
TOKYO J. MATH.
VOL. 27, NO. 1, 2004

On Two Step Tensor Modules of the Maximal Compact Subgroups of
Inner Type Noncompact Real Simple Lie Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let C (resp. R) be the complex (resp. real) number field. We consider a connected simply
connected complex simple Lie group GC and its connected noncompact simple real form G.
In this article we shall always fix a maximal compact subgroupK ofG, and assume that rank
G = rank K . This assumption is equivalent to G is inner. Let g and k be respectively the Lie
algebras ofG andK . Let θ be the Cartan involution which stabilizesK . Then g is decompsed
by g = k ⊕ p, where p is the eigenspace of θ in g with the eigenvalue −1. Let gC be the Lie
algebra of GC. We shall denote, for each subspace v of g, by vC the complexification of v in
gC. pC is aK-module by the adjoint action ofK . Let B be a maximal abelian subgroup of K .
Then B is also a maximal abelian subgroup (Cartan subgroup) of G. Let b be the Lie algebra
of B. Then the root system Σ of the pair (gC, bC) is decomposed by Σ = ΣK ∪Σn, where
ΣK (resp. Σn) is the set of all compact (resp. noncompact) roots in Σ . Then ΣK is also the
root system of (kC, bC). We choose a positive root system PK , and always fix it.

Let us state our purpose of this article. Let µ be a PK -dominant integral form on bC and
(πµ, Vµ) a simple K-module with highest weight µ. We consider a simple Harish-Chandra
(g,K)-module U(gC)Vµ which contains (πµ, Vµ) with multiplicity one, where U(gC) is the
universal enveloping algebra of gC. Let pC ⊗ pC ⊗ Vµ be the tensor K-module. Canonically
this space has a unitary K-module structure. We define a K-linear homomorphism � of
pC ⊗ pC ⊗ Vµ to U(gC)Vµ by �(X ⊗ Y ⊗ v) = XYv for X,Y ∈ pC, v ∈ Vµ. Let V be a
finite K-module. We define a projection operator Pµ on V by

Pµ(v) = degπµ

∫
K

kv traceπµ(k)dk for v ∈ V ,(1.1)

where degπµ = dimVµ and dk is the Haar measure on K normalized as
∫
K dk = 1. Since

Pµ� = �Pµ, � induces aK-module linear homomorphism ofM(µ) = Pµ(pC ⊗ pC ⊗Vµ)
to Vµ ⊂ U(gC)Vµ. Let m = m(µ) be the multiplicity of Vµ in M(µ). M(µ) is decomposed

by M(µ) = ⊕m
j=1 U(kC)vj , where vj is the highest weight vector of the simple K-module

U(kC)vj and U(kC) is the universal enveloping algebra of kC. Let v(µ) be the highest weight
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vector of Vµ. Since � is a K-module linear homomorphism of M(µ) to Vµ, there exsists
a complex number xi such that �(vi) = xiv(µ), 1 ≤ i ≤ m. We choose the root vectors
Xα, α ∈ Σ normalized as φ(Xα,X−α) = 1, where φ is the Killing form on gC. Then we
have Hα = ad(Xα)X−α ∈ bC. Let Xω be a root vector corresponding to a noncompact root
ω. We have (H − µ(H)1)Pµ(Xω ⊗ X−ω ⊗ v(µ)) = 0, H ∈ b, where 1 is the identity in
U(kC). Since µ is the highest weight of Vµ, there exist the complex constants cω,j such that

Pµ(Xω ⊗X−ω ⊗ v(µ))− Pµ(X−ω ⊗Xω ⊗ v(µ)) =
m∑
j=1

cω,j vj .

Let P be a positive root system of Σ containing PK and Pn the set all noncompact roots in
P . We put Pn = {ω1, ω2, · · · , ωN }, x0 = t (x1, x2, · · · , xm), b = t (µ(Hω1), µ(Hω2), · · · ,
µ(HωN )) and A = (cωi,j ). Then x0 is a solution of the system of the linear equations;

Ax = b .(1.2)

We note that all entries in A are given by the Clebsch-Gordan coefficients of the tensor K-
module pC ⊗ Vµ (see Corollary 4.7). This indicates that the action of Xω on Vµ ⊂ U(gC)Vµ

is controlled by the Clebsch-Gordan coefficients of pC ⊗ Vµ (cf. also [1]). Our motivation is
to study the equation (1.2).

Let us state the first result after the following preparations. Let Hµ be the element in
bC satisfying φ(Hµ,H) = µ(H) for all H ∈ bC. Then the centralizer K(µ) of Hµ in K
is reductive, and contains B. Let ΣK(µ) be the root system of the pair (k(µ)C, bC), where
k(µ) is the Lie algebra of K(µ). We put PK(µ) = PK ∩ ΣK(µ). PK(µ) is a positive root
system of ΣK(µ). A noncompact root ω ∈ Σn is said to be PK(µ)-highest if ω + α /∈ Σ for
all α in PK(µ). When ω in Σn is PK(µ)-highest, ω is actually the highest weight of a simple
K(µ)-submodule of pC. The set of all PK -dominant integral form on bC will be denoted by
ΓK . In §5 we shall prove the following theorem.

THEOREM I. Let µ ∈ ΓK and assume that µ is admissible (see Definition 5.2). Then
the multiplicity m(µ) of Vµ in the K-module M(µ) is given by

m(µ) = 	{ω ∈ Σn : ω is PK(µ)-highest} ,
where 	S is the number of the elements in a set S.

We shall state our second result. Let P be a positive root system containing PK . For a
subsetΘ in the simple root system Ψ of P , we denote by P(Θ) the set of all positive roots in

P generated byΘ over the ring of integers. The dual space of the real vector space
√−1b will

be denoted by (
√−1b)∗. Let C∗ be the positive Weyl chamber of (

√−1b)∗ corresponding to
P . We define a subset C(Θ)∗ in the topological closure cl(C∗) of C∗ by

C(Θ)∗ = {η ∈ cl(C∗) : (α, η) = 0 for α ∈ P(Θ) and (α, η) > 0 for α ∈ P\P(Θ)} ,
where (α, η) is the inner product on (

√−1b)∗ induced from the Killing form φ on gC. Let η

be an element inC(Θ)∗ andHη the element in
√−1b determined by φ(Hη,H) = η(H),H ∈
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√−1b. Consider the centralizer K(η) of Hη in K . Then K(η) contains B, and is uniquely

determined by C(Θ)∗. We putK(Θ) = K(η). Let p+ be the subspace of pC generated by the
set of all root vectors corresponding to P ∩Σn. Let τ be the conjugation of gC with respect

to the compact real form k ⊕ √−1p. A simpleK(Θ)-submodule q of pC is said to be the first
(resp. the second) kind if τ (q) = q (resp. q ⊂ p+ or τ (q) ⊂ p+). A noncompact root ω in
Σn is said to be the first (resp. the second) kind if ω is a weight of a simpleK(Θ)-submodule
of pC of the first (resp. the second) kind. The triple (PK, P (Θ), P ) is standard if each simple
K(Θ)-submodule q of pC is either the first kind or the second kind. The following theorem
will be proved in §7.

THEOREM II. Let µ ∈ ΓK . Then there exists a standard triple (PK, P (Θ), P ) such
that µ ∈ C(Θ)∗. Moreover, we have K(Θ) = K(µ).

Let (PK, P (Θ), P ) be a standard triple. We consider an element µ in C(Θ)∗ ∩ΓK and a
noncompact root ω satisfying µ+ω ∈ ΓK . We define a projection operator Pµ+ω on pC ⊗Vµ
by the same as in (1.1). We put

P+ =
∑

ω∈Σn∩P,µ+ω∈ΓK
Pµ+ω .

Let us define a K-submodule N(µ) of M(µ) by N(µ) = the K-module generated by the set

N = {Pµ(X ⊗ P+(Y ⊗ v)− Y ⊗ P+(X ⊗ v)) : X,Y ∈ pC, v ∈ Vµ} .
THEOREM III. Let (PK, P (Θ), P ) be a standard triple andµ ∈ C(Θ)∗∩ΓK . Suppose

that µ is sufficiently PK\PK(Θ)-regular. Then µ is admissible. Furthermore, we have

n(µ) = 	{ω ∈ P ∩Σn : ω is PK(Θ)-highest and of the second kind} ,
where n(µ) is the multiplicity of Vµ in N(µ).

In §8 we shall prove this theorem by using the asymptotic behaviour of the Clebsch-
Gordan coefficients of pC ⊗ Vµ.

2. Preliminaries

Let Σ be the root system of the pair (gC, bC). We put, for α ∈ Σ ,

gα = {X ∈ gC : ad(H)X = α(H)X for all H ∈ bC} .
Then we have gC = bC ⊕ (⊕α∈Σgα). Let gu = k ⊕ √−1p be the compact real form of gC.
We choose a canonical Weyl basis Xα ∈ gα, α ∈ Σ satisfying the followings (cf. the proof of
Theorem 6.3 in [2]):

Xα −X−α ,
√−1(Xα +X−α) ∈ gu and φ(Xα,X−α) = 1 ,(2.1)

where φ(X, Y ) = trace(ad(X)ad(Y )) is the Killing form on gC. We putHα = ad(Xα)X−α .
Then we have φ(Hα,H) = α(H) for all H in bC. Let µ be a linear form on the real vector
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space
√−1b. Then there exists a unique Hµ in

√−1b such that φ(Hµ,H) = µ(H) for all

H in
√−1b. Let (

√−1b)∗ be the dual space of
√−1b. We define a positive definite bilinear

form (µ, λ) by (µ, λ) = φ(Hµ,Hλ) for µ, λ ∈ (
√−1b)∗. We put, for each pair of α and β

in Σ , a complex number < α, β > by

〈α, β〉 =
{
φ(ad(Xα)Xβ,X−α−β) if α + β ∈ Σ ,

0 otherwise .
(2.2)

Then 〈α, β〉 is a pure imaginary number. Let p and q be two nonnegative integers satisfying
jα + β ∈ Σ iff −q ≤ j ≤ p. Then we have (cf. Lemma 4.3.8 and Corollary 4.3.12 in [4])

2(β, α)|α|−2 = q − p , p + q ≤ 3 .(2.3)

Furthermore, we have (cf. Lemma 4.3.22 in [4])

|〈α, β〉|2 = p(q + 1)
|α|2

2
.(2.4)

A root α in Σ is compact (resp. noncompact) if Xα ∈ kC (resp. Xα ∈ pC). Since kC and pC

are invariant under ad(b),Σ is given by the disjoint union of the set of all compact roots ΣK
and the set of all noncompact roots Σn. ΣK is also the root system of the pair (kC, bC). Let
σ (resp. τ ) be the conjugation of gC with respect to the real form g (resp. gu). By our choice
for the Weyl basis of gC we have

σ(Xα) = −Xα for α ∈ ΣK , σ(Xα) = X−α for α ∈ Σn ,(2.5)

τ (Xα) = −X−α for α ∈ Σ .(2.6)

3. Two step tensor K-module

The adjoint action Ad(k) (k ∈ K) on pC will be denoted by kX for X in pC. We define
a hermitian structure (X, Y ) of pC by (X, Y ) = −φ(X, τ(Y )),X, Y ∈ pC. Thereby pC is
a unitary K-module. Fix µ ∈ ΓK , and consider a unitary simple K-module (πµ, Vµ) with
highest weight µ. For the simplicity of our notations we shall denote the action π(k) (k ∈ K)
on Vµ by kv for v ∈ Vµ. Let dk be the Haar measure on K normalized as

∫
K dk = 1. We

define a character χµ of the K-module (πµ, Vµ) by

χµ(k) = degπµtraceπµ(k) ,(3.1)

where k ∈ K and degπµ = dimVµ. Then we have∫
K

χµ(k
−1k′)χµ(k)dk = χµ(k

′) .(3.2)

Let V be a finite dimensional K-module. We define a projection operator Pµ on V by

Pµ(v) =
∫
K

kvχµ(k)dk for v ∈ V ,(3.3)
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where χµ(k) is the complex conjugate of χµ(k). By (3.2) we have

(Pµ)
2 = Pµ .(3.4)

Furthermore, we have

kPµ = Pµk for all k ∈ K .(3.5)

A unitaryK-module structure on the two step tensor space pC ⊗ pC ⊗ Vµ is defined by

k(X ⊗ Y ⊗ v) = (kX ⊗ kY ⊗ kv) for X,Y ∈ pC, v ∈ Vµ and k ∈ K ,(3.6)

(X ⊗ Y ⊗ v,X′ ⊗ Y ′ ⊗ v′) = (X,X′)(Y, Y ′)(v, v′)(3.7)

for X,Y,X′, Y ′ ∈ pC and v, v′ ∈ Vµ. TheK-module M(µ) = Pµ(pC ⊗ pC ⊗ Vµ) is decom-
posed into a finite number of the simple modules which are K-isomorphic to Vµ. Therefore

M(µ) ∼= m(µ)Vµ ,(3.8)

wherem(µ) is the multiplicity of Vµ in M(µ).

LEMMA 3.1. We put

W(µ) = {Z ∈ M(µ) : HZ = µ(H)Z for all H ∈ b} .
Then we have m(µ) = dimW(µ).

PROOF. Let M(µ) = ⊕m(µ)
i=1 Vi be the decomposition of M(µ) by the simple K-

modules Vi . Then we have

W(µ) =
m(µ)⊕
i=1

W(µ) ∩ Vi .

Since Vi is a simple K-module, we have dimW(µ) ∩ Vi = 1 for all i, 1 ≤ i ≤ m(µ). This
implies that dimW(µ) = m(µ).

DEFINITION 3.2. Let p be a nonnegative integer and φ̃ a symbol. We define Πp by

Π0 = {φ̃}, Πp = {(α1, α2, · · · , αp) : αi ∈ PK } for p > 0, and put Π = ⋃∞
p=0Πp. Then Π

is a semigroup by the �-operation with the identity φ̃, where � is defined by

I � J = (α1, · · · , αp, β1, · · · , βq), I = (α1, · · · , αp), J = (β1, · · · , βq) ∈ Π .

DEFINITION 3.3. Let U(kC) be the universal enveloping algebra of kC. We define a
semigroup homomorphism of Π to U(kC) by

Q(φ̃) = 1 and Q(I) = X−α1X−α2 · · ·X−αp for I = (α1, α2, · · · , αp) .
DEFINITION 3.4. Let I = (α1, α2, · · · , αp) ∈ Π and J ∈ Π . When J is of the form

J = (αi1 , αi2 , · · · , αiq ), 1 ≤ i1 < i2 < · · · < iq ≤ p or J = φ̃ we denote by J � I . We also



160 HISAICHI MIDORIKAWA

define I\J ∈ Π by

I\J = (αj1 , αj2 , · · · , αjp−q ), where {j1, j2, · · · , jp−q } = {1, 2, · · · , p}\{i1, · · · , iq}
satisfying j1 < j2 < · · · < jp−q .

We note that I\(I\J ) = J and I\J � I .

Let ψ be the mapping of Π defined by ψ(I) = (αp, αp−1, · · · , α1), I =
(α1, α2, · · · , αp)
∈ Π . Since ψ2 is the identity on Π , ψ is a bijection. Let J ∈ Π and α ∈ PK .
Then we have

Q(ψ(J ))X−α = Q(ψ(α � J )) .(3.9)

For I = (α1, α2, · · · , αp), we put 	I = p and 〈I 〉 = ∑p
i=1 αi .

LEMMA 3.5. Let γ, δ ∈ Σn and I ∈ Π . Assume that γ + δ = 〈I 〉. Then we have

Pµ(Xγ ⊗Xδ ⊗Q(I)v(µ)) =
∑

J�I,J∈Π
(−1)	IPµ(Q(ψ(J ))Xγ ⊗Q(ψ(I\J ))Xδ ⊗ v(µ)) ,

where v(µ) is the highest weight vector of Vµ normalized as |v(µ)| = 1.

Proof by an induction on 	I . When 	I = 0, our assertion is obvious. Assume that the
identity is true for all L in Π and ξ, η ∈ Σn satisfying 	L < 	I and ξ + η = 〈L〉 . We have
α � L = I for α ∈ PK and L ∈ Π . Bearing in mind −〈L〉 + γ + δ + µ > µ and µ is the
highest weight ofM(µ) we have Pµ(Xγ ⊗Xδ ⊗Q(L)v(µ)) = 0. Since Q(I) = X−αQ(L),
we have

Pµ(Xγ ⊗Xδ ⊗Q(I)v(µ)) = Pµ(Xγ ⊗X−α(Xδ ⊗Q(L)v(µ)))

− Pµ(Xγ ⊗ ad(X−α)Xδ ⊗Q(L)v(µ))

= −Pµ(ad(X−α)Xγ ⊗Xδ ⊗Q(L)v(µ))

− Pµ(Xγ ⊗ ad(X−α)Xδ ⊗Q(L)v(µ)) .

Applying the inductive hypothesis to L ∈ Π and γ, δ − α (resp. γ − α, δ) we have

Pµ(Xγ ⊗Xδ ⊗Q(I)v(µ))

= (−1)	I
∑
J�L

{Pµ(Q(ψ(α � J ))Xγ ⊗Q(ψ(L\J ))Xδ ⊗ v(µ))(3.10)

+ Pµ(Q(ψ(J ))Xγ ⊗Q(ψ(α � (L\J )))Xδ ⊗ v(µ))} .
Here we used (3.9). Since α � (L\J ) = I\J , L\J = I\α � J for J � L and

{J : J � I, J ∈ Π} = {J : J � L, J ∈ Π} ∪ {α � J : J � L, J ∈ Π} ,
(3.10) implies the identity of this lemma.

LEMMA 3.6. Let S be the set of all vectors Pµ(X−γ ⊗Xγ ⊗ v(µ)), γ ∈ Σn. Then we
haveW(µ) = [S], where [S] is the linear span of the set S.
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PROOF. Since Vµ is a simple K-module, Vµ is generated by the set {Q(I)v(µ) : I ∈
Π}. By (3.5) we have HPµ = PµH,H ∈ b. This implies that W(µ) is generated by the set

S′ ≡ {Pµ(Xγ ⊗Xδ ⊗Q(I)v(µ))) : γ, δ ∈ Σn, I ∈ Π, γ + δ = 〈I 〉} .
Let us prove that S′ ⊂ [S]. Let Z = Pµ(Xγ ⊗ Xδ ⊗ Q(I)v(µ)) be each element in S′. By
Lemma 3.5 we have

Z = (−1)	I
∑
J�I

Pµ(Q(ψ(J ))Xγ ⊗Q(ψ(I\J ))Xδ ⊗ v(µ))

= (−1)	I
∑
J�I

cγ,J cδ,I\JPµ(Xγ−〈J 〉 ⊗Xδ−〈I\J 〉 ⊗ v(µ)) ,

where cγ,J = φ(Q(ψ(J ))Xγ ,X−γ+〈J 〉). Since 〈J 〉+ 〈I\J 〉 = 〈I 〉 and γ + δ = 〈I 〉, we have
S′ ⊂ [S]. Moreover since W(µ) = [S′] ⊂ [S] ⊂ W(µ), we haveW(µ) = [S].

4. Weight subspace W(µ) of M(µ)

First we restate the following three lemmas in [3].

LEMMA 4.1. Let (πµ, Vµ) be a simpleK-module with highest weightµ. Then we have

pC ⊗ Vµ =
⊕

ω∈Σn,µ+ω∈ΓK
Pµ+ω(pC ⊗ Vµ) ,

where Pµ+ω(pC ⊗ Vµ) = {0} or is a simple K-module.

For a proof cf. Lemma 3.4 in [3].
The following two lemmas are also proved respectively by Corollary 3.5 and Lemma 3.6

in [3].

LEMMA 4.2. Let ω be a noncompact root inΣ . Assume that µ ∈ ΓK and Pµ+ω(pC ⊗
Vµ) �= {0}. Then we have |Pµ+ω(Xω ⊗ v(µ))| �= 0, where v(µ) is the highest weight vector
in Vµ.

LEMMA 4.3. Let µ ∈ ΓK,ω ∈ Σn, and assume that µ+ ω ∈ ΓK , Pµ+ω(pC ⊗ Vµ) �=
{0}. Then, for each γ ∈ Σn, we have

(|λ+ ω|2 − |λ+ γ |2)|Pµ+ω(Xγ ⊗ v(µ))|2 =
∑
α∈PK

2|〈α, γ 〉|2|Pµ+ω(Xγ+α ⊗ v(µ))|2 ,

where λ = µ+ ρK and ρK is one half the sum of all roots in PK .

LEMMA 4.4. Let µ ∈ ΓK and γ, ω ∈ Σn. Assume that µ+ ω ∈ ΓK and Pµ+ω(pC ⊗
Vµ) �= {0}. Then we have

(Pµ(X−γ ⊗ Pµ+ω(Xγ ⊗ v(µ))) , Pµ(X−ω ⊗ Pµ+ω(Xω ⊗ v(µ))))

= c(µ;ω)2|Pµ+ω(Xγ ⊗ v(µ))|2|Pµ+ω(Xω ⊗ v(µ))|2 ,
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where c(µ;ω) =
√

degπµ
degπµ+ω .

PROOF. We note that (kX−ω,X−ω) = (kXω,Xω). By (3.6) and (3.7) we have

(Pµ(X ⊗ Y ⊗ v), Pµ(X
′ ⊗ Y ′ ⊗ v′)) =

∫
K

(kX,X′)(kY, Y ′)(kv, v′)χµ(k)dk .(4.1)

Let {vi} (1 ≤ i ≤ degπµ, v1 = v(µ)) be an orthonormal basis of Vµ. Since χµ(k) =
degπµ

∑
i (kvi, vi), we have

(Pµ(X−γ ⊗ Pµ+ω(Xγ ⊗ v(µ))) , Pµ(X−ω ⊗ Pµ+ω(Xω ⊗ v(µ))))

= degπµ
∑
i

∫
K

(k(Xγ ⊗ vi) ,Xω ⊗ vi)(kPµ+ω(Xγ ⊗ v(µ)), Pµ+ω(Xω ⊗ v(µ)))dk

= degπµ
∑
i

∫
K

(kPµ+ω(Xγ ⊗ vi) , Pµ+ω(Xω ⊗ vi))

× (kPµ+ω(Xγ ⊗ v(µ)), Pµ+ω(Xω ⊗ v(µ)))dk

= degπµ(degπµ+ω)−1
∑
i

(Pµ+ω(Xγ ⊗ v(µ)) , Pµ+ω(Xγ ⊗ vi))

× (Pµ+ω(Xω ⊗ v(µ)), Pµ+ω(Xω ⊗ vi))

= c(µ;ω)2|Pµ+ω(Xγ ⊗ v(µ))|2|Pµ+ω(Xω ⊗ v(µ))|2 .
Here we used the orthogonality relation on K . Hence the lemma follows.

COROLLARY 4.5. Assume that µ,µ + ω ∈ ΓK and Pµ+ω(pC ⊗ Vµ) �= {0}. Then
Pµ(pC ⊗ Pµ+ω(pC ⊗ Vµ)) is a simple K-module with highest weight µ. Let vω(µ) be the
highest weight vector of the simple K-module Pµ(pC ⊗ Pµ+ω(pC ⊗ Vµ)) determined by

Pµ(X−ω ⊗ Pµ+ω(Xω ⊗ v(µ))) = c(µ;ω)|Pµ+ω(Xω ⊗ v(µ))|2vω(µ) .
Then we have |vω(µ)| = 1 and

Pµ(X−γ ⊗ Pµ+ω(Xγ ⊗ v(µ))) = c(µ;ω)|Pµ+ω(Xγ ⊗ v(µ))|2vω(µ) for all γ ∈ Σn ,

where c(µ;ω) =
√

degπµ
degπµ+ω .

PROOF. By Lemma 4.2 and Lemma 4.4, we have

|Pµ(X−ω ⊗ Pµ+ω(Xω ⊗ vµ))| = c(µ;ω)|Pµ+ω(Xω ⊗ v(µ))|2 �= 0 .

Therefore Pµ(pC ⊗ Pµ+ω(pC ⊗ Vµ)) �= {0} and |vω(µ)| = 1. Replacing Vµ with the simple
K-module Pµ+ω(pC ⊗ Vµ) in Lemma 4.1, we have Pµ(pC ⊗Pµ+ω(pC ⊗ Vµ)) is simple. We
put

Pµ(X−γ ⊗ Pµ+ω(Xγ ⊗ v(µ))) = c(γ )c(µ;ω)|Pµ+ω(Xγ ⊗ v(µ))|2vω(µ) ,
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where c(γ ) is a complex number. By Lemma 4.4 we have

c(γ )c(µ;ω)2|Pµ+ω(Xγ ⊗ v(µ))|2|Pµ+ω(Xω ⊗ v(µ))|2
= (Pµ(X−γ ⊗ Pµ+ω(Xγ ⊗ v(µ))), Pµ(X−ω ⊗ Pµ+ω(Xω ⊗ v(µ))))

= c(µ;ω)2|Pµ+ω(Xγ ⊗ v(µ))|2|Pµ+ω(Xω ⊗ v(µ))|2 .
This implies that c(γ ) = 1, and hence we have the formula.

THEOREM 4.6. Let µ ∈ ΓK and W(µ) the weight subspace of the K-module M(µ).
Then we have

dimW(µ) = 	ΣW(µ) ,(4.2)

where ΣW(µ) = {ω ∈ Σn : µ+ ω ∈ ΓK,Pµ+ω(pC ⊗ Vµ) �= {0}}.
PROOF. We put A = {Pµ(X−γ ⊗Pµ+ω(Xγ ⊗v(µ))) : γ, ω ∈ Σn,µ+ω ∈ ΓK}. First

we shall prove that W(µ) = [A]. Let Z = Pµ(X−γ ⊗ Pµ+ω(Xγ ⊗ v(µ))) be an element in
A. Since the action of K commutes with Pµ and Pµ+ω (see (3.5)), we have HZ = µ(H)Z

for all H in bC. This implies that A ⊂ W(µ). Conversely let Z be an element in W(µ). By
Lemma 3.6 we have

Z =
∑
γ∈Σn

cγ Pµ(X−γ ⊗Xγ ⊗ v(µ)) ,

where cγ is a complex constant. Then by Lemma 4.1 we have

Z =
∑
γ∈Σn

∑
ω∈Σn,µ+ω∈ΓK

cγ Pµ(X−γ ⊗ Pµ+ω(Xγ ⊗ v(µ))) .

ThusW(µ) = [A] as claimed. Let us now prove this theorem. By Corollary 4.5 we have

W(µ) = [A] = [{|Pµ+ω(Xω ⊗ v(µ))|2vω(µ) : ω ∈ Σn,µ+ ω ∈ ΓK }] .(4.3)

Let ω, γ ∈ Σn,ω �= γ . Assume that Pµ+ω(pC ⊗ Vµ) and Pµ+γ (pC ⊗ Vµ) are nontrivial.
Since these spaces are orthogonal, Pµ(pC ⊗Pµ+ω(pC ⊗Vµ)) and Pµ(pC ⊗Pµ+γ (pC ⊗Vµ))

are also orthogonal (see (4.1)). Hence (4.3) and Lemma 4.2 imply (4.2).
In view the proof of the above theorem we have the following.

COROLLARY 4.7. Let ω, γ ∈ Σn,ω �= γ . Consider two highest weight vectors vω(µ)
and vγ (µ) as in Corollary 4.5. Then vω(µ) and vγ (µ) are orthogonal. Moreover, we have

Pµ(X−γ ⊗Xγ ⊗ v(µ)) =
∑

ω∈ΣW(µ)
c(µ;ω)|Pµ+ω(Xγ ⊗ v(µ))|2vω(µ) .

5. Admissible dominant integral form

In this section we shall determine the multiplicity m(µ) of Vµ in the K-module M(µ)
for an admissible integral form µ in ΓK (for the definition, see below). Let z(Hµ) be the
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centralizer of Hµ in gC. Since one dimensional algebra CHµ is σ and τ invariant, z(Hµ) is
also invariant under these anti-automorphisms of gC. We now put l(µ) = z(Hµ) ∩ g. Since
θ = στ , l(µ) is a θ -stable reductive algebra with Cartan subalgebra b. Therefore l(µ) has the
following Cartan decomposition.

l(µ) = k(µ)⊕ p(µ) , where k(µ) = k ∩ l(µ) and p(µ) = p ∩ l(µ) .(5.1)

Let L(µ) be the centralizer ofHµ inG. We putK(µ) = K ∩L(µ). ThenK(µ) is a maximal
compact subgroup of L(µ). Furthermore, since Hµ ∈ bC, B is a Cartan subgroup of K(µ)
(resp. L(µ)).

DEFINITION 5.1. Let µ ∈ ΓK and K(µ) the centralizer of Hµ in K . For the root
system ΣK(µ) of the pair (k(µ)C, bC) we put PK(µ) = PK ∩ΣK(µ).

DEFINITION 5.2. An element µ ∈ ΓK is admissible if µ has the following properties.
For Sp(n,R)andSO(2m, 2n+ 1), (µ, α) ≥ 2 for all short roots α ∈ PK\PK(µ).
For the the type of G2, 2(µ, α)|α|−2 ≥ 3 for all short roots α ∈ PK\PK(µ).
If G satisfies that all noncompact roots have the same length, thenµ is always admissible.

REMARK. The inner type noncompact real simple Lie groups are classified by
Sp(n,R), SO(2m, 2n + 1), the type G2 and the groups which satisfy all noncompact roots
have the same length (cf. Table II, p. 354 in [2]). When G is of the type G2 then PK has
exactly one simple short (resp. long) root.

DEFINITION 5.3. A noncompact root ω in Σ is PK(µ)-highest if ω + α /∈ Σ for all
α ∈ PK(µ).

Let ω be a noncompact root and m a nonnegative integer. We define five sets ∆(ω),
∆±(ω), ∆m(ω) and ∆m(ω)∗ by

∆(ω) = {α ∈ PK : ω + α ∈ Σ} ,
∆±(ω) = {α ∈ PK : ±(α, ω) > 0} ,
∆m(ω) = {α ∈ ∆(ω) : 2(ω, α)|α|−2 = m} ,
∆m(ω)

∗ = {α ∈ ∆m(ω) : ω − α ∈ Σ} .

(5.2)

We have the following lemma (see Lemma 6.1 in [3]).

LEMMA 5.4. Let G be an inner type noncompact real simple Lie group and ω a non-
compact root. Then we have the followings.

(1) ∆(ω) = ∆−(ω) ∪∆0(ω) ∪∆1(ω), ∆0(ω) = ∆0(ω)
∗ and ∆1(ω) = ∆1(ω)

∗.
(2) If ∆0(ω) �= φ, then G is either Sp(n,R) or SO(2m, 2n+ 1), and ∆(ω) =
∆0(ω)

∗ ∪∆−1(ω) .
(3) If ∆−1(ω)

∗ ∪∆1(ω)
∗ �= φ , then G is of the type G2 .
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Let µ ∈ ΓK and ω ∈ Σn. Assume that Pµ+ω(pC ⊗ Vµ) �= {0}. Then there exists a

rational function f (η;ω) in η ∈ (√−1b)∗ (cf. Theorem 5.5 in [3]) such that

|Pµ+ω(Xω ⊗ v(µ))|2 = f (λ+ ω;ω) ,(5.3)

where λ = µ + ρK . The function f (η;ω) has the following product formula (cf. Theorem
6.5 in [3]).

THEOREM 5.5. Let ω be a noncompact root in Σ . Then f (η + ω;ω) is given by the
followings.

(1) If ∆0(ω)
∗ ∪∆−1(ω)

∗ ∪∆1(ω)
∗ = φ, then we have

f (η + ω;ω) =
∏

α∈∆−(ω)
(η + ω, α)(η, α)−1 .

(2) If ∆0(ω)
∗ �= φ, then G is either Sp(n,R) or SO(2m, 2n+ 1) and

f (η + ω;ω) =
∏

α∈∆−1(ω)

(η + ω, α)(η, α)−1

×
∏

α∈∆0(ω)
∗
(2(η, α)− |α|2)(2(η, α)+ |α|2)−1 .

(3) If ∆1(ω)
∗ ∪∆−1(ω)

∗ �= φ, thenG is of the type G2 and

f (η + ω;ω) =
∏

α∈∆−(ω)
(η + ω, α)(η, α)−1

×
∏

α∈∆1(ω)
∗
(2(η, α)− |α|2)(2((η, α)+ |α|2))−1

×
∏

α∈∆−1(ω)
∗

2((η, α)− |α|2)(2(η, α)+ |α|2)−1 .

We also restate the following theorem (see Theorem 7.6 in [3]).

THEOREM 5.6. Let µ ∈ ΓK and ω ∈ Σn. Assume that µ + ω ∈ ΓK . Then the
K-module Pµ+ω(pC ⊗ Vµ) �= {0} if and only if f (λ+ ω;ω) > 0.

LEMMA 5.7. Let µ ∈ ΓK and ω ∈ Σn. Assume that µ + ω ∈ ΓK and ∆0(ω)
∗ ∩

PK(µ) �= {φ}. Then there exists a simple root α ∈ PK such that α ∈ ∆0(ω)
∗ ∩ PK(µ).

PROOF. Let α be the lowest root in ∆0(ω)
∗ ∩ PK(µ). Assume that α is not simple

in PK . Then we can choose β, γ ∈ PK satisfying α = β + γ . From (µ, α) = 0 and
µ ∈ ΓK , it follows that (µ, β) = (µ, γ ) = 0. Moreover, since (ω, α) = 0, we have either
(ω, β) = (ω, γ ) = 0 or (ω, β)(ω, γ ) < 0. Consider the first case. Since [Xω, [Xβ,Xγ ]] �= 0,
Jacobi’s identity implies ω + β ∈ Σ or ω + γ ∈ Σ . There is no loss of generality assuming
that ω+β ∈ Σ . Since β ∈ ∆0(ω)

∗ ∩PK(µ) and α > β, we have a contradiction to the choice
of α. For the latter case we can assume (ω, β) < 0. Therefore (µ+ω, β) < 0, β ∈ PK . This
is a contradiction to the assumption µ+ ω ∈ ΓK . Thus α is simple in PK .
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LEMMA 5.8. Let µ ∈ ΓK and ω ∈ Σn. Assume that µ is admissible. Then we have
that µ+ ω ∈ ΓK and Pµ+ω(pC ⊗ Vµ) �= {0} if and only if ω is PK(µ)-highest.

PROOF. Bearing in mind ω is PK(µ)-highest iff ∆(ω) ∩ PK(µ) = φ, it is sufficient to
prove that µ+ ω ∈ ΓK and f (λ+ ω;ω) > 0 iff ∆(ω) ∩ PK(µ) = φ (see Theorem 5.6). First
we assume that ∆(ω) ∩ PK(µ) = φ. We note that (µ, α) > 0 for α ∈ ∆(ω). Let us prove that
µ+ω ∈ ΓK and f (λ+ω;ω) > 0. If∆0(ω)

∗∪∆−1(ω)
∗∪∆1(ω)

∗ = φ, then by (1) in Lemma
5.4 we have∆(ω) = ∆−(ω). By (2.3) we have∆(ω) = ∆−1(ω)∪∆−2(ω) ∪∆−3(ω). Let α

be an element in ∆−1(ω). Since (µ, α) > 0, we have 2(λ+ ω, α)|α|−2 > 0. If α ∈ ∆−2(ω),
then α ∈ ∆0(ω+α)∗. By (2) in Lemma 5.4 we haveG is one of Sp(n,R) and SO(2m, 2n+1).

Since α is a short root, the admissibility of µ implies 2(λ+ ω, α)|α|−2 > 0. If α ∈ ∆−3(ω),
then α ∈ ∆−1(ω + α)∗. By (3) in Lemma 5.4 G is of the type G2, and α is a short root. By
the admissibility of µ we have also (λ+ω, α) > 0. Thus (λ+ω, α) > 0 for all α ∈ PK , and
especially µ+ω ∈ ΓK . Moreover, by (1) in Theorem 5.5 we have f (λ+ω;ω) > 0. Consider
the case ∆0(ω)

∗ �= φ. By (2) in Lemma 5.4 we have ∆(ω) = ∆0(ω)
∗ ∪ ∆−1(ω). By using

the same arguments as above we can prove that µ+ω ∈ ΓK and (λ+ω, α) > 0 for α ∈ PK .
Moreover, since (µ, α) > 0 for α ∈ ∆0(ω)

∗, we have 2(λ, α)|α|−2 > 1. Hence by (2) in
Theorem 5.5 we have f (λ + ω;ω) > 0 for this case. Assume that ∆−1(ω)

∗ ∪∆1(ω)
∗ �= φ.

Then G is of the type G2. From Lemma 5.4 and (2.3) it follows that ∆(ω) = ∆−3(ω) ∪
∆−1(ω) ∪ ∆1(ω)

∗. For α ∈ ∆−3(ω) the admissibility of µ implies (µ + ω, α) ≥ 0. If
α ∈ ∆−1(ω), then by (µ, α) > 0 we have (µ + ω, α) ≥ 0. Let α ∈ ∆1(ω)

∗ ∪ ∆−1(ω)
∗.

Since α is a short root, the admissibility implies 2(µ, α)|α|2 ≥ 3. Therefore µ + ω ∈ ΓK

and 2(λ, α)|α|−2 > 1 (resp. (λ, α)|α|−2 > 1) for α ∈ ∆1(ω)
∗ (resp. α ∈ ∆−1(ω)

∗). By
(3) in Theorem 5.5 we have f (λ + ω;ω) > 0. Conversely assume that µ + ω ∈ ΓK and
f (λ+ ω;ω) > 0. Since ∆(ω) = ∆−(ω), for the case ∆0(ω)

∗ ∪∆−1(ω)
∗ ∪∆1(ω) = φ, the

assumptionµ+ω ∈ ΓK implies that∆(ω)∩PK(µ) = φ. Suppose that∆0(ω)
∗ �= φ. Then we

have (µ, α) > 0 for α ∈ ∆−1(ω). Let α ∈ ∆0(ω)
∗. We shall prove that (µ, α) > 0. Suppose

that (µ, α) = 0. Since ∆0(ω)
∗ ∩ PK(µ) �= φ, Lemma 5.7 implies that there is a simple root

β in PK such that β ∈ ∆0(ω)
∗ ∩ PK(µ). We have 2(λ, β)|β|−2 = 1, β ∈ ∆0(ω)

∗, and hence
by (2) in Theorem 5.5 we have f (λ + ω,ω) = 0. This is a contradiction to the assumption
f (λ+ ω;ω) > 0. Thus (µ, α) > 0 for α ∈ ∆(ω), and hence∆(ω) ∩ PK(µ) = φ for the case
∆0(ω)

∗ �= φ. Finally assume that α ∈ ∆−1(ω)
∗ ∪ ∆1(ω)

∗. We note that α is a simple short
root in PK . Since µ+ω ∈ ΓK and f (λ+ω;ω) > 0, (3) in Theorem 5.5 implies (µ, α) > 0.
Thus we can prove that if µ+ ω ∈ ΓK and f (λ+ ω;ω) > 0, then ∆(ω) ∩ PK(µ) = φ.

THEOREM 5.9. Let µ ∈ ΓK and Vµ a simple K-module with the highest weight µ.
Consider theK-module M(µ) = Pµ(pC ⊗ pC ⊗ Vµ), and assume that µ is admissible. Then
the multiplicity m(µ) of Vµ in M(µ) is given by

m(µ) = 	{ω ∈ Σn : ω is PK(µ)-highest} .
PROOF. Let ω ∈ Σn. Then by Lemma 5.8 µ+ ω ∈ ΓK and Pµ+ω(pC ⊗ Vµ) �= {0} if

and only if ω is PK(µ)-highest. Consequently by Theorem 4.6 we have our assertion.
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6. Positive root system associated with a PK -dominant integral form

In this section we shall give a good positive root system associated with µ ∈ ΓK (see

Lemma 6.5 below). An element H in
√−1b is said to be regular if α(H) �= 0 for all α in Σ .

An elementH in
√−1b is said to be singular unlessH is regular. Let (

√−1b)′ denote the set

of all regular elements in
√−1b and P a positive root system satisfying PK ⊂ P . We define

a subset C in (
√−1b)′ by

C = {H ∈ √−1b : α(H) > 0 for all α ∈ P } .

Each topological connected component of (
√−1b)′ is said to be a Weyl chamber. Especially

C is the positive Weyl chamber corresponding to P . Let W be the Weyl group of the pair
(gC, bC). W acts simply transitively on the set of all Weyl chambers (cf. Theorem 4.3.18 in
[4]). Moreover we have

(
√−1b)′ =

⋃
s∈W

sC ( disjoint union) .

Let s be an element inW . Then sC is the positive Weyl chamber corresponding to the positive
root system sP .

LEMMA 6.1. The number of positive root systems containing PK is (W : WK), where
(∗ : ∗) is the group index andWK is the Weyl group of (kC, bC).

PROOF. We denote the set of all positive root systems containing PK by {siP : 1 ≤
i ≤ p, si ∈ W, s1 = 1}. It is enough to prove that

W =
p⋃
i=1

WKsi (disjoint union) .(6.1)

Let CK be the positive Weyl chamber corresponding to PK . First we shall prove W =⋃p

i=1WKsi . Let s be an element in W . Since sC ⊂ ⋃
t∈WK tCK , there is t in WK such

that tCK ∩ sC �= φ. We can choose H ∈ C satisfying t−1sH ∈ CK . Since α(t−1sH) > 0

for all α ∈ PK , we have PK ⊂ t−1sP . We let t−1s = si for i, 1 ≤ i ≤ p. Then s ∈ WKsi ,
and hence the identity in (6.1) follows. Next we shall prove that if WKsi ∩WKsj �= φ, then
i = j . There is t ∈ WK such that tsi = sj . If t �= 1, then we have tα < 0 for α ∈ PK . Since
α ∈ siP , we have α = siβ for β ∈ P . This implies that tsiβ ∈ sjP ∩ (−PK). Since sjP is a
positive root system and PK ⊂ sjP , we have a contradiction. Thus t = 1 and i = j .

LEMMA 6.2. Assume that the pair (G,K) is hermitian symmetric. Then for the posi-
tive root system PK of ΣK we can choose a positive root system P ′ satisfying the following
properties:

PK ⊂ P ′ , pC = p+ ⊕ p− and ad(kC)p
± ⊂ p± ,
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where p± is the subspace of pC generated by the set of all root vectors corresponding to the
noncompact roots in P ′ (resp. −P ′).

PROOF. Let H0 be a nonzero element in the center of kC. We note that γ (H0) �= 0

for all γ ∈ Σn (cf. Corollary 7.3 in [2]). We can assume that H0 ∈ √−1b. Let b1 be
the orthogonal complement of H0 in b. Then b1 is a Cartan subalgebra of the semisimple
Lie algebra k1 = [k, k]. Let K1 be the analytic subgroup of G corresponding to k1. Then
PK1 = PK is a positive root system of ((k1)C, (b1)C). Let CK1 be the positive Weyl chamber

in
√−1b1 corresponding to PK1 . We choose H ∈ CK1 , and put Hn = 1

n
H + H0 for all

positive integers n. Since limn→+∞ γ (Hn) = γ (H0), there exists a sufficiently large number
N such that γ (HN) and γ (H0) have the same signature for all γ ∈ Σn. We put

P ′ = {α ∈ Σ : α(HN) > 0} .
SinceHN is regular, P ′ is a positive root system ofΣ containing PK . Then p± are kC-invariant
and pC = p+ ⊕ p−.

LEMMA 6.3. Let µ ∈ ΓK and l(µ) the centralizer of Hµ in g. Then the inner type
reductive Lie algebra l(µ) has the following decomposition by the ideals.

l(µ) = l0 ⊕ l1 ⊕ l2 ,

where all li ’s are inner and θ -invariant, l0 ⊂ k, and each simple ideal of l1 (resp. l2) is
noncompact nonhermitian (resp. hermitian).

PROOF. Let l(µ) = ⊕p

i=0 qi be the decompostion by ideals of l(µ), where q0 is the

center of l(µ) and the other q′
is are all simple. Since q0 ⊂ b, it is enough to prove that qi

(1 ≤ i ≤ p) is an inner type θ -invariant simple Lie algebra. Let pi be the projection of l(µ)

to qi . Then we have [pi(b), pj (b)] = {0} for i, j, i �= j . This implies that {0} = [b, b] =⊕q

i=1[pi(b), pi(b)], and hence pi(b) is an abelian subalgebra of qi . Since [b, pi(b)] = {0}
and b is a maximal abelian subalgebra of l(µ), we have pi(b) ⊂ b and pi(b) is maximal
abelian in qi . Thus qi is an inner type simple Lie algebra. Moreover since pi(b) ⊂ qi∩θ(qi ) ⊂
l(µ), we have qi = θ(qi).

DEFINITION 6.4. Let P be a positive root system of Σ containing PK . We put p+ =⊕
α∈Σn∩P gα and p− = ⊕

α∈Σn∩P g−α . Let q be a simple K(µ)-submodule of pC. Then q

is said to be the first (resp. the second) kind with respect to P if τ (q) = q (resp. q ⊂ p+ or
q ⊂ p−).

LEMMA 6.5. Let µ ∈ ΓK . Then we can choose a positive root system P� of Σ satis-
fying the following properties: PK ⊂ P�, and eachK(µ)-simple submodule q of pC is either
the first kind or the second kind with respect to P�.

PROOF. Consider the decomposition of l(µ) as in Lemma 6.3. Let Σi (0 ≤ i ≤ 2) be
the root system of the pair ((li )C, (li ∩ b)C). Since each α ∈ Σi can be extended to b, we

have Σi ⊂ Σ . Furthermore since li is θ -invariant, we have PK(µ) = ⋃2
i=0(PK(µ) ∩Σi) and
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PK(µ) ∩Σi is a positive root system of ((li ∩ k)C, (li ∩ b)C). We put P0 = PK(µ) ∩Σ0. For
the algebra l1 we choose a positive root system P1 ofΣ1 satisfying PK(µ)∩Σ1 ⊂ P1. For the
hermitian case l2, we choose a positive root system P2 of Σ2 satisfying PK(µ) ∩Σ2 ⊂ P2 as
in Lemma 6.2. We now put

P(µ) =
2⋃
i=0

Pi .(6.2)

Then P(µ) is a positive root system of (l(µ)C, bC), and PK(µ) ⊂ P(µ). Let us now choose a
positive root system P� of Σ as follows. Let l∗ = [l(µ), l(µ)] be the drived algebra of l(µ).
We put b∗ = b ∩ l∗. Then b∗ is a Cartan subalgebra of the real semisimple Lie algebra l∗. Let

C∗(µ) be the positive Weyl chamber of
√−1b∗ corresponding to P(µ). We choose an ele-

mentH0 in C∗(µ) and putHn = 1
n
H0 +Hµ for all positive integers n. Then for a sufficiently

large number N , α(Hµ) and α(HN) have the same signature for all α ∈ Σ\(P (µ)∪−P(µ)).
We now put

P� = {α ∈ Σ : α(HN) > 0} .(6.3)

Immediately we have P(µ) ⊂ P�. Moreover by the choice of HN we have α(HN) > 0
for α ∈ PK\PK(µ). This implies that PK ⊂ P�. Finally we shall prove that each simple
K(µ)-submodule q of pC is the first kind or the second kind with respect to P�. Let l(µ) =
k(µ)⊕p(µ) be the Cartan decomposition of l(µ) as in (5.1) and r the orthogonal complement
of p(µ) in p. Then r is K(µ)-invariant and pC = p(µ)C ⊕ rC. Since q is a simple K(µ)-
module, we have

q ⊂ p(µ)C or q ⊂ rC .(6.4)

In the first case in (6.4), we have (1) q ⊂ (l1)C or (2) q ⊂ (l2)C. Since each simple ideal of l1
is nonhermitian, q is the first kind for the case (1). For the case (2) the choice of the positive
root system P2 implies that q is the second kind. Let us consider the latter case in (6.4). Let
Xω be the K(µ)-highest weight vector in q. Since ω /∈ P(µ), we have that ω(Hµ) �= 0.
Since each weight (noncompact root) δ of q is of the form δ = ω − ∑

α∈PK(µ) mαα, mα is

an integer, we have δ(Hµ) = ω(Hµ). This implies that δ(HN) and ω(HN) have the same
signature. Hence q is the second kind for this case. Thus each K(µ)-simple submodule q of
pC is the first kind or the second kind.

COROLLARY 6.6. Let P(µ) be the positive root system of Σ(l(µ)C, bC) as in (6.2)
and p(µ) = p ∩ l(µ). Then each simple K(µ)-submodule of p(µ)C is the first kind or the
second kind with respect to P(µ). Moreover each simple root in P(µ) is also simple in P�.

PROOF. It is sufficient to prove that if α is simple in P(µ), then α is simple in P�.
Suppose that α is not simple in P�. Then there exist β and γ in P� such that α = β + γ .
Therefore 0 = α(Hµ) = β(Hµ)+ γ (Hµ). By the choice of P� in (6.3) we have β(Hµ) = 0
and γ (Hµ) = 0, and hence α = β + γ, β, γ ∈ PK(µ). This is a contradiction to α is simple
in PK(µ).
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7. Standard triple of the positive root systems

Our purpose of this section is to prove Theorem 7.5.

LEMMA 7.1. Let P be a positive root system of Σ containing PK and Ψ the simple
root system of P . For a subset Θ of Ψ we denote by P(Θ) the set of all roots in P generated
by the set Θ over the ring of integers. Then there exists a reductive subalgebra l(Θ) of g

containing b such that P(Θ) is a positive root system of the pair (l(Θ)C, bC).

PROOF. Let C be the positive Weyl chamber of
√−1b corresponding to P . We put

C(Θ) = {H ∈ cl(C) : α(H) = 0 for α in Θ and α(H) > 0 for α in Ψ \Θ} ,(7.1)

where cl(C) is the topological closure of C in
√−1b. It is sufficient to prove this lemma for

the case P(Θ) �= P . Since Θ �= Ψ , we can choose H ∈ C(Θ)\{0}. The centralizer l(H)

of H in g is reductive, and contains b. Let ΣH be the root system of (l(H)C, bC). Then we
have P(Θ) = ΣH ∩ P . Hence P(Θ) is a positive root system of the pair (l(Θ)C, bC), where
l(Θ) = l(H).

LEMMA 7.2. Let Θ be a subset of Ψ, and define C(Θ) by (7.1). Let H be an ele-
ment in C(Θ) and K(Θ) the centralizer of H in K . Then the group K(Θ) is determined
independently by the choice of H in C(Θ).

PROOF. LetK(Θ)0 be the analytic subgroup ofG corresponding to l(Θ)∩k. In view of

the proof of Lemma 7.1 K(Θ)0 is uniquely determined by Θ . Let k be an element in K(Θ).
Then there exists k0 inK(θ)0 such thatAd(k) = Ad(k0). We put z = k−1k0. Since z belongs

to the center Z of K , we have K(Θ) ⊂ ZK(Θ)0. On the other hand, since K is connected,
B is a maximal abelian subgroup of K (cf. Corollary 2.7 in [2]). This implies that Z ⊂ B.

Since B ⊂ K(Θ), we have K(Θ) = ZK(Θ)0. Thus K(Θ) is determined independently by
the choice of H .

DEFINITION 7.3. Let P be a positive root system ofΣ containing PK . For a subsetΘ
in the simple root system Ψ of P , we consider the positive root system P(Θ) as in Lemma
7.1. Then the triple (PK, P (Θ), P ) is standard if each simple K(Θ)-submodule of pC is
either the first kind or the second kind with respect to P .

DEFINITION 7.4. Let (PK, P (Θ), P ) be a standard triple. A root γ inΣn is said to be
the first (resp. the second) kind if the simple K(Θ)-module qγ generated by Xγ is the first
(resp. the second) kind.

REMARK. Let P be a positive root system containing PK . For Θ = φ, we have
P(Θ) = φ and K(Θ) = B. Moreover, (PK, φ, P ) is standard, and C(Θ) is the positive
Weyl chamber.

THEOREM 7.5. For µ ∈ ΓK, there exists a standard triple (PK, P (Θ), P ) such that
Hµ ∈ C(Θ). Moreover we have K(Θ) = K(µ).
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PROOF. We first assume that Hµ is regular. Then we have k(µ) = b. In this case we
put P = {α ∈ Σ : α(Hµ) > 0}. Then (PK, φ, P ) is standard, Hµ ∈ C(φ), K(Θ) = K(µ)

and l(Θ) = b. Let us now assume that Hµ is singular. Let l(µ) be the centralizer of Hµ in g.
We choose the positive root systems P� and P(µ) the same as in Lemma 6.5 and Corollary
6.6 respectively. Let Ψ � be the simple root system of P�. By Corollary 6.6 the simple root
system Θ of P(µ) is a subset of Ψ �. We put P = P�. Since P(Θ) = P(µ), the triple
(PK, P (Θ), P ) is standard, Hµ ∈ C(Θ) and K(Θ) = K(µ).

8. Principal weight space PW(µ)

In this section we shall fix a standard triple (PK, P (Θ), P ), and consider the convex cone

C(Θ) corresponding to this triple. We now put C(Θ)∗ = {η ∈ (√−1b)∗ : Hη ∈ C(Θ)}. Let
µ ∈ C(Θ)∗ ∩ ΓK and Vµ a unitary simple K-module with highest weight µ. We shall fix the
highest weight vector v(µ) normalized as |v(µ)| = 1.

DEFINITION 8.1. Let Pn be the set of all noncompact roots in P . We define a projec-
tion operator P+ on the K-module pC ⊗ Vµ by P+ = ∑

ω∈Pn,µ+ω∈ΓK Pµ+ω .

DEFINITION 8.2. Let W(µ) be the weight subspace of M(µ) as in Lemma 3.1. We
define a subspace PW(µ) of W(µ) by

PW(µ) = [{Pµ(X−γ ⊗ P+(Xγ ⊗ v(µ))−Xγ ⊗ P+(X−γ ⊗ v(µ))) : γ ∈ Pn}] .
LEMMA 8.3. Let N(µ) be the K-submodule of M(µ) generated by the set

{Pµ(X ⊗ P+(Y ⊗ v)− Y ⊗ P+(X ⊗ v)) : X,Y ∈ pC, v ∈ Vµ} .
Then we have N(µ) ∩W(µ) = PW(µ). Especially dimPW(µ) is the multiplicity of Vµ in
N(µ).

PROOF. It is enough to prove that N(µ) ∩W(µ) ⊂ PW(µ). Let Z be an element in
N(µ) ∩W(µ). We can assume that

Z = Pµ(Xγ ⊗ P+(Xδ ⊗Q(I)v(µ)) −Xδ ⊗ P+(Xγ ⊗Q(I)v(µ))) ,

where γ, δ ∈ Σn, I ∈ Π, γ + δ = 〈I 〉. By Lemma 3.5 we have

Z =
∑
J�I

(−1)	I {Pµ(Q(ψ(J ))Xγ ⊗ P+(Q(ψ(I\J ))Xδ ⊗ v(µ)))

− Pµ(Q(ψ(J ))Xδ ⊗ P+(Q(ψ(I\J ))Xγ ⊗ v(µ)))} .
Since (I\J ) � I and I\(I\J ) = J , we have

Z = (−1)	
{ ∑
J�I

Pµ(Q(ψ(J ))Xγ ⊗ P+(Q(ψ(I\J ))Xδ ⊗ v(µ)))

−
∑
J�I

Pµ(Q(ψ(I\J ))Xδ ⊗ P+(Q(ψ(J ))Xγ ⊗ v(µ)))

}
.
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Since γ + δ = 〈J 〉 + 〈I\J 〉, we have Z ∈ PW(µ).
LEMMA 8.4. Let µ be an element in C(Θ)∗ ∩ ΓK and Vµ the simple K-module with

highest weight µ. Suppose that U(k(Θ)C)Xγ � Xδ for two noncompact roots γ, δ in Σ .
Then, for each noncompact root ω satisfying µ+ ω ∈ ΓK , we have

|Pµ+ω(Xγ ⊗ v(µ))|2 = |Pµ+ω(Xδ ⊗ v(µ))|2 .
PROOF. We first prove that Xαv(µ) = 0 for all α ∈ ΣK(Θ). Since v(µ) is the highest

weight vector of Vµ, it is sufficient to prove that X−αv(µ) = 0 for all α ∈ PK(Θ). Since
ad(Xα)X−αv(µ) = α(Hµ)v(µ) = 0, we have XαX−αv(µ) = 0. By the choice of Xα in

(2.1), we have 0 = (XαX−αv(µ), v(µ)) = |X−αv(µ)|2. This implies that X−αv(µ) = 0.
Let us now prove this lemma. By the asummption for γ and δ, there exist a nonzero complex
number c and a finite number of roots α1, α2, · · · , αq ∈ ΣK(Θ) such that

ad(Xα1Xα2 · · ·Xαq )Xγ = cXδ .

Then we have

c|Pµ+ω(Xδ ⊗ v(µ))|2 = (Pµ+ω(ad(Xα1Xα2 · · ·Xαq )Xγ ⊗ v(µ)), Pµ+ω(Xδ ⊗ v(µ)))

= (Xα1Pµ+ω(ad(Xα2 · · ·Xαq )Xγ ⊗ v(µ)), Pµ+ω(Xδ ⊗ v(µ)))

− (Pµ+ω(ad(Xα2 · · ·Xαq )Xγ ⊗Xα1v(µ)), Pµ+ω(Xδ ⊗ v(µ))) ,

= (Pµ+ω(ad(Xα2 · · ·Xαq )Xγ ⊗ v(µ)), Pµ+ω(ad(X−α1)Xδ ⊗ v(µ)))

· · ·
= (Pµ(Xγ ⊗ v(µ)), Pµ(ad(X−αq · · ·X−α1)Xδ ⊗ v(µ)))

= c′|Pµ+ω(Xγ ⊗ v(µ)|2 ,
where c′ = φ(ad(X−αq · · ·X−α1)Xδ,X−γ ). Since the Killing form φ is τ invariant, (2.6)
implies that

c′ = (−1)qφ(ad(Xαq · · ·Xα1)X−δ,Xγ ) = φ(X−δ, ad(Xα1Xα2 · · ·Xαq )Xγ ) = c .

Thus we have |Pµ+ω(Xγ ⊗ v(µ))| = |Pµ+ω(Xδ ⊗ v(µ))|.
THEOREM 8.5. Let (PK, P (Θ), P ) be a standard triple andµ ∈ C(Θ)∗∩ΓK . Assume

that µ is admissible. Then we have

PW(µ) = [{Z(γ ) : γ is a PK(Θ)-highest root in Pn and of the second kind }] ,
where Z(γ ) = Pµ(X−γ ⊗ P+(Xγ ⊗ v(µ))−Xγ ⊗ P+(X−γ ⊗ v(µ))).

PROOF. Let γ be a noncompact root in Σ . By using Corollary 4.7 we have

Z(γ ) =
∑

ω∈Pn∩ΣW(µ)
c(µ;ω)(|Pµ+ω(Xγ ⊗ v(µ))|2 − |Pµ+ω(X−γ ⊗ v(µ))|2)vω(µ) .(8.1)
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By Lemma 8.4 if two vectors Xγ and Xδ belong to the same simple K(Θ)-submodule in pC,
then we have

Z(γ ) = Z(δ) .(8.2)

Especially if γ is of the first kind, then we have

Z(γ ) = 0 .(8.3)

Hence by (8.1), (8.2) and (8.3) we have our assertion of this theorem.

DEFINITION 8.6. Let (PK, P (Θ), P ) be a standard triple and µ ∈ C(Θ)∗ ∩ ΓK . We
define |µ|Θ by

|µ|Θ = min

{
2(µ, α)

|α|2 : α ∈ PK\PK(Θ)
}
.(8.4)

We note that if |µ|Θ ≥ 3, thenµ is admissible. Hence by Lemma 5.8 we havePµ+ω(pC⊗
Vµ) �= {0} for µ satisfying |µ|Θ ≥ 3 and a PK(Θ)-highest root ω ∈ Pn.

LEMMA 8.7. Let ω be a PK(Θ)-highest noncompact root in P and γ a noncompact
root. Then there exists a positive integer N (≥ 3) such that

|Pµ+ω(Xγ ⊗ v(µ))|2 ≤ |Pµ+ω(Xω ⊗ v(µ))|2

for all µ ∈ C(Θ)∗ ∩ ΓK satisfying |µ|Θ ≥ N .

PROOF. Let qω be the simple K(Θ)-module generated by Xω. Suppose that Xγ ∈ qω.
By Lemma 8.4 we have the inequality in this lemma for all µ ∈ C(Θ)∗ ∩ ΓK satisfying
|µ|Θ ≥ 3. Let us consider the case Xγ /∈ qω. By Lemma 4.3 we have

|Pµ+ω(Xγ ⊗ v(µ))|2 =
∑
α∈PK

2|〈α, γ 〉|2
|λ+ ω|2 − |λ+ γ |2 |Pµ+ω(Xγ+α ⊗ v(µ))|2 .(8.5)

By (2.4) we have

2|〈α, γ 〉| ≤ 3|α|2 .(8.6)

By Lemma 3.8 in [3] if Pµ+ω(Xγ ⊗ v(µ)) �= 0, then there exists I = (α1, α2, · · · , αq) ∈ Π
such that ω − γ = 〈I 〉. Moreover, since Xγ /∈ qω, we have αp /∈ PK(Θ) for a root αp in
{α1, α2, · · · , αq }. This implies that

|λ+ ω|2 − |λ+ γ |2 =
q∑
i=1

2(µ, αi)+ |ω|2 − |γ |2

≥ 2(µ, αp)+ |ω|2 − |γ |2

≥ |µ|Θ |αp|2 + |ω|2 − |γ |2 .

(8.7)
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Hence by (8.5), (8.6) and (8.7) there exists a positive integer N1 such that

|Pµ+ω(Xγ ⊗ v(µ))|2 ≤ max
α∈PK

|Pµ+ω(Xγ+α ⊗ v(µ))|2

for all µ ∈ C(Θ)∗ ∩ ΓK satisfying |µ|Θ ≥ N1. By using this argument successively we can
prove this lemma.

COROLLARY 8.8. Let ω, γ ∈ Σn. Suppose that ω and γ are PK(Θ)-highest. Then we
have

lim|µ|Θ→+∞ |Pµ+ω(Xγ ⊗ v(µ))|2 = δω,γ ,

where δω,γ is Kronecker’s delta.

PROOF. Assume that Xγ /∈ qω. By Lemma 8.7 and (8.5), there exists a number N ′
such that

|Pµ+ω(Xγ ⊗ v(µ))|2 ≤
∑
α∈PK

2|〈α, γ 〉|2
|λ+ ω|2 − |λ+ γ |2 |Pµ+ω(Xω ⊗ v(µ))|2

for all µ ∈ C(Θ)∗ ∩ ΓK satisfying |µ|Θ ≥ N ′. This inequality and (8.7) imply

lim|µ|Θ→+∞ |Pµ+ω(Xγ ⊗ v(µ))|2 = 0 .

Consider the case γ = ω. We can assume that |µ|Θ of µ ∈ C(Θ)∗ ∩ ΓK is sufficiently large.

Then µ+ ω ∈ ΓK and Pµ+ω(pC ⊗ Vµ) �= {0}. Since |Pµ+ω(Xω ⊗ v(µ))|2 = f (λ+ ω : ω),
Theorem 5.5 implies that

lim|µ|Θ→+∞ |Pµ+ω(Xω ⊗ v(µ))|2 = 1 .

THEOREM 8.9. Let (PK, P (Θ), P ) be a standard triple, and C(Θ)∗ = {η ∈
(
√−1b)∗ : Hη ∈ C(Θ)}. Then there exists a sufficiently large number N such that

dimPW(µ) = 	{ω ∈ Pn : ω is PK(Θ)-highest and of the second kind}
for all µ ∈ C(Θ)∗ ∩ ΓK satisfying |µ|Θ ≥ N .

PROOF. Let ω and γ be two PK(Θ)-highest roots in Pn. We put

aω,γ (µ) = c(µ;ω)(|Pµ+ω(Xγ ⊗ v(µ))|2 − |Pµ+ω(X−γ ⊗ v(µ))|2) .
By Corollary 4.5 we have

Pµ(X−γ ⊗ P+(Xγ ⊗ v(µ))−Xγ ⊗ P+(X−γ ⊗ v(µ)))

=
∑

ω∈Pn∩ΣW(µ)
aω,γ (µ)vω(µ) .

(8.8)
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Since degπµ = ∏
α∈PK (λ, α)(ρK, α)

−1, we have lim|µ|Θ→+∞ c(µ;ω) = d(ω), where d(ω)
is a positive constant. Hence by Corollary 8.8 we have

lim|µ|Θ→+∞ aω,γ (µ) = d(ω)δω,γ for ω, γ ∈ PΘ ,

where

PΘ = {γ ∈ Pn : γ is PK(Θ)-highest and of the second kind} .
In view of Theorem 8.5 and (8.8) we can prove there exists a number N such that
dimPW(µ) = 	PΘ for all µ ∈ C(Θ)∗ ∩ ΓK satisfying |µ|Θ ≥ N .
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