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Chaos and Entropy for Graph Maps
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Abstract. Our aim is to check that the notions of positive entropy, chaos in the sense of Devaney and ω-chaos
are equivalent for the graph maps.

For any continuous map of the compact interval into itself, Li ([Li]) showed that it is
chaotic in the sense of Devaney if and only if it has positive entropy. On the other hand, for
continuous maps of the circle into itself, we showed that the result due to Li is also true for
maps of the circle (see [Miy]). In this paper we generalize these results to graph maps.

First we introduce some notions and definitions. We say that e is an edge if there is a
continuous surjection ϕ : [0, 1] → e such that ϕ|(0,1) is a homeomorphism. Here ϕ|A is
the restriction of ϕ to A. The set ϕ((0, 1)) is called the interior of e, and ϕ(0) and ϕ(1) are
endpoints of e. Each endpoint of each edge is called a vertex. A graph is a connected compact
metric space which is a union of finitely many disjoint sets: interiors of edges and the set of
vertices (see [LM] for more details).

Let (X, d) be a compact metric space and C(X) denote the set of all continuous maps
of X into itself. For a map f ∈ C(X) we say that a set A ⊂ X is f -invariant if f (A) ⊂ A,
and f is called topologically transitive if for every pair of non-empty open sets U and V in
X, there is a positive integer n such that f n(U) ∩ V �= ∅. We say that f is topologically
mixing if for any non-empty open sets U and V in X, there is a positive integer N such that
f n(U) ∩ V �= ∅ for all n ≥ N . f ∈ C(X) is said to be chaotic in the sense of Devaney if
there is an f -invariant closed infinite set D ⊂ X such that the following conditions hold:

(D1) f |D is topologically transitive and
(D2) Per(f |D) is dense in D,

where Per(f |D) is the set of all periodic points of f |D . We call such a set D chaotic (see
[Dev] and [Li]).

On the other hand, for any continuous map f of the compact interval into itself, Li ([Li])
introduced the following notion of ω-chaos, and showed that f is ω-chaotic if and only if f

has positive entropy. We say that a subset S of X is an ω-scrambled set for f if, for any
x, y ∈ S with x �= y, the following conditions hold:
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(ω1) ω(x, f ) \ ω(y, f ) is uncountable,
(ω2) ω(x, f ) ∩ ω(y, f ) �= ∅ and
(ω3) ω(x, f ) �⊂ Per(f ),

where the set ω(x, f ) is an ω-limit set of a point x ∈ X. We say that f is ω-chaotic if there
exists an uncountable ω-scrambled set for f (see [Li]).

In the present paper we shall extend the results in [Li] and [Miy] to the case of continuous
graph maps. More precisely, our aim is to show the following:

MAIN THEOREM. Let f be a continuous map of a graph into itself. The following
conditions are equivalent.

(I) f has positive topological entropy.
(II) There is an uncountable ω-scrambled set S such that

⋂
x∈S ω(x, f ) �= ∅.

(III) f is ω-chaotic.
(IV) There is an ω-scrambled set consisting of exactly two points.
(V) f is chaotic in the sense of Devaney.

(VI) There is a chaotic set D containing an uncountable ω-scrambled set S.

For the proof of Main Theorem, implications (II) ⇒ (III) ⇒ (IV) and (VI) ⇒ (V) are ob-
vious. By Propositions 1 and 2 below, we have (IV) ⇒ (I) and (V) ⇒ (I). Let G be a graph
and we denote by h(f ) the topological entropy of f ∈ C(G).

PROPOSITION 1. Let f ∈ C(G). If h(f ) = 0 then f is not chaotic in the sense of
Devaney.

PROPOSITION 2. Let f ∈ C(G). If h(f ) = 0 then there is no ω-scrambled set con-
sisting of exactly two points.

By Proposition 3 below, we have (I)⇒(II) and (I)⇒(VI).

PROPOSITION 3. Let f ∈ C(G). If h(f ) > 0 then there are a chaotic set D and an
uncountable ω-scrambled set S ⊂ D such that

⋂
x∈S ω(x, f ) �= ∅.

We prepare some lemmas that are used in proving the propositions.

SPECTRAL DECOMPOSITION AND HORSESHOES.

For f ∈ C(G), x ∈ G and A ⊂ G, we put Orb(x, f ) = ⋃∞
i=0 f i(x), Orb(A, f ) =⋃∞

i=0 f i(A), Λ(f ) = ⋃
x∈G ω(x, f ) and PP(f ) = {p ≥ 1 : f has a periodic point of

period p}.
A connected closed set Y ⊂ G is called a subgraph. For a map f ∈ C(G), a subgraph Y

is called periodic of period n if Y, · · · , f n−1(Y ) are pairwise disjoint and f n(Y ) = Y .
For a periodic subgraph Y of period n we put M = Orb(Y, f ) and

E(M) = {x ∈ M : Orb(U, f ) = M for any neighbourhood U of x in M} .

Here Ā is the closure of A. If Per(f |M) �= ∅ and �E(M) = ∞ (�A denotes the cardinality
of A), then we call the set E(M) a basic set and denote it by B(M). On the other hand, if
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Per(f |M) = ∅ and �E(M) = ∞, then we call it a circle-like set C(M).

THEOREM 4 [Bl2, Theorem 2]. Let n,E(M),B(M),C(M) be as above. If �E(M) =
∞, then the following conditions hold.

(1) There exist a set K = ⋃n
i=1 Zi (Zi is a connected graph), a topologically transitive

map g : K → K and a continuous surjection ϕ : M → K such that (a) g permutes

{Zi}ni=1 cyclically, (b) ϕ(E(M)) = K , (c) for any y ∈ K the set ϕ−1({y}) is

connected and ϕ−1({y}) ∩ E(M) ⊂ ∂(ϕ−1({y})). Here ∂A is the boundary of A.
(2) In the case when E(M) = C(M) we can obtain the above connected graph Zi as

the unit circle and gn|Zi is an irrational rotation (i = 1, · · · , n), which implies
h(f |C(M)) = 0.

(3) In the case when E(M) = B(M) there exist a number k ≥ 1 and a subset D ⊂
B(M) such that the set f i(D) ∩ f j (D) is finite (0 ≤ i < j < kn), f kn(D) = D,⋃kn−1

i=0 f i(D) = B(M) and f kn|D is topologically mixing. Moreover there exists
m ≥ 1 such that {mi : i ≥ 1} ⊂ PP(f |B(M)).

Let Y0, Y1, · · · be periodic subgraphs of periods m0,m1, · · · with Yi ⊃ Yi+1 and mi is
a divisor of mi+1 for any i ≥ 0. In the case when mi → ∞, for Q = ⋂

j Orb(Yj ) we call

any invariant closed set S′ ⊂ Q a solenoidal set, and put S(Q) = Q ∩ Λ(f ). Let Zm be the
quotient group of Z modulo m(≥ 1).

THEOREM 5 [Bl2, Theorem 1]. Let {mj },Q, S(Q) be as above. Define H(Q)=
{(r0, r1, · · · ) ∈ Zm0 × Zm1 × · · · : ri+1 ≡ ri (mod mi)}, and τ : H(Q) → H(Q) by
τ ((r0, r1, · · · )) = (r0 + 1, r1 + 1, · · · ). Then the following conditions hold:

(1) there exists a continuous surjection ϕ : Q → H(Q) such that τ ◦ ϕ = ϕ ◦ f |Q;
(2) for any r ∈ H(Q) the set ϕ−1({r}) is a connected component of Q and ϕ|S(Q) is at

most 2-to-1;
(3) Per(f |Q) = ∅ and h(f |Q) = 0.

We call a periodic orbit Z a maximal-cycle if there is no point x ∈ G with ω(x, f ) � Z.

THEOREM 6 [Bl2, Theorem 3]. Let f ∈ C(G). Then there exist a family of maximal-

cycles Zf = {Zα}, a finite number of circle-like sets Cf = {Ci}ki=1, a finite or countable
family of basic sets Bf = {Bj } and a family of solenoidal sets Sf = {Sβ} such that

Λ(f ) =
( ⋃

α

Zα

)
∪

( k⋃
i=1

Ci

)
∪

( ⋃
j

Bj

)
∪

( ⋃
β

Sβ

)
.

Moreover, if we set Df = Zf ∪ Cf ∪ Bf ∪ Sf , then the following holds: for two different
elements P,P ′ ∈ Df with non-empty intersection, we have P,P ′ ∈ Bf .

LEMMA 7 [Bl1]. Let Df be as in Theorem 6. For x ∈ G there exists Px ∈ Df such
that Px ⊃ ω(x, f ).
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LEMMA 8 [Bl1, Theorems 1 and 3]. Let Cf and Sf be as in Theorem 6. For x ∈ G the
following conditions hold:

(1) if ω(x, f ) ⊂ C for C ∈ Cf then ω(x, f ) = C and
(2) if ω(x, f ) ⊂ S for S ∈ Sf then S \ ω(x, f ) is at most countable set.

A set I ⊂ G is called an interval if there is a homeomorphism h : J → I , where J is
[0, 1], (0, 1], [0, 1) or (0, 1). A set h((0, 1)) is called the interior of I . If I = h([0, 1]), the
interval I is called a closed interval.

Let I be a closed interval of G and J1, · · · , Js be closed subintervals of I , where s ≥ 2.
If f (Jj ) = I (j = 1, · · · , s), J1 ∪ · · · ∪ Js ⊂ Int(I) and J1, · · · , Js are pairwise disjoint, the
finite sequence (I ; J1, · · · , Js) is called a strong s-horseshoe, where Int(I) is the interior of
I .

THEOREM 9 [LM], [Bl2]. Let f ∈ C(G). Then the following conditions are equiva-
lent.

(1) h(f ) > 0.
(2) There exist integers k > 0 and s ≥ 2 such that f k has a strong s-horseshoe.
(3) There exists an integer m ≥ 1 such that {mn : n ≥ 1} ⊂ PP(f ).
This theorem is proved in [LM, Theorems B and E, and Lemmas 3.3 and 3.4] and [Bl2,

Main Theorem].

LEMMA 10. Let f ∈ C(G). If f has a basic set then h(f ) > 0.

This lemma is concluded from Theorem 4 (3) and Theorem 9.

THE PROOF OF THE PROPOSITIONS.

PROOF OF PROPOSITION 1. Suppose f has a chaotic set D. By (D1) there exists a ∈
D such that ω(a, f ) = Orb(a, f ) = D. By Lemma 7, there exists Pa ∈ Df = Zf ∪ Cf ∪
Bf ∪ Sf such that D = ω(a, f ) ⊂ Pa . Since D is infinite and h(f ) = 0, by Lemma 10
we have Pa ∈ Cf ∪ Sf . By the definition of circle-like sets and Theorem 5 (3), we have
Pa ∩ Per(f ) = ∅, this contradicts the condition (D2). Therefore f is not chaotic in the sense
of Devaney. �

PROOF OF PROPOSITION 2. Suppose {y, z} (y �= z) is an ω-scrambled set. By Lemma
7, there exist Py, Pz ∈ Df = Zf ∪ Cf ∪Bf ∪ Sf such that ω(y, f ) ⊂ Py and ω(z, f ) ⊂ Pz.
Since {y, z} satisfies the condition (ω1) and h(f ) = 0, by Lemma 10 we have Py, Pz ∈ Cf ∪
Sf . In the case when Py �= Pz, Theorem 6 implies Py ∩ Pz = ∅, so ω(y, f ) ∩ ω(z, f ) = ∅,
this contradicts the condition (ω2). Let Py = Pz = P . In the case when P ∈ Cf , Lemma 8
(1) implies ω(y, f ) = ω(z, f ), this contradicts the condition (ω1). In the case when P ∈ Sf ,
by Lemma 8 (2), ω(y, f ) \ ω(z, f ) is at most countable set, this contradicts the condition
(ω1). Therefore there is no ω-scrambled set consisting of exactly two points. �

PROOF OF PROPOSITION 3. Since h(f ) > 0, by Theorem 9 there exists an integer
n > 0 such that f n has a strong 2-horseshoe. Let Σ2 be the compact metric space of all
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infinite sequences (a1, a2, · · · ) (ak = 0 or 1), and σ : Σ2 → Σ2 be the map defined by
σ((a1, a2, · · · )) = (a2, a3, · · · ). In the same way as in the proof of [BC, Proposition II.15],
we can easily obtain a closed set Y and a continuous surjection q : Y → Σ2 such that
f n(Y ) = Y , q ◦ f n|Y = σ ◦ q and q is at most 2-to-1 map. Furthermore, there are only
countably many points in Σ2 which have 2 preimages for q , and if one of the preimages for
q is periodic, then so is the other. Applying the result of Li [(Li, Chapter 4)], we can obtain a
chaotic set D and an uncountable ω-scrambled set S ⊂ D such that

⋂
x∈S ω(x, f ) �= ∅. �
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