

Beurling [1] proved that in this norm, A2 is the Banach algebra under the addition and
the convolution.

Let us consider the algebrasA2 which are generated by some particularly simple families
of Ω . First let Ω = Ω(Rn) be a set of positive, summable and non-increasing functions
ω(|x|) with the norm

N(ω) =
∫

Rn
ωdx .

Next let us consider the subfamilyΩ1 ofΩ consisting of functions with the property:

ω(0) = lim
x→0

ω(x) < ∞ .

The norm in Ω1 is defined as

N(ω) = ω(0)+
∫

Rn
ωdx .

Since the sets Ω andΩ1 satisfy conditions (I)–(IV), we can define the Banach algebras A2 =
A2(Rn,Ω) and A2 = A2(Rn,Ω1), respectively. The ring of Fourier transforms f of F ∈ A2

is denoted by Ã2 and its norm by ‖f ‖ = ‖f ‖Ã2 = ‖F‖A2 . The ring Ã2 is defined similarly.
Let us also introduce the following notation

η(α) = η(α, f ) =
√(

1

2π

)n ∫
Rn

|∆nαf (t)|2dt ,

where ∆nαf is the difference along the vector α, that is

∆nαf (t) =
n∑
k=0

(−1)k
n!

k!(n− k)!f (t + (n− k)α) ,
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and

A(f ) =
∫

Rn
η(α, f )

dα

|α|3n/2 .

We proved in [2] the following theorems being the extention of Theorems III, VIII and
IX in [1] to the n-dimensional euclidean space Rn.

THEOREM I. A function f belongs to the ring Ã2 if and only if :
(a) f is continuous,
(b) lim|t |→∞ f (t) = 0,

(c) A(f ) < ∞.

Under these conditions, f is represented by the Fourier transform of some F ∈ A2, and the
following inequalities hold:

cn‖F‖A2 ≤ A(f ) ≤ dn‖F‖A2 ,(1.1)

provided f �= 0, where cn and dn are positive constants independent of f .

THEOREM II. The space Ã2 is the intersection of A2 and L2, and the norms in these
spaces satisfy the inequalities

‖F‖�2 > ‖F‖A2 , ‖F‖�2 > ‖F‖L2 , ‖F‖�2 < ‖F‖A2 + ‖F‖L2 .

THEOREM III. A function f belongs to the ring Ã2 if and only if :
(a) f is continuous,
(b) f ∈ L2,
(c) A(f ) < ∞.

Under these conditions the following inequalities hold:

cn‖F‖�2 < A(f )+ (1/
√

2π)n‖f ‖L2 < (dn + 1)‖F‖�2(1.2)

provided f �= 0, where constants cn and dn are those of Theorem I.

Beurling [1] also introduced a new ring. To the normed ring Ã2 we may adjoin each

function hwith property that g ∈ Ã2 implies gh ∈ Ã2. By the closed graph theorem, we have

‖g h‖ ≤ m‖g ‖ (m < ∞) ,(1.3)

and define the norm of h as the least numberm satisfying (1.3). By the completion of Ã2 with
respect to this norm we obtain a new ring, so called the extended ring which is denoted by

exÃ2. The norm in exÃ2 is denoted by ‖h‖ex . By M(h) we mean the supremum norm of h.
Then we have

M(h) ≤ ‖h‖ex .
The extended ring exÃ2 is defined similarly.
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For this extended ring exÃ2 of functions on R1 Beurling [1] proved the following theo-
rems.

THEOREM IV. The extended normed ring exÃ2 consists of all continuous functions h
of the form

h(t) = c + f (t) ,(1.4)

where c is a constant and f ∈ Ã2.

THEOREM V. A bounded continuous function h on R1 belongs to exÃ2 if and only if

K(h) = sup
ψ∈�

∫ 1

0

√
ψ(α)

dα

|α|3/2 < ∞ ,(1.5)

where

C =
{
ψ(α) =

∞∑
m=−∞

τmηm
2(α, h); τm > 0

∞∑
m=−∞

τm ≤ 1

}
.

Our goal is to extend Theorems IV and V to the n-dimensional case.

2. The extended ring exÃ2

We begin with the following interesting theorem which extend Theorem IV on the real

line R1 to the case of n−dimensional euclidian space Rn .

THEOREM 1. The extended normed ring exÃ2 consists of all continuous functions of
the form

h(t) = c + f (t) ,(2.1)

where c is a constant and f ∈ Ã2.

PROOF. The non-trivial part of this theorem is that exÃ2 may not contain functions

other than function (2.1). In the proof, assuming h ∈ exÃ2, we shall insert in the formula
A(h), the sequence of functions {gm} such that ‖gm‖ ≤ 1 and converges uniformly to 1 on
each compact set as m → ∞, Applying Fatou’s lemma, (1.1) and the inequality ‖gh‖ ≤
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‖g ‖‖h‖ex ( ∀g ∈ Ã2), we have

A(h) =
∫

dα

|α|3n/2
√(

1

π

)n ∫
lim
m→∞ |∆nαgmh|2dt

≤ lim
m→∞

∫
dα

|α|3n/2
√(

1

π

)n ∫
|∆nαgmh|2dt

= lim
m→∞

A(gmh) ≤ dn lim
m→∞

‖gmh‖

≤ dn lim
m→∞

‖gm‖‖h‖ex ≤ dn‖h‖ex < ∞ .

Since h is assumed to be continuous, be the same way as in the proof of Theorem I, there

exists F ∈ A2 ⊂ L1 such that

∆nαh(t) =
∫
e−itx(e−iαx − 1)nF (x)dx .(2.2)

Let us denote its Fourier transform by

f (t) =
∫
e−itxF (x)dx = F̂ (t) .(2.3)

Then we have

∆nαf (t) =
∫
e−itx(e−iαx − 1)nF (x)dx ,(2.4)

so by (2.2) and (2.4)

∆nα(h(t)− f (t)) = 0 (∀t, α ∈ Rn) .(2.5)

Now we shall prove the following lemma for the sake of completeness.

LEMMA 2. Let g (t) be a bounded continuous function. If g satisfies the condition

∆nαg (t) = 0 (∀t, α ∈ Rn) ,(2.6)

then g (t) is a constant.

PROOF. It is known that if a continuous function g (t1) of t1 ∈ R1 satisfy ∆nα1
g (t1) =

0 (∀t1, α1 ∈ R1), then it is a polynomial of at most degree n− 1.
Let us write t = (t1, t

′) with t ′ = (t2, · · · , tn) and α = (α1, 0, · · · , 0). We consider
condition (2.6) as a function of t1 and α1 for any fixed t ′ = (t2, · · · , tn). Then we can show
that g (t1, t ′) is a polynomial of t1 at most degree n − 1. Furthermore since g (t1, t ′) = O(1)
as |t1| → ∞, we can conclude that g (t1, t ′) is a constant as for t1 and so g (t1, t ′) = g (0, t ′)
for any t ′ = (t2, · · · , tn). Next let us write t = (0, t2, t ′′) with t ′′ = (t3, · · · , tn) and α =
(0, α2, 0, · · · , 0). Let us consider condition (2.6) as a function of t2 and α2 for any fixed
t ′′ = (t3, · · · , tn). Let us also remark that g (0, t2, t ′′) = O(1) as |t2| → ∞. Then we
can conclude as before that g (0, t2, t ′′) is a constant for t2 and so g (t) = g (0, 0, t ′′) for any
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t ′′ = (t3, · · · , tn). Continuing these arguments, we can conclude that g (t) is nothing but a
constant g (0) = g (0, 0, · · · , 0) = c, say. Thus we have proved Lemma 2.

Now if we apply this lemma to function g (t) = h(t) − f (t), we can prove by condition
(2.5) that h(t) − f (t) is nothing but a constant and we can show that h(t) has representation
(2.1). Since f (t) is continuous, f (t) → 0 (|t| → ∞) by (2.3) and A(f ) = A(h) < ∞ by

(2.1), we have f ∈ Ã2 by Theorem I. The remaining part of the theorem is clear.

We shall observe the basic properties of exÃ2.

The exÃ2 is a normed ring of numerical functions under the pointwise addition and

multiplication. Furthermore exÃ2 is complete and separable.

It follows from definition that Ã2 ⊂ exÃ2, and

‖f ‖ex ≤ ‖f ‖ ≤ dn

cn
‖f ‖ex for f ∈ Ã2 .(2.7)

This shows that two norms ‖ · ‖ex and ‖ · ‖ are equivalent on Ã2. The following proposi-
tions are immediate corollaries to Theorem 1.

PROPOSITION 1. h ∈ exÃ2 if and only if
(a) h is continuous,
(b) lim|t |→∞ h(t) = c (a constant c),
(c) A(h) < ∞.

PROPOSITION 2. If h ∈ exÃ2, then h = c + f with a constant c and f ∈ Ã2. Among
these functions, we have the inequalities

‖h‖ex ≤ |c| + ‖f ‖ ,(2.8)

|c| ≤ ‖h‖ex , ‖f ‖ ≤ 2
dn

cn
‖h‖ex .(2.9)

The exÃ2 satisfies the principle of contraction under some additional condition.

PROPOSITION 3. Let h be a continuous function and a contraction of the series∑N
ν=1 hν , where each hν belongs to exÃ2. Suppose that

lim|t |→∞h(t) = c .(i)

Then we have h ∈ exÃ2 and

‖h‖ex ≤
{

1 + 2

(
dn

cn

)2 } N∑
ν=1

‖hν(t)‖ ,(2.10)

where constants cn and dn are those of Theorem I.
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PROOF. Let us write by hypothesis

|h(t)| ≤
N∑
ν=1

|hν(t)| ,(ii)

and

|∆nαh(t)| ≤
N∑
ν=1

|∆nαhν(t)| .(iii)

Let us also write hν = cν + fν with a constant cν and fν ∈ Ã2 (ν = 1, 2, · · · , N). Then we
have by the use of the properties (i) and (ii) as |t| → ∞

|c| ≤
N∑
ν=1

|cν | .

Hence, writing h = c + f , we have by the use of property (iii)

|∆nαf (t)| ≤
N∑
ν=1

|∆nαfν(t)| ,

η(α, f ) ≤
N∑
ν=1

η(α, fν) ,

and so

A(f ) ≤
N∑
ν=1

A(fν) .

Since h(t) is continuous and so is f (t), we see that f ∈ Ã2 by Theorem I and

‖f ‖ ≤ dn

cn

N∑
ν=1

‖fν‖ .

Therefore we have h ∈ exÃ2 and

‖h‖ex ≤ |c| + ‖f ‖

≤
N∑
ν=1

|cν | +
(
dn

cn

) N∑
ν=1

‖fν‖

≤
{

1 + 2

(
dn

cn

)2} N∑
ν=1

‖hν‖ex .
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PROPOSITION 4. Let h be a continuous function and let {hm} be a sequence of con-

tinuous functions such that each function is a contraction of the series
∑N
ν=1 hν, where each

hν belongs to exÃ2. Suppose that

lim|t |→∞h(t) = c , lim|t |→∞hm(t) = cm (m = 1, 2, 3, · · · ) .(i´)

Then h and {hm} belong to exÃ2. Moreover, if

lim
m→∞M(hm − h) = 0 ,

then

lim
m→∞ ‖hm − h‖ex = 0 .

PROOF. h and {hm} belong to exÃ2 by Proposition 3. We put h = c + f and hm =
cm + fm (m = 1, 2, 3, · · · ). By hypothesis, h satisfies properties (ii) and (iii) of Poroposition
3 and {hm} satisfies

|hm(t)| ≤
N∑
ν=1

|hν(t)| (m = 1, 2, 3, · · · )(ii´)

and

|∆nαhm(t)| ≤
N∑
ν=1

|∆nαhν(t)| (m = 1, 2, 3, · · · ) .(iii´)

If hν = cν + fν with a constant cν and fν ∈ Ã2 (ν = 1, 2, · · · , N), then we have by (i´ )

lim|t |→∞(hm(t)− h(t)) = cm − c (m = 1, 2, 3, · · · )

and by (ii), (ii´) and (iii), (iii´),

|hm(t)− h(t)| ≤ 2
N∑
ν=1

|hν(t)| (m = 1, 2, 3, · · · ) ,

|∆nα(hm(t)− h(t))| ≤ 2
N∑
ν=1

|∆nαhν(t)| (m = 1, 2, 3, · · · ) .

Tracing the same lines as the proof of Theorem 2 in [2], we see that limm→∞M(hm−h) = 0
implies limm→∞ A(fm−f ) = 0 and so limm→∞ ‖fm−f ‖ = 0. On the other hand it is clear
that limm→∞M(hm − h) = 0 implies limm→∞ |cm − c| = 0. Therefore we have

‖hm − h‖ex ≤ |cm − c| + ‖fm − f ‖ → 0 (m → ∞) .
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In the study of exÃ2, it is convenient to set

c = h(∞) = lim|t |→∞h(t) ,(2.19)

and adjoin t = ∞ as an ideal point of Rn, the so-called one-point compactification.

3. The extended ring exÃ2

Let us provide a short account of basic properties of Ã2 and exÃ2.

(1) Ã2 = Ã2 ∩ L2 and the inequalities

‖f ‖
�̃2 > ‖f ‖

Ã2 ,

‖f ‖
�̃2 >

(
1√
2π

)n
‖f ‖L2 ,

‖f ‖
�̃2 < ‖f ‖

Ã2 +
(

1√
2π

)n
‖f ‖L2 ,

hold for f ∈ Ã2, f �= 0.

(2) The normed ring Ã2 is complete and separable, and it satisfies the uniform contrac-

tion principle with a certain constant k = 1 + dn
cn

.

(3) Ã2 has the property

sup
‖g ‖≤1

|g (t)|
‖g ‖ = 1 (∀t ∈ Rn) .(3.1)

We observe at once that (3.1) implies

M(g ) ≤ ‖g ‖ .(3.2)

Now we can conclude that if each function in a sequence of continuous functions {gm} is

a contraction of the series
∑N
ν=1 fν for each fν ∈ Ã2, then M(gm) → 0 (m → ∞) and

‖gm‖ → 0 (m → ∞) are equivalent.

(4) The set of all functions f ∈ Ã2 which satisfy ∆αkf (t) = O(|α|k),
(|α| ≤ 1, k = 1, 2, 3, · · · ) is dense in Ã2.

This is proved as follows. Let us write f = F̂ , F ∈ A2 and let us write

FN(x) =
{
F(x) (|x| ≤ N) ,

0 (|x| > N) .

Then FN ∈ A2 and we have

‖F − FN‖2 = inf
ω∈Ω1

(
ω(0)+

∫
ωdx

)∫
|x|>N

|F |2
ω
dx → 0 (N → ∞) .
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Therefore if we write fN = F̂N , then fN ∈ Ã2 and

‖f − fN‖ = ‖F − FN‖ → 0 (N → ∞) .

On the other hand, if we take N sufficiently large and fix it, then we have

fN(t) =
∫
e−itxFN(x)dx =

∫
|x|≤N

e−itxF (x)dx ,

∆kαfN(t) =
∫

|x|≤N
e−itx(e−iαx − 1)kF (x)dx .

Since e−iαx − 1 = O(|α|) (|α| ≤ 1, |x| ≤ N), we have

|∆kαfN(t)| ≤ O(|α|k)
∫

|x|≤N
|F(x)|dx

≤ O(|α|k)
(
ω(0)+

∫
ωdx

) 1
2
(∫ |F |2

ω
dx

) 1
2

.

Taking the infimum for ω ∈ Ω1 on the right hand side, we have

|∆kαfN (t)| ≤ O(|α|k)‖f ‖ (|α| ≤ 1, k = 1, 2, 3, · · · ) .
(5) Example of a function in Ã2.
Let χ

N
(t) be the characteristic function of the set EN = {t; |t| ≤ N} and ρ(t) the

mollifier due to Friedrichs. Now let us write

γ (t) = χ
N

∗ ρ(t) .(3.3)

Then we have

γ (t) =
∫

|s|≤N
χN (s)ρ(t − s)ds .(3.4)

Therefore we have

∆nαγ (t) =
∫

|s|≤N
χ
N
(s)∆nαρ(t − s)ds .

By an elementary calculation, we obtain the estimate

|∆nαρ(t)| ≤ Cn|α|n
n∑
k=1

Pk(t)ρk(t +Θkα) ,(3.5)

where

Pk(t) = 1 + |t| + · · · + |t|k ,

ρk(t) =




1

(1 − |t|2)2k
e
− 1

1−|t|2 (|t| ≤ 1) ,

0 (|t| > 1) ,
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|α| ≤ 1, 0 < Θk < k and Cn is a constant depending only on n.
Applying the Minkowski inequality of integral type, picking the term of highest degree

singularity and absorbing other terms into it, we have

η(α, γ ) ≤ C′
n|α|n

(2π)n/2

∫
|s|≤N

ds

(∫
|t |≤1

1

(1 − |t|2)2n
e
− 2

1−|t|2 dt

) 1
2

.

This implies that∫
|s|≤N

ds = |∑n−1 |
n

Nn (n ≥ 2) ,

∫
|t |≤1

1

(1 − |t|2)2n e
− 2

1−|t|2 dt =
∫
∑
n−1

dσ

∫ 1

0

rn−1

(1 − r2)2n
e
− 2

1−r2 dr

≤
∫
∑
n−1

dσ

∫ 1

0

r

(1 − r2)2n
e
− 1

1−r2 dr = 1

2

∣∣∣∣∑n−1

∣∣∣∣
∫ ∞

1
u2n−2e−udu ,

where
∑
n−1 = {x ∈ Rn; |x| = 1}.

Then we have

A1(r) =
∫

|α|≤1
η(α, r)

dα

|α|3n/2 ≤ C′′
nN

n

∫
|α|≤1

dα

|α|n/2

= C′′
n

2 |∑n−1 |
n

Nn < ∞ .

On the other hand, γ (t) is continuous and belongs to L2. Thus we can conclude that

γ (t) ∈ Ã2 by Theorem III.

(6) To the normed ring Ã2 we may adjoin each function h with a property that g ∈ Ã2

implies gh ∈ Ã2. By the closed graph theorem, we have

‖g h‖ ≤ m‖g ‖ (m < ∞) ,(3.6)

and we define the norm of h as the least number m satisfying (3.6). We observe at once that
(3.1) and (3.6) imply that

M(h) ≤ ‖h‖ex .(3.7)

Next if we take the function γ (t) ∈ Ã2 in (5), then by the definition of exÃ2 we have

h(t) = γ (t)h(t) ∈ Ã2 (|t| < N − 1) ,

where N is a positive integer, so h(t) is continuous by Theorem III.

(7) Since each function f ∈ Ã2 = Ã2 ∩ L2 is square summable, it follows that

η(α, f ) ≤
(

2√
2π

)n
‖f ‖L2 .(3.8)
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Since the amount of the integral in A(f ) on the range 1 ≤ |α| is therefore no longer signifi-
cant, we put according to Beurling [1]

A1(f ) =
∫

|α|≤1
η(α, f )

dα

|α|3n/2(3.9)

and observe that

A1(f ) < A(f ) < A1(f )+ en

(
√

2π)n
‖f ‖L2 ,(3.10)

where en = 2n+1

n

∣∣∑
n−1

∣∣.
Combining this with the inequalities in Theorems I and II, we have

‖f ‖ < 1

cn
A1(f )+

{
1 +

(
en

cn

)}
1

(
√

2π)n
‖f ‖L2 ,(3.11)

and similarly,

‖f ‖ > 1

dn
A1(f ), ‖f ‖ > 1

(
√

2π)n
‖f ‖L2 .(3.12)

Under these preparations, we shall prove the following lemma.

LEMMA 3. Let h(t) be a continuous and bounded function such that

|∆kαh(t)| ≤ Ck|α|kM(h) (|α| ≤ 1, k = 1, 2, · · · , n− 1) ,(3.13)

where Ck ≤ Cn (1 ≤ k ≤ n− 1) and Cn is a constant depending only on n.
Let us define

ξ(α, g , h) =
√(

1

2π

)n ∫
|g (t)|2|∆nαh(t)|2dt(3.14)

for any g ∈ Ã2 and

ξ(h) = sup
‖g ‖≤1

∫
|α|≤1

ξ(α, g , h)
dα

|α|3n/2 .(3.15)

Then h ∈ exÃ2 is equivalent to ξ(h) < ∞.

PROOF. For any g ∈ Ã2 it is easy to see the formula

∆nαgh =
n∑
k=0

(
n

k

)
∆kαg∆

n−k
α Tkαh

= g∆nαh+
n∑
k=1

(
n

k

)
∆kαg∆

n−k
α Tkαh

holds, where Tkαh(t) = h(t + kα) (k = 1, 2, · · · , n).
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Then we have∣∣∣∣
∫

|α|≤1
ξ(α, g , h)

dα

|α|3n/2 − A1(gh)
∣∣∣∣

≤ M(h)

n∑
k=1

Ck

(
n

k

)∫
|α|≤1

dα

|α|3n/2−(n−k)

√(
1

2π

)n ∫
|∆kαg (t)|2dt .

Here let us write

ηk(α) =
√(

1

2π

)n ∫
|∆kαg (t)|2dt (k = 1, 2, · · · , n) ,

and

A1,k(g ) =
∫

|α|≤1
ηk(α)

dα

|α|3n/2−(n−k) (k = 1, 2, · · · , n) .

The estimation of A1,k(g ).
(i) The case where 1 ≤ k < n/2.
Since g ∈ L2, we have

ηk(α) ≤ 2k(√
2π
)n ‖g ‖L2 ,

and so

A1,k(g ) ≤ 2k(√
2π
)n ‖g ‖L2

∫
|α|≤1

dα

|α|n/2+k

= 2k

n/2 − k

|∑n−1 |(√
2π
)n ‖g ‖L2 ≤ 2k|∑n−1 |

n/2 − k
‖g ‖ .

(ii) The case where n/2 ≤ k ≤ n− 1.
For any ω ∈ Ω0 we consider the ω∗ of Lemma in [2]. That is, ω∗ is a majorant of ω such

that |x|aω∗(|x|) is decreasing and |x|bω∗(|x|) is increasing with a < n < b, where constants
a and b are determined later. Then we have

A1,k(g ) =
∫

|α|≤1
ηk(α)

dα

|α|3n/2−(n−k)

=
∫

|α|≤1

ηk(α)

ω∗(1/|α|)1/2|α|n/2−(n−k)
ω∗(1/|α|)1/2dα

|α|n

≤
(∫

|α|≤1

η2
k(α)

ω∗(1/|α|)|α|−n+2k
dα

)1/2(∫
|α|≤1

ω∗(1/|α|)
|α|2n dα

)1/2

.
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As for the second integral of the last formula, we have∫
|α|≤1

ω∗(1/|α|)
|α|2n dα =

∫
∑
n−1

dσ

∫ 1

0

ω∗(1/r)
rn+1

dr

=
∫
∑
n−1

dσ

∫ ∞

1
ω∗(s)sn−1ds =

∫
|x|≥1

ω∗(|x|)dx .

As for the first integral of the last formula, let us write g = Ĝ,

G ∈ A2 = A2 ∩ L2. Applying the Plancherel theorem, we have∫
|α|≤1

η2
k(α)

ω∗(1/|α|)|α|−n+2k dα

=
∫

|α|≤1

dα

ω∗(1/|α|)|α|−n+2k 22k
∫

|G(x)|2 sin2k
(αx

2

)
dx

= 22k
∫

|G(x)|2dx
∫

|α|≤1

sin2k(αx/2)

ω∗(1/|α|)|α|−n+2k
dα .

In estimating the inner integral, let us write α = rs, s ∈ ∑
n−1, r = |α|, then dα =

rn−1drdσ , where dσ is area element of
∑
n−1. Furthermore let us write ρ = |x|r , then

dr = dρ/|x|. Then we have

Ik =
∫

|α|≤1

sin2k(αx/2)

ω∗(1/|α|)|α|−n+2k dα =
∫ 1

0
dr

∫
∑
n−1

sin2k(rsx/2)

ω∗(1/r)r−n+2k r
n−1dσ

=
∫ |x|

0
dρ

∫
∑
n−1

sin2k(ρsx/(2|x|))
ω∗(|x|/ρ)

(
ρ

|x|
)2n−2k−1

dσ

|x|

= |x|−2n+2k

ω∗(|x|)
∫ |x|

0
ρ2n−2k−1dρ

∫
∑
n−1

ω∗(|x|)
ω∗(|x|/ρ) sin2k(ρsx/(2|x|))dσ .

Here in the case of |x| ≤ 1, since |x|bω∗(|x|) (n < b) is increasing and 0 < ρ < 1, we have
|x|bω∗(|x|) ≤ (|x|/ρ)bω∗(|x|/ρ) and so

ω∗(|x|)
ω∗(|x|/ρ) ≤ 1

ρb
, sin2k(ρsx/(2|x|)) ≤ ρ2k .

Therefore we have∫ |x|

0
ρ2n−2k−1dρ

∫
∑
n−1

ω∗(|x|)
ω∗(|x|/ρ) sin2k(ρsx/(2|x|))dσ

≤ |∑n−1 |
∫ |x|

0
ρ2n−b−1dρ = |∑n−1 |

2n− b
|ρ|2n−b

∣∣∣∣
|x|

ρ=0
.
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Now if we set b = 2k + 1/2, then 2n− b > 3/2. Then we have

Ik ≤ |x|−2n+2k

ω∗(|x|)
|∑n−1 |

2n− (2k + 1/2)
|x|2n−(2k+1/2)

≤ 2|∑n−1 |
3

|x|3/2
ω∗(|x|) ≤ 2|∑n−1 |

3

1

ω∗(|x|) .

Next in the case of |x| > 1, we decompose Ik into

|x|−2n+2k

ω∗(|x|)
(∫ 1

0
+
∫ |x|

1

)
ρ2n−2k−1dρ

∫
∑
n−1

ω∗(|x|)
ω∗(|x|/ρ) sin2k(ρsx/(2|x|))dσ

= Ik,1 + Ik,2 .

As for Ik,1, using the fact that |x|bω∗(|x|) with b = 2k + 1/2 is increasing, we have

Ik,1 ≤ |∑n−1| 1
ω∗(|x|) .

As for Ik,2, since |x|aω∗(|x|) (a < n) is decreasing and ρ > 1, we have |x|aω∗(|x|) ≤
(|x|/ρ)aω∗(|x|/ρ) and so

ω∗(|x|)
ω∗(|x|/ρ) ≤ 1

ρa
, sin2k(ρsx/(2|x|)) ≤ 1 .

Then we have∫ |x|

1
ρ2n−2k−1dρ

∫
∑
n−1

ω∗(|x|)
ω∗(|x|/ρ) sin2k(ρsx/(2|x|))dσ

≤ |∑n−1|
∫ |x|

1
ρ2n−2k−1 dρ

ρa
= |∑n−1|

[
ρ2n−2k−a

2n− 2k − a

]|x|

ρ=1

.

Now if we set a = n− k − 1/2, then 2n− 2k − a ≥ 3/2, from which we can deduce

Ik,2 ≤ |x|−2n+2k

ω∗(|x|)
|∑n−1 |

(n− k)+ 1/2
|x|(n−k)+1/2

≤ 2|∑n−1 |
3

|x|−(n−k)+1/2

ω∗(|x|) ≤ 2|∑n−1 |
3

1

ω∗(|x|) .

Therefore we have

Ik = Ik,1 + Ik,2 ≤ 5|∑n−1 |
3

1

ω∗(|x|) .

By these estimates, we have

A2
1,k(g ) ≤ 22k+1|∑n−1|

∫
|x|≥1

ω∗(|x|)dx
∫ |G(x)|2
ω∗(|x|) dx .
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Since b = 2k + 1/2, a = n− k − 1/2 and n/2 ≤ k ≤ n− 1, we have

b(2n− a)

(n− a)(b − n)
= (2k + 1

2 )(n+ k + 1
2 )

(k + 1
2 )(−n+ 2k + 1

2 )

≤ (2n− 3
2 )(2n− 1

2 )

1
2 (
n
2 + 1

2 )
≤ (4n− 3)(4n− 1)

n+ 1
≤ 8 .

Applying Lemma in [2], we have

A2
1,k(g ) ≤ 22k+4|∑n−1|

(
ω(0)+

∫
ωdx

)∫ |G(x)|2
ω

dx ,

hence

A1,k(g ) ≤
√

22k+4
∣∣∑

n−1

∣∣‖g ‖ .
(iii) The case where k = n. Since

A1,n(g ) = A1(g ) ≤ dn‖g ‖ ,
we have ∣∣∣∣

∫
|α|≤1

ξ(α, g , h)
dα

|α|3n/2 − A1(gh)
∣∣∣∣

≤ M(h)

n∑
k=1

Ck

(
n

k

)
A1,k(g ) ≤ CM(h)‖g ‖ ,

where C is a constant depending on n.
Now let us write

a1(h) = sup
‖g ‖≤1

A1(gh)

and take the supremum with respect to g ∈ Ã2 with ‖g ‖ ≤ 1 in the above inequality. Then
we have

|ξ(h)− a1(h)| ≤ CM(h) .

On the other hand from (3.11) and (3.12) we have

1

dn
A1(gh) ≤ ‖g h‖ ≤ 1

cn
A1(gh)+

{
1 +

(
en

cn

)}
1

(
√

2π)n
‖gh‖L2 .

Taking the supremum with respect to g ∈ Ã2 with ‖g ‖ ≤ 1, we have

1

dn
a1(h) ≤ ‖h‖ex ≤ 1

cn
a1(h)+

{
1 +

(
en

cn

)}
1

(
√

2π)n
M(h) .
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Combining these inequality, we have

1

dn
(ξ(h)− CM(h)) ≤ ‖h‖ex

≤ 1

cn
(ξ(h)+ CM(h))+

{
1 +

(
en

cn

)}
1

(
√

2π)n
M(h) .

Therefore the equivalence of h ∈ exÃ2 and ξ(h) < ∞ has been proved.
(8) From Lemma 3, we have easily derived the following properites.
Let us assume that h(t) is continuous and bounded. Under this condition, we have

(i) If∆kαh(t) = O(|α|k)(|α| ≤ 1, k = 1, 2, · · · , n), then ξ(h) < ∞, so that h ∈ exÃ2.

(ii) If h = f + g with f ∈ Ã2 and ∆kαg (t) = O
(|α|k) (|α| ≤ 1, k = 1, 2, · · · , n),

then h ∈ exÃ2. In particular, if h = f + c with a constant c, then h ∈ exÃ2.
Here it should be noted the difference between (3.13) of Lemma 3 and the assumption in

(i).

The following theorem is the extention of the interesting Theorem V on the real line R1

to the case of n−dimensional euclidian space Rn .

THEOREM 2. Let us suppose that h is a bounded continuous function on Rn and sat-

isfies the same condition as (3.13) of Lemma 3. Then h belongs to exÃ2 if and only if

K(h) = sup
ψ∈�

∫
|α|≤1

√
ψ(α)

dα

|α|3n/2 < ∞ ,(3.16)

where

C =
{
ψ(α) =

∞∑
m=0

τmηm
2(α, h); τm > 0,

∞∑
m=0

τm ≤ 1

}
(3.17)

and

ηm
2(α, h) = 1

(
√

2π)n

∫
m≤|t |≤m+1

|∆nαh(t)|2dt (m = 0, 1, 2, · · · ) .(3.18)

The proof can be done by following the same lines as Beurling [1] through several lem-
mas.

LEMMA 4. Let {Ei}∞i=1 be a sequence of closed sets in Rn such that the distance be-

tween Ei and Ej is larger than n for i �= j . Let f belong to Ã2 and have the expansion∑∞
i=1 fi where each fi is continuous and vanishes outside Ei . Then each fi belongs to Ã2

and satisfies √√√√ ∞∑
i=1

‖fi‖2 ≤ k1‖f ‖ ,(3.19)
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where

k1 =
√√√√2

{(
dn

cn

)2

+
(

1 + en

cn

)2}
.(3.20)

PROOF. For |α| ≤ 1 we have by assumption,

∆nαfi(t)∆
n
αfj (t) = 0 (i �= j) ,

from which it follows that

∞∑
i=1

η2(α, fi ) = η2(α, f ) .

By the Schwartz inequality we have

A2
1(fi) =

(∫
|α|≤1

η(α, fi )
dα

|α|3n/2
)2

≤ A1(f )

∫
|α|≤1

η2(α, fi)

η2(α, f )

dα

|α|3n/2 .

Then taking the summation on both sides, we have

∞∑
i=1

A2
1(fi) ≤ A2

1(f ) < ∞ .

Similarly, we have by assumption

fi(t)fj (t) = 0 (i �= j) ,

hence

∞∑
i=1

‖fi‖2
L2 = ‖f ‖2

L2 < ∞ .

Therefore we can conclude that each fi belongs to Ã2. Now applying inequality (3.11) yields

‖fi‖2 <
2

c2
n

A2
1(fi)+ 2

(
1 + en

cn

)2 1

(2π)n
‖fi‖2

L2 .

From (3.12) we obtain

∞∑
i=1

‖fi‖2 ≤ 2

c2
n

A2
1(f )+ 2

(
1 + en

cn

)2 1

(2π)n
‖f ‖2

L2

≤ 2

{(
dn

cn

)2

+
(

1 + en

cn

)2}
‖f ‖2 = k2

1‖f ‖2 .
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LEMMA 5. There is a constant k2 such that for any g ∈ Ã2

√√√√ ∞∑
m=0

b2
m ≤ k2‖g ‖ ,(3.21)

where bm is the maximum of |g (t)| on the set {t ∈ Rn;m ≤ |t| ≤ m+ 1} (m = 0, 1, 2, · · · ).
PROOF. We begin by constructing the function γm(t) according to Example in (5). Let

us write

γm(t) = χm(t) ∗ ρ(t) (m = 0, 1, 2, · · · ) ,
where χm(t) = 1 (m ≤ |t| ≤ m + 1);χm(t) = 0 (|t| < m or m + 1 < |t|) and ρ(t) is the
mollifier. Then we have

γm(t) =
∫
χm(t)ρ(t − s)ds =

∫
m≤|t |≤m+1,|t−s|≤1

ρ(t − s)ds .

Now let us write

γ [j ](t) =
∞∑
i=0

γ4ni+j (t) (j = 0, 1, 2, · · · , 4n− 1) .

Then we have

|∆kαγ [j ](t)| =
∣∣∣∣

∞∑
i=0

∆kαγ4ni+j (t)
∣∣∣∣ ≤

∫
|t−s|≤1

|∆kαρ(t − s)|ds .

By applying the estimation in Example of (5), the right hand side of the above formula is less
than

Ck |α|k
k∑
l=1

∫
|s|≤1

Pl(s)ρl(s +Θlα)ds

≤ C′
k|α|k

∫
|s|≤1

1

(1 − |s|2)2l e
− 1

1−|s|2 ds

≤ C′′
k |α|k (∀t, |α| ≤ 1, k = 0, 1, 2, · · · , n) ,

where j = 0, 1, 2, · · · , 4n− 1. Furthermore, by Lemma 3 we have

ξ(α, g , γ [j ]) =
√

1

(2π)n

∫
|g (t)|2|∆nαγ [j ](t)|2dt

≤ Cn

(
√

2π)n
|α|n‖g ‖L2 ,
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hence

ξ(γ [j ]) = sup
‖g ‖≤1

∫
|α|≤1

ξ(α, g , γ [j ]) dα

|α|3n/2

≤ Cn

(
√

2π)n
‖g ‖L2

∫
|α|≤1

dα

|α|n/2 = C′
n‖g ‖L2 < ∞ ,

from which we can conclude that γ [j ] ∈ exÃ2. Now for γ (t) = γ [0](t) and any g ∈ Ã2,

since γ g ∈ Ã2 and γ g = ∑∞
i=0 γ4nig , applying Lemma 4 implies

∞∑
i=0

b2
4ni ≤

∞∑
i=0

M(γ4nig )2 ≤
∞∑
i=0

‖γ4nig ‖2
ex

≤
∞∑
i=0

‖γ4nig ‖2 ≤ k1‖γ g ‖2 ≤ k1‖γ ‖2
ex‖g ‖2 .

As for γ [j ]g (j = 1, 2, · · · , 4n−1), we have the same estimations, so that there is a constant
k2 such that

∞∑
m=0

b2
m =

4n−1∑
j=0

( ∞∑
i=0

b2
4ni+j

)
≤ k2

2‖g ‖2 ,

where

k2 =

√√√√√k1

4n−1∑
j=0

‖γ [j ]‖ex ≤ √
4k1n‖γ ‖ex .(3.22)

LEMMA 6. For any sequence {am}∞m=0 of non-negative numbers with a finite square

sum there exists a constant k3 and g ∈ Ã2 such that

min
m≤|t |≤m+1

|g (t)| ≥ am (m = 0, 1, 2, · · · )(3.23)

and

‖g ‖ ≤ k3

√√√√ ∞∑
m=0

a2
m .(3.24)

PROOF. Using γm(t) in Lemma 5, we write

g j (t) =
∞∑
i=0

a4ni+j γ4ni+j (t) (j = 0, 1, 2, · · · , 4n− 1) .



ON THE BEURLING CONVOLUTION ALGEBRA II 295

By the same lines as the proof of Lemma 4 we have

η2(α, g j ) ≤
∞∑
i=0

a2
4ni+j η2(α, γ4ni+j ) ,

and so

A1(g j ) ≤ C′
√√√√ ∞∑

i=0

a2
4ni+j (j = 0, 1, 2, · · · , 4n− 1) ,

where a constant C′ is determined by the inequalities

A1(γ4ni+j ) ≤ C′
(
i = 0, 1, 2, · · · ;
j = 0, 1, 2, · · · , 4n− 1

)
.(3.25)

Similarly, we have

‖g j‖L2 ≤ C′′
√√√√ ∞∑

i=0

a2
4ni+j ,

where a constant C′′ is determined by the inequalities

‖γ4ni+j‖L2 ≤ C′′
(
i = 0, 1, 2, · · · ;
j = 0, 1, 2, · · · , 4n− 1

)
.(3.26)

By Theorem III we have g j ∈ Ã2 (j = 0, 1, 2, · · · , 4n − 1) and the following inequalities
hold:

‖g j‖ ≤ 1

cn
A1(g j )+

(
1 + en

cn

)
1

(
√

2π)2
‖g ‖L2

≤
{
C′

cn
+ C′′

(
√

2π)n

(
1 + en

cn

)}√√√√ ∞∑
i=0

a2
4ni+j (j = 0, 1, 2, · · · , 4n− 1) .

Then if we write g = ∑4n−1
j=0 g j , then we have g ∈ Ã2 and the inequlities

‖g ‖ ≤
4n−1∑
j=0

‖g j‖ ≤ k3

√√√√ ∞∑
m=0

a2
m

with

k3 ≤ 4n

{
C′

cn
+ C′′

(
√

2π)n

(
1 + en

cn

)}
.(3.27)
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PROOF OF THEOREM 2. For any g ∈ Ã2 and a bounded continuous function h on Rn

satisfying (3.13). Let

ξ(α, g , h) =
√

1

(2π)n

∫
|g (t)|2|∆nαh(t)|2dt

and

bm = max
m≤|t |≤m+1

|g (t)|, am = min
m≤|t |≤m+1

|g (t)| (m = 0, 1, 2, · · · ) .

Then we have the inequalities

∫
|α|≤1

√√√√ ∞∑
m=0

a2
mη

2
m

dα

|α|3n/2 ≤
∫

|α|≤1
ξ(α, g , h)

dα

|α|3n/2(3.28)

≤
∫

|α|≤1

√√√√ ∞∑
m=0

b2
mη

2
m

dα

|α|3n/2 .

Firstly let h ∈ exÃ2 and let ψ ∈ C such that ψ(α) = ∑∞
m=0 τmη

2
m(α, h), τm ≥ 0,∑∞

m=0 τm ≤ 1. Hence by writing τm = a2
m and applying Lemma 6 to the sequence {am/k3},

there exists g ∈ Ã2 such that

min
m≤|t |≤m+1

|g (t)| ≥ am

k3
(m = 0, 1, 2, · · · )

and

‖g ‖ ≤ k3

√√√√ ∞∑
m=0

(
am

k3

)2

=
√√√√ ∞∑
m=0

τm ≤ 1 .

Then applying the first inequality of (3.28) yields

∫
|α|≤1

√
ψ(α)

dα

|α|3n/2 =
∫

|α|≤1

√√√√ ∞∑
m=0

a2
mη

2
m

dα

|α|3n/2

≤
∫

|α|≤1
ξ(α, g , h)

dα

|α|3n/2 ,

therefore

K(h) = sup
ψ∈�

∫
|α|≤1

√
ψ(α)

dα

|α|3n/2 ≤ ξ(h) < ∞

by Lemma 3.
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Secondly suppose that K(h) < ∞. For any g ∈ Ã2 with ‖g ‖ ≤ 1, let us write

max
m≤|t |≤m+1

|g (t)| = bm and τm = (bm/k2)
2. Then by Lemma 5 we have τm ≥ 0,

∑∞
m=0 τm ≤

‖g ‖2 ≤ 1, ψ(α) = ∑∞
m=0 τmη

2
m ∈ C and

√√√√ ∞∑
m=0

b2
mη

2
m = k2

√√√√ ∞∑
m=0

τmη2
m = k2

√
ψ(α) .

Now applying the second inequality of (3.28), we have

∫
|α|≤1

ξ(α, g , h)
dα

|α|3n/2 ≤
∫

|α|≤1

√√√√ ∞∑
m=0

b2
mη

2
m

dα

|α|3n/2

≤ k2

∫
|α|≤1

√
ψ(α)

dα

|α|3n/2 ,

and therefore

ξ(h) = sup
‖g ‖≤1

∫
|α|≤1

ξ(α, g , h)
dα

|α|3n/2 ≤ k2K(h) < ∞ .

From this with the help of Lemma 3, we can conclude that h ∈ exÃ2. Thus the theorem has
completely proved.

THE DIVISOR PROBLEM

Finally, we show the inequality

‖h−1‖ex ≤ k4

mn+1 ‖h‖nex

which is expected for a function h ∈ exÃ2 with |h(t)| > m > 0.
We need some additional conditions.

THEOREM 3. Suppose that h ∈ exÃ2 satisfies the conditions

|h(t)| > m > 0 (∀t ∈ Rn)(3.29)

and

|∆kαh(t)| ≤ Ck |α|kM(h) (|α| < 1, k = 1, 2, · · · , n) .(3.30)

Then h−1 ∈ exÃ2 and

‖h−1‖ex ≤ k4

mn+1
‖h‖nex ,(3.31)
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where

k4 = C

cn
2n +

{
1 +

(
en

cn

)}(
1√
2π

)n
(3.32)

and C is a constant depending only on n.

We need the following estimations.

LEMMA 7. Suppose that h is a bounded continuous function which satisfies conditions
(3.29) and (3.30). Then we have

|∆kαh−1(t)| ≤ C′
k|α|k M(h)

k

mk+1
(|α| ≤ 1, k = 1, 2, · · · , n) .(3.33)

PROOF. These estimations are obtained by elementary calculations. For example, in
the case of k = 1, since

∆1
αh

−1(t) = 1

h(t + α)
− 1

h(t)
= − ∆1

αh(t)

h(t)h(t + α)

we obtain

|∆1
αh

−1(t)| ≤ |∆1
αh(t)|
m2 ≤ C1|α|M(h)

m2 (|α| ≤ 1) .

In the case of k = 2, we have

∆2
αh

−1(t) = ∆1
α(∆

1
αh

−1(t))

= − ∆1
αh(t + α)

h(t + α)h(t + 2α)
+ ∆1

αh(t)

h(t)h(t + α)

= −h(t){∆
1
αh(t + α) −∆1

αh(t)}
h(t)h(t + α)h(t + 2α)

+ ∆1
αh(t){h(t + 2α)− h(t)}
h(t)h(t + α)h(t + 2α)

= −h(t)∆2
αh(t)+∆1

αh(t)∆
1
2αh(t)

h(t)h(t + α)h(t + 2α)
,

hence

|∆2
αh

−1(t)| ≤ C2|α|2M(h)
2

m3
(|α| ≤ 1) .

Finally we have

∆nαh
−1(t) = ∆1

α(∆
n−1
α h−1(t))

= Σn

h(t)h(t + α) · · · h(t + nα)



ON THE BEURLING CONVOLUTION ALGEBRA II 299

with

Σn = −h(t)h(t + α) · · · h(t + (n− 2)α)∆nαh(t) +
− h(t)h(t + α) · · · h(t + (n− 3)α)∆1

αh(t + α)∆n−1
2α h(t)

+ · · ·
+∆1

αh(t)∆
1
2αh(t) · · ·∆1

nαh(t) .

Here it should be remarked that the numerator consists of the sum of terms, each of
which is the product of several kinds of differences and sum of their degrees are always just n
and the denominator is estimated from below by |h(t)|n+1 > mn+1 > 0 (∀t ∈ Rn). Therefore
we have

|∆nαh−1(t)| ≤ Cn|α|nM(h)
n

mn+1
(|α| ≤ 1) .

PROOF OF THEOREM 3. For any g ∈ Ã2 we consider

A1(gh−1) =
∫

|α|≤1

dα

|α|3n/2
√

1

(2π)n

∫
|∆nα(gh−1)|2dt ,(3.34)

where

∆nα(gh
−1) =

n∑
k=0

(
n

k

)
∆kαg∆

n−k
α Tkαh

−1 .

By the use of estimations of Lemma 7 we have

|∆n−kα Tkαh
−1(t)| ≤ C′

n−k|α|n−k M(h)
n−k

mn−k+1 ,

where |α| ≤ 1, k = 0, 1, 2, · · · , n. Applying the Minkowski inequality, we have

A1(gh−1) ≤
n∑
k=0

(
n

k

)
C′
n−k

mn−k+1
M(h)n−kA1,k(g ) ,

A1,k(g ) ≤ Cn,k‖g ‖ (k = 0, 1, 2, · · · , n) ,

where Cn,k are constants depending only on k and n.
Putting C = max0≤k≤n Cn,kC′

n−k , we have

A1(gh−1) ≤ C2n
M(h)n

mn+1 ‖g ‖ .
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Taking the supremum with respect to g ∈ Ã2 with ‖g ‖ ≤ 1, we have

‖ h−1‖ex ≤ 1

cn
sup

‖g ‖≤1
A1(gh−1)+

{
1 +

(
en

cn

)}
1(√
2π
)nM(h)

= k4
M(h)n

mn+1 ,

where k4 is the constant defined in (3.32).
Since M(h) ≤ ‖ h‖ex , we have

‖ h−1‖ex ≤ k4

mn+1 ‖ h‖nex .

Thus Theorem 3 is proved.
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