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Fractional Calculus and Analytic Continuation
of the Complex Fourier-Jacobi Transform

Takeshi KAWAZOE* and Jianming LIU"

Keio University at Fujisawa and Peking University

Abstract. By using the Riemann-Liouville type fractional integral operators we shall reduce the complex
Fourier-Jacobi transforms of even functions on R to the Euclidean Fourier transforms. As an application of the
reduction formula, Parseval’s formula and an inversion formula of the complex Jacobi transform are easily obtained.
Moreover, we shall introduce a class of even functions, not C° and not compactly supported on R, whose transforms
have meromorphic extensions on the upper half plane.

1. Introduction

Leta,B,A € Candt € R. Fora # —1,-2,-3,---, ¢g’ﬁ(t) denotes the Jacobi

function of the first kind, and for A # —i, —2i, —3i,---, @f’ﬁ(t) the one of the second
kind. Let C§°(R) denote the space of all even C* functions on R with compact support. For

f € C(‘)X’ (R) and Ra > —1 the Fourier-Jacobi transform fa, g(A) and the complex Fourier-
Jacobi one fa, g (1) are defined by

A _ «/z o0 O(,ﬂ
(1) Jar® = 70T fo FO@SP (1) Ay pt)dt
) Jap) = /0 FODP (1) Ay p(0)dt

respectively, where

(3) Ay p(t) = 2shr)* 1 (2chr) 2P+

The Fourier-Jacobi transform f — fa, g is well-understood. For example, the Paley-Wiener
theorem and the inversion formula for C 80 (R) are obtained by Flensted-Jensen [2] and Koorn-

winder [3]. In particular, Koornwinder reduces the transform fa, g to the Fourier Cosine trans-
form, which corresponds to the case of « = f = —1/2:
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R 2
W fupr) = 23(a+1/2)E(W;_ﬁ o W51 n (N2 010

=22 Wy g0 Wi 0 (1) ()

Here W (f), n € C, o > 0, is the Weyl type fractional integral of f, which is for fip > 0
defined by

) WS (HG) =T f f(x)(chox — choy)* d(chox)
]

and extended to an entire function in ;. Moreover, in the second line of (4) WOL ° Wé 11 /2( D)
is regarded as an even function on R and ( - )" is the Euclidean Fourier transform on R (see
[3, (2.7), (3,7), (3.12)]). One of the aim of this paper is to obtain an analogous formula for the
complex Fourier-Jacobi transform . g(A). Actually, we shall reduce fu, g to the Euclidean
Fourier transform, which corresponds to the case of « = 8 = —1/2 (see [3, (2.7)]). In order
to obtain the reduction formula we introduce the Riemann-Liouville type fractional integral
WS (f) : For f € CO(R) and iy > 0, W (f) is defined by

©) AGIOETINM /Oy f@)(choy — chox)*~'dx - shoy

and extended to an entire function in u (see Lemma 3.2). Then the relation between the
complex Fourier-Jacobi transform and the Euclidean Fourier one is given by

fa,ﬂ(k) = 273(0‘+1/2)Ca,ﬂ(_)\)(Wl(a,ﬂ) o WE(ﬂJr]/z)(an,ﬂ))zl/zﬁl/z()\) s

where Cy g is the C-function (see (11) and Proposition 4.2). In this formula, if Ho > RB >
—1/2, two operators Wl( a—p) and WE( B+1/2) correspond to fractional derivatives.

As an application of this formula, Parseval’s formula for C(‘)X’ (R), which characterizes
the inner product (f, g);2R, 4, ») in terms of fa, g and gy g, easily follows from the one for
L%(R) (see Theorem 5.1). Next, we shall consider analytic continuation of Ga,p(A) when g

is not C*° and not compactly supported. We note that, if JA is sufficiently large, then @f”s
has exponential decay and thus, gu,g(1) is well-defined for a large class of even functions.
We shall introduce a class of even functions g on R for which gy g(A) has a meromorphic
extension on JA > 0. Then we can deduce an inversion formula of the complex Fourier-
Jacobi transform g — g, g in a distribution sense (see Theorem 6.5).

Similar result is obtained in [5] by a different and direct approach without using the
reduction arguments. Moreover, in [1] the Fourier-Jacobi transform gy g of g(x) = (chx)”
is explicitly calculated for the group case of SU(n,1) (¢ = n — 1, 8 = 0). This function
(chx)" is a simple example of unbounded functions whose Fourier-Jacobi transform has a
meromorphic extension on JA > 0. Compared with these direct approach, if e > RB >
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—1/2, then the same result follows in our approach, otherwise, some extra conditions on g
are required to carry out our reduction method. However, under these extra conditions we see
that all poles appeared in our inversion formula are simple and we can distinguish between
poles arisen from the C-function and ones from the analytic continuation (see Theorem 6.5
and Remark 6.6).

The authors are grateful to the referee for his careful reading and valuable suggestions.

2. Notations
Leta, B, A € Cand r € R. We shall consider the differential equation
(7 (Lap+ 22+ 07 f() =0,
where p = a + 4+ 1 and
L d’ +(Qa+1) tht+(2,3+1)tht)d
= — o C —_— .
P = a2 dt
Then, for « ¢ —N, the Jacobi function of the first kind with order (¢, 8)
p+il p—iA
2 72

8) P (1) = F< ca+ 1 —sh2t>

is a unique solution of (7) satisfying qbff’ﬂ(O) =1 and dq)ff’ﬂ/dt(O) = 0. For A ¢ —iN, the

Jacobi function of the second kind with order («, 8)

p—20—il p—iA
2 2

9) PP (1) = (¢ —e ) PF ( c1— ik —sh_2t>

is another solution of (7). Then I (o + 1)’1¢ff”3 is entire of «, B, and for A ¢ iZ, we have
the identity

o 1 o 1 o
(10) VAL +1)""¢"P @) = Eca,,s(x)qa’ﬁ (t) + Eca,,s(—mab_’f(o,

()

2 2

F(ik+p>r<ik+p—2,3>'
2 2

We recall the following properties of these functions (cf. [3] and [4]).

where Cy g is the C-function given by

11 CopA) =

LEMMA 2.1. Assume that o, B € C and Ro > —1.

(1) Foreach fixedt > 0, as a function of A, ¢§‘ﬂ(t) is an entire function. There exists
a constant K > 0 such that for allt > 0 and all » € C,

165 (0] < K1+ 2D (L + el =10
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where e =0ifRa > —1/2ande =1 for —1 < Ra < —1/2.
(2) For each fixedt > 0, as a function of A, be’ﬁ(t) is a holomorphic function in

C\{—iN}. For each ¢ > 0 there exists a constant K > 0 such that for all t > c and all
A >0,

|q)§f,ﬁ(t)| < Ko~ =%p)t
andforall 0 <t < c and all 3\ > 0,

(~ @t i e > —1/2,
|q§;"ﬁ(t)|§K log |¢| if Ne=-1/2,
1 if —1<%a<—1/2.

(3) Foreachr > 0, there exists a constant K > 0 such that, if » € C, X > 0and A is
at distance larger than r from the poles of Cy g (—=2)"L, then
|Cap(=0) 7" < K(1 4 Ay +1/2.

Let C;°(R) denote the set of even C* functions on R with compact support. For
fe Cgo (R) we define the Fourier-Jacobi transform fa, g(A) and the complex Fourier-Jacobi
transform f; g(A) by (1) and (2) respectively. From Lemma 2.1 it follows that fa, () is
entire and fy, g (1) is holomorphic for A ¢ —iN. Especially, (10) implies that for all A ¢ iZ,

(12) V270 fu p(1) = Ca g A fa p (W) + Ca (=) far p(—1) .

In the following we define the Gauss symbol [z] for z € C as [Rz].

3. Fractional integrals

3.1. Let C¥(Ry,), Ry = [a,00), a € R, denote the set of all C* functions F on R,
with compact support, where F is right differentiable at a. For F € C°(R,) and —n < R,

n=0,1,2,---, we shall define the Weyl type fractional integral operator W}f by

=D" * d"F(x)

_ M‘H”l*]d
F'(w+n)J,  dxn = o

(13) WREN () =

We extend it as an entire function in . Then W is the identity operator, WR o WR = WR, |

and
Wf : C?o(Ra) — Cgo(Ra)

is bijection. We also define the Riemann-Liouville type fractional integral operator W}} by

n

I'(n+n)dy"

- y
(14) (WREF) () = f F@)(y — )" dx
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and extend it as an entire function in ;. We note that Wé‘ is the identity operator and Wl‘u o

WR(F) = Fif ip > 0. For % <0, WR, o WR(F) = F provided F(a) = F'(a) = --- =

F"=D(a) = 0. Especially, if F is supported on (a, 00), WR o WR = WR, | Fort,neC
andm = 0,1,2,---, we define A’T'fn(Ra) the class of C™ functions F on R, of the form
F = Fo+ Fi;
(15) Fo(x) =(x—a)'G(x), G eC"(a,a+?2),
(16) Fix)=x"H(x), HeC"((a+1,00)),
where
d*H

a7 sup LIS

0<k<m,a+1<x<o0 dx

m
Moreover, AT, ,

(R,) denote the class defined by replacing (x — a)” in (15) with log(x — a) -
(x —a)? and A’T'fn* (R,) the one defined by replacing sup, <y .o |H (x)| < ¢, k = 0in (17),
with sup, <, -0 [(logx) H (x)| < c.

LEMMA 3.1. Form =0,1,2,--- and u, t,n € C the fractional operators WII} and
WE satisfy the following.
(D Ifm+[ul—1>0, Ny <0and N(n+n) <0, then

Wi AT, R — AFTEIR,)

3,n+p

where§ =1+ pifu=0,—1,-2,---, and otherwise
0 if Mr+p >0,
(18) § =1 0% if Nr+uwp) =0,

t+pu if Rrz+p) <O0.
2) Ifm+[u] >0and Nt > —1, then

WR AT Ry — ATHH(R,)

where § =n+ pnifu =0,—1,-2,---, and otherwise
n+u if Nn>-1,

=1 m+w=* if Rn=-1,
u—1 if Mnp<-—1.

PROOF. (1) When p = 0,—1,=2,---, WR(F)(y) = c[FHU];O = cFM(y),
because M (n + w) < 0. Therefore, the assertion for © = 0, —1, =2, -- - easily follows.
Let u # 0,—1,—2,---. Also we may assume that 9ix > 0. Actually, if fip < 0, let
WR=WR |, o WR, andnote that 0 < R(u — [u]) < 1 and [z — [p2]] + [4] = [p]. Hence,
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the assertion for Ry < 0 follows from the cases of iy > O and u = 0, —1, -2, ---. Let
F e A’r'fn(Ra) be of the form F = Fy + F; in (15) and (16). If y > a + 1, then WII}(F) is
defined as

WR(F)(y) = c/oo(x — @) G)(x — y)*dx + c/oo FH ) — )P ldx
y y
=1L+ L(y).
Clearly, I1 (y) = 0if y > a + 2 and I} € C"*D_ Moreover,
L(y) = cy™* /1 N X"H (yx)(x — )"~ dx
= oy Hu(y) -
For0 <! <m,

o
O = [ OG0 - 1
1

Ot /oo A HO () (x — vy ldx
]

andfor0 <!’ < [u],
I 00
Hl(LlJrl)(y) ~ Zy*(n+u+l+k)/ x™HO () (x — y)uflf(l =5 g x
k=0 Y

4 00
~ 3y / O () (x — 1100 g
1
k=0

4 00
~ Zy—(lm/ ey HO (y) (x — Dy 1= 10 g
1
k=0

where, if 1 is positive integer, the term corresponding to I’ = [u], k = 0 equals y_l/H (l)(y) =
y= Dy D (y) (see the first line). Hence, (17) implies that yl+l/H,(Ll+l/), 0<I+0l <
m —+[u], is bounded on (a + 1, 00). Therefore, H,,(y) satisfies (17) replaced m with m +[u].
Ifa <y <a+1,then WII}(F) is estimated as

a+2 00
/ (x —a)'G(x)(x — y)* ldx +/ x"H(x)(x — y)* ldx
y a+1

2/(y—a)
~ (y—a)”“/ X*G((y — a)x +a)(x — 1P dx 4y
1

(y—a) W if R(r+pu) >0
~(y—a) " { log(y —a) if Rz +w)=0¢+1
1 if R(r+p) <0
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s
~(—a)’Guy).

Noting 0 < (y —a) < 1 and the argument in the previous case, we see that G, € cmHinl,
Therefore, W}}(F) is of the desired form. (2) When u =0, —1, =2, ---, W}}(F) coincides
with cF(—H provided fit > —1. Since VT/E = W[IZ] o W}LM if R < 0, as in the first case,

we may assume that it > 0. We note that, ifa < y < a + 1, then
=R Y 1
VR0 = [ 6@ 6o -0 s
a

1
=(y— a)r'“‘/ x*G((y —a)x +a)(1 —x)* dx
0
=0 —a)Gu).

andif y > a + 1, then W}}(F)(y) is estimated as

min(y,a+2) y
/ (x —a)'Gx)(y — x)* ldx + / x"H () (y — x)* ldx
a a+1

min(1,2/(y—a))
~(y —a)f*ﬂ/ xTG((y —a)x +a)(1 —x)* 'dx
0

1
+ y”“‘/ x"H (yx)(x — D* ldx

(a+1)/y
min(1,2/(y—a)) 1
~(y— a)”“/ xTdx + y"tH / xdx
0 (a+1)/y
1 if iy > —1

~@G-—a)* Ty L logy if i =—1
y 1l vy < —1

~ Y Hu(y) .
Noting (y — 1) > 1 and —N(r + n — 1) < 0, as in the first case, we see that G, € cmind
and H), satisfies (17) replaced m with m + [u]. O

REMARK 3.2. InLemma 3.1 we note that, if R(z +un) > 0and u # 1,2,3,--- , then
the Weyl type fractional operator W}} does not keep the zero of F' at x = a even if F has
sufficiently higher order of zero.

3.2.  We shall transfer the operators W}} and W}} on C°(Ry), Ry = [1, 00), to ones for
C°(R). For f € C°(R), 0 > 0and —n < R, n =0,1,2,---, we shall define the Weyl

type and the Riemann-Liouville type fractional integral operators W and Wl‘{ respectively as
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follows:

(=" * d"f(x)
I'(u+n)J, d(chox)

(19 WI(HO) =

—(chox — choy)**"~d(chox),

o1 ar
I'(i + n) d(choy)”

Q) WiHo = f " f)(ehary — cho) " dx -shay
0

Then the change of varibale:
f(x) =[f1° (chox)

yields the relation between W}} and W
1) W3 () () = WR(LF17) (choy)

and the one between W}} and Wl‘j :

(22) WS (f)(y) = WR(Lf - (shox)"']%)(choy) - shoy.
Fort,ne Candm =0,1,2,---, let .A‘T’:;Y"(R) denote the space of all even functions f
on R of the form f = fo + f1;
(23) fo(x) = (shox)* g(chox), geC™([1,3)),
(24) f1(x) = (chox)"h(chox), h e C"((2,)),
where
d*h

(25) sup |x (,f ) <e.

0<k<m,2<x <00 dx

Moreover, A’r"*’n(R) denote the class defined by replacing (shoex)¥™ in (23) with
(log x)(shox)?* and A™

T,n*
SUPy<y oo |l0gx)(x)| < c. Then, using the relations (21) and (22), we can rewrite

Lemma 3.1 for W}} and W}} to the one for Wl‘j and Wl‘j:

(R) by replacing sup,<, oo [H(x)| < ¢, k = 0 in (25), with

LEMMA 3.3. Letpu,t,ne Candm =0,1,2,---.
(D Ifm4+[u]l—1=>0, Ry <0and R(n+ pn) <0, then

WS AZIR) — AT H(R)

where § =1+ pifu=0,—1,-2,---, and otherwise § is the same as (18).
2) Ifm—+[u]>0and Rt > —1/2, then

Wi AT R) — AT R,
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where S =n+pnifu=0,—1,-2,---, and otherwise

n+u if fn>0
(26) §=1Mm+wx if Rn=0
" if fn<O0.

3.3.  Asanapplication of Lemma 3.3, we shall consider the inner product of f € A7, nn1 )

and g € A%,"?,. and obtain an adjoint relation between W and W .

PROPOSITION 3.4. Leto > 0, u € Candrti,n € C,n; € Nfori = 1,2. Suppose
that Rp > 0, n; +[u] —1>0, ny +[u] > 0 and

(@) N +p) <0,%n <0,

(b) R +nm+pn+2p/0) <0,

©) Rruu+nnt+a+p >—1,

(d R +aw) > -1,

) MNMro+a+wp) >—1.
Then for f € A%,"), and g € A7,

(27 (Wi (s 9 2R, Ag pdx) = (S WS (946 1)) 2R .dx) -

PROOF. First we check the both sides of (27) are finite. Lemma 3.3 (1) with (a) implies
that WS (f) € Ag’;;’;jlﬂ“](R) with & in (18). Since gAap € AL L) 0 12p/0 (R), the left
hand side of (27) is finite from (b), (c), (d). As for the right hand side, Lemma 3.3 (2) with

(d) implies that

~ o,n2+[1]
Wi (gAap) € Ar2-|—2a+l/2+u,3(R)

with 8 in (26). Then the right hand side of (27) is also finite from (a) and (b). We shall prove
the equality. When Rt > 0, (27) is clear by changing the order of integration. Let us suppose
that —n < Npu < —n+1,n=1,2,3,---. Then, it follows from (19) that

(W;Z (f)v g)LZ(R+,Aa'ﬁdx)

[e’e] -1 n e e} dﬂ N
:/o FEM -|)- n) / d(cl{cr(gn (chox — choy)**"~'d(chox) - g(y) Aa.p(y)dy
y

_/°° d"f(x) (=D* ¥
~Jo d(chox)" I'(u+n) Jo

g(y)Aa,p(y)(chox — chcry)’”"*ldy -d(chox).

Since g(y)Aw,p(y) = O(x>2+2Ht1) if 0 < x < 1, the last integral with respect to dy is
O (x¥mtetu+m)y if O < x < 1. Thereby, since (e) implies that 2R (ty + o + o + n) >
—2 4 2n > 0, we can repeat n-times integration by parts with respect to d(chox). This
process shifts the differential operator d/d(cho x) acting on f to the one acting on the inner
integral with respect to dy. Therefore, the desired equality follows from (20). O
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4. Reduction formula

In order to obtain a reduction formula of fa g, we recall some reduction formulas of

@f”s obtained by Koornwinder [3]. Let i > 0 and 31 > —%Rp. Then for x > 0,
Cap(—0) 0P =234 C g (=) Wi@f*mﬂw)

(see [3, (2.15)]). Hence, applying Proposition 3.4 with Lemma 2.1 (2), we see that for [ €
Co°(R),

Cap (=) fup (V)
= Cop(—0) "1, W)LZ(R+,AQ,,3dx)
= 2 Cop pan (NS, W;%(W))LZ(R+’A%ﬁdX)
= 23“+1Ca+u,/3+u(_)\)_l<Wl%(fA""/3) ’ WMZ(R*’W)
=23 Copp pip (=) (Wi(an,ﬁ)A;Jru,ﬁ+u);+u,ﬁ+u()”)'

Clearly, this equation is meromorphically extended to «, B, A, u € C.

PROPOSITION 4.1. Let e > —1 and f € CP(R). As a meromorphic function of
a, B, A, neC,

f‘;,ﬂ()") — 23/1+1

Cap(=1)  [(W2(fhup)\ o
Aa-l—llsﬁ-‘rll QL B

Now we shall reduce the complex Fourier-Jacobi transform fa g to the Euclidean Fourier
transform.

One way to obtain the reduction is to use Proposition 4.1 repeatedly and to reduce the
parameters (o, 8) to (—1/2, —1/2). We here apply another way, but essentially it is the same
way. We note the following formula: Let e > RB > —1/2, 5 > 0 and I1 > 0. Then

Ca-i-ﬂ,ﬂ-i—u(_)\)

o0
(28) e = Ca,ﬂ(—x)*/ OUP (1) Ay p (s, 1d1

s
where Ay (s, t) is given by
23(@+1/2)+1ghoy

I'(a—=B)I'(B+1/2)

(see [3, (2.17)]). In particular, it follows from [3, (3.5), (3.12)] that (28) can be rewritten as

t
/ (ch2t — ch2w)? =12 (chw — chs)* P~ Ishwdw .
s

eiks — Ca)/B(—)\.)7123(a+1/2) Woll_ﬁ o W§+1/2(¢;{.ﬂ)(5‘) .

Since (¢ — B) +2(B — 1/2) = p, Lemma 2.1 (2) and Lemma 3.3 (1) imply that the right
hand side is well-defined if IA > 0. Furthermore, it follows from Lemma 3.3 (1) that, if I\
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is sufficiently large, then
P = Cop(—0273CHDW2 o W (e0)

Since Ra > RPB > —1/2 means that R(—(a — B)) < 0and R(—(B + 1/2)) < 0, '** for
a sufficiently large IA and f € C{°(R) satisfy the assumptions on f, g in Proposition 3.4.
Thereby, it is easy to see that

Cap (=) fup (M)
= Cap N PEP) 2w i
— 031/ p WE(,§+1/2) o Wi(&_/g)(e_ik(.)))Lz(R+,Aa,,3dx)
=2 HDWE gy 0 Wiy (FAap) ) 2wy
= 273D o W2y o (FAap) 101 0(R) -
If, for simplicity, we put
(29) Wap =Wy goWi  , and Wap=Wi, ,0Wi 4.
then we have the following.

PROPOSITION 4.2. Let f € C°(R) and Ra > NP > —1/2. Then, as a meromorphic
function of o, B, X € C,

(30) fap ) =27CTYDC, g (=) Wy j(f Aap)) 1010 R) -

We shall extend this formula for f € .A‘;:;”(R). We recall that W; }3 is a composition

of two fractional operators Wl(a_ 8) and WE( B+1/2) (see (29)) and these operators change
smoothness according to Lemma 3.3 (2). We take m = Ny g defined by

—[=B+1/D]=[—(e—=p] if RB+1/2) =0, R(a—-p)=0

=B+ 1/2)] if RB+1/2)>0,Ra—p) <0
[-B+1/2)]=[-(e—=pB)] if MB+1/2) <0, N(a—-p)=>0
0 if (RB+1/2) <0, %(a—p) <O0.

COROLLARY 4.3. Leta,B,7,n € C, N > —1, Nt >0, Rt > —N(ae — pB) —1/2

and RN(n + p) > max{—Np, —NR(o¢ — B)}. Then for f € Al:i,va'ﬁ (R), fa,ﬁ()») is holomorphic
on IA > N(n + p) and satisfies (30).

PROOF. It follows from Lemma 2.1 (2) that fa_ﬁ (1) is well-defined if N > —1, Rt >
0 and IA > NR(n + p). On the other hand, we note that

f(x)Aa_ﬁ(x) ~ (chx)’7+2[)(thx)21+2a+1 )
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Since R(t + o« + 1/2) > R(r — 1/2) = —1/2 and R(n 4 2p) > 0, Lemma 3.3 (2) implies
that

Wz(5+1/2)(f4a,ﬁ)(x) ~ (Chx)n+2,o—2(/3+l/2)(thx)27+2a+1—2(ﬁ+1/2) )
SinceN(t+a+1/2—(B+1/2) =R(t+(@—B)) > —1/2and R(n+2p—-2(B+1/2)) =
RN+ p+ (¢ — B)) > 0, Lemma 3.3 (2) again implies that

W ia_p) 0 W2 (5412 (f Aup) () ~ (chx) (thx) " .
Therefore, the Euclidean Fourier transform of W(; /]3( fAqp) is well-defined if IA >
R+ p). O

REMARK 4.4. If —(8 4+ 1/2) and —(« — B) are 0, —1, —2, - - -, then the condition
N+ p) > max{—Np, —R(«x — B)} is not necessary.

5. Inversion formula

Let o, B € C and e > —1. The inversion formula of the Fourier-Jacobi transform

f— fa) g f € Cf)’o (R), is obtained by Flensted-Jensen [2] and Koornwinder [4]. We recall
their inversion formula and give a simple proof.
Let Dy, g denote the set of poles of Cy g(—2) ! located in Ix > 0:

31 Dypg={ym=i(ef—a—-1-2m); m=0,1,2,--- Iy, >0},
where ¢ = 1if # > Oand ¢ = —1if "B < 0. Let Ry g(ym) denote the residue of
Ca,,g(—)»)_l at y,,, explicitly given by
(—1ym2=prEpa=i=2mi (¢ —m)
m\/m FE—a—1-2m)’
Then it follows from [4, Theorems 2.2, 2.3, 2.4] that

Ra,ﬁ(ym) =

THEOREM 5.1. Let o, € Cand v € R. Suppose that e > —1, v > 0, and
V> —RaLtp+1).
(1) Foreach f € Ci°(R) andt > 0,

1 [~ o o
f(t):E/ fup O+ iv)@EL (1)Cqp(—1 —iv) " din

J2

- = 2 o.p -l
- F(Ol+1)/0 fa,ﬁ()\)(lsk (t)(Ca,ﬁ()‘)Ca,ﬁ( A)da

2 27i 3 fup@)

- “P ()R :
T+l Ca,ﬁ(7)¢y (R ()

EDa,,s
(2) Foreach f, g € C(R),

(s D 2Ry Ag )
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1 © ~ |
= — BAFiV)g, g(A+iv)Cq (=2 —iv) dA
Nz /_oo Jeop Ot V)5 “$

1 [ 5
= — 2 (VT (W Co.p(—1) " dA

—27i Z fa,,s(y)%,,s()/)Ra,ﬂ(y).

VEDoc,/S

(3) Ifa,BeRanda > B > —1/2, then Dy g = @ and for f, g € C°(R),

(f, Q)LZ(RﬁAayﬁdx) = (fa,/& fla,ﬁ)LZ(RJr,\Ca,ﬁ()\)rzdx) :
PROOF. We shall give a simple proof based on Proposition 3.4 and the reduction for-
mula in Corollary 4.3. Obviously, it is enough to prove the first equation in (2). We note that
I 9 2Ry Ay pal = 1F 112119112, where || - 2 is the L*(Ry, Ay gdx)-norm, and | fo g (0 +

V) < 1l rpye® R if supp(f) C [=R. Rl and [§apO + i) < llgllir,) (see
Lemma 2.1). Therefore, by using approximation argument, we may suppose that f, g be-
long to Al;nN (R) for sufficiently large positive numbers T and N. We take v > 9i(n + p) >
max{—Np, —N(e — B)}. Hence, Proposition 3.4, (4), (30) and the Plancherel formula for
L*(R) yield that

(fs Q)L2(R+,Aa,ﬁdx)

= (Wap (), Wy 5945 ) 12R )
1 - _
= E(Wa,ﬂ(f)evx: WE,E(QAE,E)e VX>L2(R,dx)

1 A L~ . .-
= ——={fup(h+iv), G 5O — iV)Cq (=1 +iv) ) 2R g0,

NGz

where Wy, g(f) and W&,E( gAa,E) in the third line are regarded as even functions on R. O

Similarly, we can deduce the following.

COROLLARY 5.2. Letwa,f,n € Cand R > —1. Letv > 0andv > R(n + p) >
max{—NRp, —N(a — B)}. Then, for all f € C°(R) and g € .A(I)ZS(R),

1 BN - , -
(f, 9)L2(R+,Aa,ﬁ) :E/;m Ja.gA +iv)gg (A + iv)Co,p(—A —iv) L.

6. Analytic continuation

6.1.  We shall consider analytic continuation of the formula in Corollary 5.2. For 6§ € C
let WEG be the Weyl type fractional operator on Rg = [0, co) (see (13)) and let C[QO, 1 (resp.

C[go!l)) denote the space of all functions H on R such that supp(H) C [0, 1] (resp. [0, 1)),
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WE? (H) is well-defined, and

sup |[WR (H)(w)| < c.

O<w<l

Foro > 0,6,n € Clet Bg’f] (R) denote the space consisting of all even functions f on
R of the form

(32) f(x) = (chox)"H((chox)™"), HeCfy,.

We note that, if supp(H) C [0, 1], then supp(WEe (H)) C [0, 1] and thus, if H € C[go!l], then

H e Cﬁ;’]] for all &’ such that RO’ < RO. When RO > 0, if we put h(r) = H(1/t) as in the
form of (24), we see that h satisfies (25) with m = [6]. Hence, if R6 > 0, then

,0 161
By, (R) C Ag, " (R).
Let B ’779 (R) denote the set of f € Bg”z (R) such that O ¢ supp(f), thatis f is identically zero
around 0. We may suppose that f € Bfi ’779 (R) is of the form

(33) f(x) = (chox)"(shox)H/((chox)™"), Hye Cf()’]) .

Obviously, we may suppose that f € Bg”z (R) is of the form

(34) f=fi+th. foeCFE®). fieBll(R).
6.2. Foru=0,—1,-2,---, it follows from the definition that
(35) W :B;’;,f(R) N Bﬁ;fjﬁ(k)

and Bg”z R) — BZ%T; (R) (see Lemma 3.3 (2)). For general u € C we have the following.

LEMMA 6.1. Let i € Cand f € B} (R).
(1) If R > 0and Hy satisfies

WR (s~ O WR (Hp) (w) = 0(w™ ) if %i(n—6) <0,

then W (f) € By, (R).
(2) If R < 0and Hy satisfies the above conditions replaced v, 0 and n with p—[],

0 + [un] and n + [] respectively, then Wg(f) € B;’,’gj_—l{f] (R).

PROOF. Let%iu > 0and f be of the form (33). Clearly, if f is identically zero around
0, then Wﬁ (f) is also identically zero around 0. Letting chox = ¢ in (20), we see that

13
WS (f)(x) = C/ sTVHp(s7(t — )" ds - V2 — 1
1
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1
=t N2 1 [ s H (L ts) (1 — s)P s
1/t

=N 1 H T,

where
1
Hi(w) =/ sV Hp(w/s)(1 — s)*~ds
w
o
=/ s~ e (ws) (s — P ds
1

o0
=w" / sf("Jr“)Hf(s)(s _ w)“flds
w
= w" W}}(Si(rrhu)Hf)(U)) )

Since Hy € C[go!l) and WB), (Hy(ws)) = sY WB), (Hy)(ws), Ry < 6, as a function of w, it
follows that
o0
W) = [ 5T OWR ) s — 1
36) 1
= w ™ WRT T OWE (H ) (w).

Therefore, if R(n — 6) > 0 and WEH(H ) is bounded, then Lemma 3.1 (1) yields that
WBQ(Hl) is bounded. On the other hand, if %i(n — 6) < O, then the assumption on Hy
also yields that WBQ (Hy) is bounded. Hence, H; € C[90 1 and the desired result follows. Let
Nu < 0. When p = 0,—1, -2, .-+, the assertion is nothing but (35). Otherwise, since
WZ = W;L[ ] © W&] the desired result follows from (35) and the first case. ]
COROLLARY 6.2. Letp € Cand f € B;”;’(R).
(1) If % <0, then WS (f) € BT (R).

@) If R =0, then W3 (f) € BITH°(R) for 8 > 0.

(3) If % > 0and WR (Hp)(w) = O(wH™1), then WS (f) € B;’,;’jlf*@ (R), where
S >61 >00ré) =6=0.

PrROOF. (3) Let Ru > 0 and suppose that WBn(Hf)(w) = O(w"). Then, letteing
6 = nin (36), it follows that

WR (H) = WR(s™*WR (H/))
and thus,

37 WE o (HDW) = w WX (Hp)(w) .
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Hence H; € C["OT /)- When WR (Hp)(w) = O(w"™), (37) is replaced with W{‘(,7 sy (HD

= Wg(s—MWBn(Hf)). Therefore, H; € c[”OT 3*52 provided 8, > 81. (1) Let %t < 0. When

w=—1,-2,---, the assertion is obvious from (35). We may suppose that u # —1, =2, - - -
Because of (35) and Wl‘j = W;’_[M]_l o VT/[‘LHI, we may suppose that —1 < Ru < 0. Then

it is easy to see that
W (f)(x) = c%(ﬂﬂ‘cn,u(r—l)) S/
= ™2 =1+ WGy = 171G L7,
where chox =t and
Gypu(w) = w W (s~ H ) w) .

Therefore,

(38) Hi(w) = (0 + w)Gypu(w) = wG) () = nGy u(w) = Gyr1 -1 (w).

Let G = Gy i. As before, WR (G) = Wl§+1(s—<ﬂ+l>WBn(Hf)) and thus, W{‘(,7 (@) =
WR(s=HDWR (Hy)). Since R(u + 1) > 0, supp(Hy) C [0, 1) and WX, (Hy) is bounded,
Lemma 3.1 means that WE(nJru) (G) is bounded. Let G = Gj11,,,—1. Then the same process
yields that WB( i) (G)= WlR (s™# Wfl o WBn (Hy)). This function is again bounded. Hence,
H, e CFOTK. (2) The case of Siu = 0 follows from the same process in (1) replaced n + u
withn +p — 6 and WlR with WlRJrls respectively. o

6.3. Now we shall consider analytic continuation of gy g(4) in Corollary 5.2 provided
g € ngz /»(R) where 6 will be suitably determined. We recall (34). When g € C3°(R),

Lemma 2.1 (2) and the fact that
Ag,p(x) = (chx)?* (thx)?* !

has zero of order 2o 4+ 1 at x = 0 mean that, if o > —1, gy g(1) is a holomorphic function
on JA > 0 of exponential type (see §5). Therefore, it is enough to consider the analytic

continuation of gy, (1) for g € Bi’s /2(R)' Since g is identically zero around 0, Corollary 4.3
yields that, if ie > —1, then gy, g(1) is holomorphic on IA > NR(n+ p) and 23(+1/2) Ja,p(A)
Cao.p (—)~! is the Euclidean Fourier transform of

1 5,2

Wiy (W=p11/2)(940.p)) -

In the following, let i > —1, & > 0 and

f = ngc,/S .
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Obviously, f € B¢ (R) and is of the form

b,n/24p
(39) f(x) = (ch2x)"*** =1 (sh2x)Hy(ch™'2x), Hype C .
‘We here take 6 as
(40) Olp=3+p
and assume that,
(41) if =R(B+1/2) > 0, then WR ) (Hp)(w) = 0w~ FF1/2).

Then, by taking n and w in Corollary 6.2 as 0;7!/3 =n/2+ p and —(B + 1/2) respectively, it
follows that for a sufficiently small & > 0

~ 2) _
W2 510 () € BN (RY),
where 71 = (n + p + (o — B))/2. This means that Wz(ﬂ+l/2)(f) is of the form
Wi(ﬂ+l/2)(f)(x) = (ch2x)" ! (sh2x)H j(ch™'2x), Hje Cy ).

‘We here rewrite this function as

(42) Wf(ﬂ+1/2)(f)(x) = (Ch-x)zm_I(ShX)H%(Ch_zx), H% € C[WO];)S] ,
where
(43) H.%(w) =22 —w)M H}(w/(Z —w)).

Before applying W' (a—p) 1O WE( A1 /2)( f), we prepare the following lemma.
LEMMA 6.3. Letu € C,e > 0and f be of the form
(44) f(0) = (chn)*(shx)H(ch™*x), H € Clp )

() IfRu <O, then Wli(f) is of the form

(45) W;(f)(x) = (Chx)27)+1171 (shx) H; (chfzx) . Hie C[no-f-lp)./Z—s .

(2) If % =0, then (45) holds with Hy € Cjy' /> ™ for s > e.
3) IfRu > 0and W}}(WB(M P _H?)(H)(sz))(w) = O(wh™%), then (45) holds with
Hj e CFOTS/Z_BZ, where 8 > 81 > 0o0ré; =8 =0.

PROOF. We repeat the similar arguments in the proof of Corollary 6.2. (3) Let Ry > 0
and suppose that W}}(WB(HWZ)(H)(SZ))(w) = O(w"). From the proof of Lemma 6.1,

letting ch™2x = w, it follows that

1
Hi(w) :c/ PV H (w/s?) (1 — s)* " lds
Jw
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1
:c/ sP Hw/s?) (1 — s)* ds
0
= cwWR (s~ H) (Vw),

where H(w) = H(w?). Since WR (H(w/s?)(w) = es ™ WR (H)(w/s?), Ry < %n, as
a function of w, we see that

1
(46) WB(nJru/z)(Hl)(w) - C/O s WE(HM/Q)(H)(w/sz)(l - 9" ds
= cw MPWRWR Lo () ) (W)

Hence H| € C[770+1’;/2 follows. The case of §> > §; > 0 also follows as in (3) of Corollary 6.2.
(1) Let R < 0. As before, we may assume that —1 < 9%y < 0. Then, using (45) replaced

with i 4 1, we can repeat the proof of Corollary 6.2. Actually, G, is replaced by

w" W/1}+1 (S*(2n+,u+1)1_})(ﬂ)

: R R R R
and G41,,—1 by Gyy1/2,.—1- Hence, applying W—(77+M/2—8) = W1/2 o W—(u+l)/2 ) W—(n—e)
to these functions, the desired result similarly follows as in Corollary 6.2. (2) The case of
9 = 0 also follows from the above argument. a

We apply WB( a—p) O WE( B+l /2)( f) (see (42)) under the assumption that,
(47 if —=9(a — ) >0, then WX, o (WR . = (H})(*)(w) = 0w =),

Then, by taking n, « and H in Lemma 6.3 as (n + p + (@ — B))/2, —(¢ — B) and H%
respectively, it follows that for a sufficiently small e > 0,

~ ~ _ 2—
@8) Wy (W2 g1 (PN@) = (chr) sho)HF(w?) ., H} e Cl72,

where w = ch™'x and 2, = n + p.

REMARK 6.4. (1) If—-9(B+1/2) <0and —N(x—B) < 0, then no extra conditions
on zero of Hy and H ? (see (41) and (47)) are required.

2) -NPB+1/2) > 0and —N(x— B) > 0, then the both extra conditions on zero of
Hy and H}% are required. However, the extra condition on zero of H}% means the one of Hy.

First we note that (37) implies that
WE s Hp)(w) = w™ FH2DWRH D W),

where 6 = —(n + p + (@ — B))/2. Thereby, if Wg‘(H}) is bounded, then W{‘(,7 2ty CHP)
has zero of order —(B8 + 1/2) at w = 0 and thus, the extra condition on zero of H s follows.

Now, let us suppose the extra condition on zero of Hj%: WB ozfﬂ)(W§(77+p)/2(H12‘)(52))(w) =
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O (w~@=A). We denote this function by 4 (w). Then H? = W(lz +o) /Z(WR_ 5(h)(/5)) and

o

thus

WR(HD) = WR 5 h(WR o) (V5)) .
Hence, from Lemma 3.1 (1) it is easy to see that the right hand side is bounded. Similarly,
W 5(H7) is bounded for § > 0 such that —9t(@ — $)/2 =8 > 0. Let§ = —n +y,
n=0,1,2---and 0 < Ry < 1. Since H}(w) = G(w)Hj%(w/(2 —w)) for G € C (see
(43)) and W = WR o WR__ it follows that

Wo(H ) ~ Y WRGIWE (HF)
k=0

n
R R R 2
=D WRGKWE, sty © Wols (HP),
k=0
where Gy € CZ2°. Therefore, since W}_S(H%) is bounded, Lemma 3.1 (1) implies that

Wo(H }) is bounded as desired.
(3) From (39) and (42) Hy and H/g can be written as

wh/2+p

V1—w?’

wTot—p))/2
V1—w

Since 23(°‘+1/2)§a,ﬁ()») Ca)ﬁ(—)\.)_l is the Euclidean Fourier transform of (48), in order

Hy(w) = f((arccosh w™1)/2)

HF(w) = W24, ) (f)(arccosh w™!/?)

to carry out the analytic continuation of gy g(A) Cq, ﬁ(—k)_l, it is enough to consider F Q)
of

F(x) = (ch0)’ "'sho) Hw?) ., H e /T, sy > 0.

For simplicity, put 8 = y/2 — ¢. Since e/** = (chx)’*(1 4 thx)’*, by changing the variable
asw = ch_lx, it follows that for IJA > Ny,

1
F@Q) = / Hw?)(1 + /1 — w2)Pw=iC=in=lgy,
0
1
=/ [ (w)w i *=/2=1 gy,
0
Here, I € C ?0.1)' Then, applying Proposition 3.4 with « = 8 = —1/2 and (14), we see that

1
FQ) =/ WR (1) () WR (= ¢=i/2=1y gy
0
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. (=i —1iy)/2)
T (=i —iy)/24+60+1)

Since [ € C[eo 1 and —i(A —iy)/2+ 60 = —iA — ¢, this integral is bounded if IA > —1 + ¢.

1
/WBQ(I)(w)w—'“—'VV“@dw
0

Therefore, F'(1) has a meromorphic extension in IA > 0 with simple poles lie in
Fy={n=ily—-2m); m=0,1,2,.--,3§, =0}
and

=n"
m!I'(—m +6 +1)

1
Res)—z, (F())) = /0 WR () w ™ dw.

Finally, noting (41), (47) and Remark 6.4 (2), we have the following.

THEOREM 6.5. Letoa,fB,n € C, N > —land g € B(Z)’Zgﬂ)(R). We suppose that

there exists a decomposition g = go + g1, go € C;°(R) and g € Bf,’g//zerp(R), such that

f = g14q.p satisfies that, if —R(ax — B) > 0, then W{‘(a_ﬁ)(wl‘(,7 o) /Z(H})(sz))(w) =
0w~ Py and, if —R(e — B) < 0and —R(B + 1/2) > 0, then WE(U 2y (Hp) (w) =
O (w=P+Y2). Then, forall ¢ € CJ(R),

1 RN -
(0. 912k A = 5= [ a7 p () Cap (—(3)) "l

—V2rmi Y Gup(IResiy (Ga s () Cap(—1) "),

Da,gUFy+p

where we supposed that (Do g U Fyyp) NR = @. All poles appeared in the second sum are
simple. If go = 0 (resp. g1 = 0), then the second sum corresponding to Dy g (resp. Fyip)
vanishes.

REMARK 6.6. (1) If —R(ax — B) < 0 and —NR(B + 1/2) < 0, then there are no
assumptions on f and Dy g = ¥. This case perfectly coincides with (3) of Theorem 5.1.
(2) In [5] the analytic continuation of g, g(1) is also calculated directly; the poles of

Ja,p(M) liein Fy4p andif Dy gNFy 4, # 1, then f}a,ﬂ(k)C(—k)_l has double poles. However,
in Theorem 6.5, no double poles appear, because we use the reduction formula in Corollary

4.3 and we assume the extra conditions on zero of Hy and H ?
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