On Two Step Tensor Modules of the Maximal Compact Subgroups of Inner Type Noncompact Real Simple Lie Groups

Hisaichi MIDORIKAWA

Tsuda College

1. Introduction

Let \mathbf{C} (resp. \mathbf{R}) be the complex (resp. real) number field. We consider a connected simply connected complex simple Lie group $G_{\mathbf{C}}$ and its connected noncompact simple real form G. In this article we shall always fix a maximal compact subgroup K of G, and assume that rank $G=\operatorname{rank} K$. This assumption is equivalent to G is inner. Let \mathfrak{g} and \mathfrak{k} be respectively the Lie algebras of G and K. Let θ be the Cartan involution which stabilizes K. Then \mathfrak{g} is decompsed by $\mathfrak{g}=\mathfrak{k} \oplus \mathfrak{p}$, where \mathfrak{p} is the eigenspace of θ in \mathfrak{g} with the eigenvalue -1 . Let $\mathfrak{g}_{\mathbf{C}}$ be the Lie algebra of $G_{\mathbf{C}}$. We shall denote, for each subspace \mathfrak{v} of \mathfrak{g}, by $\mathfrak{v}_{\mathbf{C}}$ the complexification of \mathfrak{v} in $\mathfrak{g}_{\mathbf{C}} \cdot \mathfrak{p}_{\mathbf{C}}$ is a K-module by the adjoint action of K. Let B be a maximal abelian subgroup of K. Then B is also a maximal abelian subgroup (Cartan subgroup) of G. Let \mathfrak{b} be the Lie algebra of B. Then the root system Σ of the pair ($\mathfrak{g}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}$) is decomposed by $\Sigma=\Sigma_{K} \cup \Sigma_{n}$, where Σ_{K} (resp. Σ_{n}) is the set of all compact (resp. noncompact) roots in Σ. Then Σ_{K} is also the root system of $\left(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. We choose a positive root system P_{K}, and always fix it.

Let us state our purpose of this article. Let μ be a P_{K}-dominant integral form on $\mathfrak{b}_{\mathbf{C}}$ and $\left(\pi_{\mu}, V_{\mu}\right)$ a simple K-module with highest weight μ. We consider a simple Harish-Chandra (\mathfrak{g}, K)-module $U\left(\mathfrak{g}_{\mathbf{C}}\right) V_{\mu}$ which contains $\left(\pi_{\mu}, V_{\mu}\right)$ with multiplicity one, where $U\left(\mathfrak{g}_{\mathbf{C}}\right)$ is the universal enveloping algebra of $\mathfrak{g}_{\mathbf{C}}$. Let $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ be the tensor K-module. Canonically this space has a unitary K-module structure. We define a K-linear homomorphism ϖ of $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ to $U\left(\mathfrak{g}_{\mathbf{C}}\right) V_{\mu}$ by $\varpi(X \otimes Y \otimes v)=X Y v$ for $X, Y \in \mathfrak{p}_{\mathbf{C}}, v \in V_{\mu}$. Let V be a finite K-module. We define a projection operator P_{μ} on V by

$$
\begin{equation*}
P_{\mu}(v)=\operatorname{deg} \pi_{\mu} \int_{K} k v \overline{\operatorname{trace} \pi_{\mu}(k)} d k \quad \text { for } v \in V \tag{1.1}
\end{equation*}
$$

where $\operatorname{deg} \pi_{\mu}=\operatorname{dim} V_{\mu}$ and $d k$ is the Haar measure on K normalized as $\int_{K} d k=1$. Since $P_{\mu} \varpi=\varpi P_{\mu}, \varpi$ induces a K-module linear homomorphism of $M(\mu)=P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ to $V_{\mu} \subset U\left(\mathfrak{g}_{\mathbf{C}}\right) V_{\mu}$. Let $m=m(\mu)$ be the multiplicity of V_{μ} in $M(\mu)$. $M(\mu)$ is decomposed by $M(\mu)=\bigoplus_{j=1}^{m} U\left(\mathfrak{k}_{\mathbf{C}}\right) v_{j}$, where v_{j} is the highest weight vector of the simple K-module $U\left(\mathfrak{k}_{\mathbf{C}}\right) v_{j}$ and $U\left(\mathfrak{k}_{\mathbf{C}}\right)$ is the universal enveloping algebra of ${ }^{\mathfrak{k}} \mathbf{C}$. Let $v(\mu)$ be the highest weight
vector of V_{μ}. Since ϖ is a K-module linear homomorphism of $M(\mu)$ to V_{μ}, there exsists a complex number x_{i} such that $\varpi\left(v_{i}\right)=x_{i} v(\mu), 1 \leq i \leq m$. We choose the root vectors $X_{\alpha}, \alpha \in \Sigma$ normalized as $\phi\left(X_{\alpha}, X_{-\alpha}\right)=1$, where ϕ is the Killing form on $\mathfrak{g}_{\mathbf{C}}$. Then we have $H_{\alpha}=a d\left(X_{\alpha}\right) X_{-\alpha} \in \mathfrak{b}_{\mathbf{C}}$. Let X_{ω} be a root vector corresponding to a noncompact root ω. We have $(H-\mu(H) 1) P_{\mu}\left(X_{\omega} \otimes X_{-\omega} \otimes v(\mu)\right)=0, H \in \mathfrak{b}$, where 1 is the identity in $U\left(\mathfrak{k}_{\mathbf{C}}\right)$. Since μ is the highest weight of V_{μ}, there exist the complex constants $c_{\omega, j}$ such that

$$
P_{\mu}\left(X_{\omega} \otimes X_{-\omega} \otimes v(\mu)\right)-P_{\mu}\left(X_{-\omega} \otimes X_{\omega} \otimes v(\mu)\right)=\sum_{j=1}^{m} c_{\omega, j} v_{j}
$$

Let P be a positive root system of Σ containing P_{K} and P_{n} the set all noncompact roots in P. We put $P_{n}=\left\{\omega_{1}, \omega_{2}, \cdots, \omega_{N}\right\}, \mathbf{x}_{\mathbf{0}}={ }^{t}\left(x_{1}, x_{2}, \cdots, x_{m}\right), \mathbf{b}={ }^{t}\left(\mu\left(H_{\omega_{1}}\right), \mu\left(H_{\omega_{2}}\right), \cdots\right.$, $\left.\mu\left(H_{\omega_{N}}\right)\right)$ and $A=\left(c_{\omega_{i}, j}\right)$. Then $\mathbf{x}_{\mathbf{0}}$ is a solution of the system of the linear equations;

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{1.2}
\end{equation*}
$$

We note that all entries in A are given by the Clebsch-Gordan coefficients of the tensor K module $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ (see Corollary 4.7). This indicates that the action of X_{ω} on $V_{\mu} \subset U\left(\mathfrak{g}_{\mathbf{C}}\right) V_{\mu}$ is controlled by the Clebsch-Gordan coefficients of $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ (cf. also [1]). Our motivation is to study the equation (1.2).

Let us state the first result after the following preparations. Let H_{μ} be the element in $\mathfrak{b}_{\mathbf{C}}$ satisfying $\phi\left(H_{\mu}, H\right)=\mu(H)$ for all $H \in \mathfrak{b}_{\mathbf{C}}$. Then the centralizer $K(\mu)$ of H_{μ} in K is reductive, and contains B. Let $\Sigma_{K(\mu)}$ be the root system of the pair $\left.(\mathfrak{k}(\mu))_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$, where $\mathfrak{k}(\mu)$ is the Lie algebra of $K(\mu)$. We put $P_{K(\mu)}=P_{K} \cap \Sigma_{K(\mu)}$. $P_{K(\mu)}$ is a positive root system of $\Sigma_{K(\mu)}$. A noncompact root $\omega \in \Sigma_{n}$ is said to be $P_{K(\mu)}$-highest if $\omega+\alpha \notin \Sigma$ for all α in $P_{K(\mu)}$. When ω in Σ_{n} is $P_{K(\mu)}$-highest, ω is actually the highest weight of a simple $K(\mu)$-submodule of $\mathfrak{p}_{\mathbf{C}}$. The set of all P_{K}-dominant integral form on $\mathfrak{b}_{\mathbf{C}}$ will be denoted by Γ_{K}. In $\S 5$ we shall prove the following theorem.

Theorem I. Let $\mu \in \Gamma_{K}$ and assume that μ is admissible (see Definition 5.2). Then the multiplicity $m(\mu)$ of V_{μ} in the K-module $M(\mu)$ is given by

$$
m(\mu)=\sharp\left\{\omega \in \Sigma_{n}: \omega \text { is } P_{K(\mu)} \text {-highest }\right\},
$$

where $\sharp S$ is the number of the elements in a set S.
We shall state our second result. Let P be a positive root system containing P_{K}. For a subset Θ in the simple root system Ψ of P, we denote by $P(\Theta)$ the set of all positive roots in P generated by Θ over the ring of integers. The dual space of the real vector space $\sqrt{-1} \mathfrak{b}$ will be denoted by $(\sqrt{-1} \mathfrak{b})^{*}$. Let C^{*} be the positive Weyl chamber of $(\sqrt{-1} \mathfrak{b})^{*}$ corresponding to P. We define a subset $C(\Theta)^{*}$ in the topological closure $c l\left(C^{*}\right)$ of C^{*} by

$$
C(\Theta)^{*}=\left\{\eta \in \operatorname{cl}\left(C^{*}\right):(\alpha, \eta)=0 \text { for } \alpha \in P(\Theta) \text { and }(\alpha, \eta)>0 \text { for } \alpha \in P \backslash P(\Theta)\right\}
$$

where (α, η) is the inner product on $(\sqrt{-1} \mathfrak{b})^{*}$ induced from the Killing form ϕ on \mathfrak{g}. Let η be an element in $C(\Theta)^{*}$ and H_{η} the element in $\sqrt{-1} \mathfrak{b}$ determined by $\phi\left(H_{\eta}, H\right)=\eta(H), H \in$
$\sqrt{-1} \mathfrak{b}$. Consider the centralizer $K(\eta)$ of H_{η} in K. Then $K(\eta)$ contains B, and is uniquely determined by $C(\Theta)^{*}$. We put $K(\Theta)=K(\eta)$. Let \mathfrak{p}^{+}be the subspace of $\mathfrak{p}_{\mathbf{C}}$ generated by the set of all root vectors corresponding to $P \cap \Sigma_{n}$. Let τ be the conjugation of $\mathfrak{g c}$ with respect to the compact real form $\mathfrak{k} \oplus \sqrt{-1} \mathfrak{p}$. A simple $K(\Theta)$-submodule \mathfrak{q} of $\mathfrak{p}_{\mathbf{C}}$ is said to be the first (resp. the second) kind if $\tau(\mathfrak{q})=\mathfrak{q}$ (resp. $\mathfrak{q} \subset \mathfrak{p}^{+}$or $\tau\left(\mathfrak{q)} \subset \mathfrak{p}^{+}\right.$). A noncompact root ω in Σ_{n} is said to be the first (resp. the second) kind if ω is a weight of a simple $K(\Theta)$-submodule of $\mathfrak{p}_{\mathbf{C}}$ of the first (resp. the second) kind. The triple $\left(P_{K}, P(\Theta), P\right)$ is standard if each simple $K(\Theta)$-submodule \mathfrak{q} of $\mathfrak{p}_{\mathbf{C}}$ is either the first kind or the second kind. The following theorem will be proved in $\S 7$.

Theorem II. Let $\mu \in \Gamma_{K}$. Then there exists a standard triple $\left(P_{K}, P(\Theta), P\right)$ such that $\mu \in C(\Theta)^{*}$. Moreover, we have $K(\Theta)=K(\mu)$.

Let $\left(P_{K}, P(\Theta), P\right)$ be a standard triple. We consider an element μ in $C(\Theta)^{*} \cap \Gamma_{K}$ and a noncompact root ω satisfying $\mu+\omega \in \Gamma_{K}$. We define a projection operator $P_{\mu+\omega}$ on $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by the same as in (1.1). We put

$$
P_{+}=\sum_{\omega \in \Sigma_{n} \cap P, \mu+\omega \in \Gamma_{K}} P_{\mu+\omega} .
$$

Let us define a K-submodule $N(\mu)$ of $M(\mu)$ by $N(\mu)=$ the K-module generated by the set

$$
N=\left\{P_{\mu}\left(X \otimes P_{+}(Y \otimes v)-Y \otimes P_{+}(X \otimes v)\right): X, Y \in \mathfrak{p}_{\mathbf{C}}, v \in V_{\mu}\right\}
$$

Theorem III. Let $\left(P_{K}, P(\Theta), P\right)$ be a standard triple and $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$. Suppose that μ is sufficiently $P_{K} \backslash P_{K(\Theta)}$-regular. Then μ is admissible. Furthermore, we have

$$
n(\mu)=\sharp\left\{\omega \in P \cap \Sigma_{n}: \omega \text { is } P_{K(\Theta)}-\text { highest and of the second kind }\right\},
$$

where $n(\mu)$ is the multiplicity of V_{μ} in $N(\mu)$.
In $\S 8$ we shall prove this theorem by using the asymptotic behaviour of the ClebschGordan coefficients of $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$.

2. Preliminaries

Let Σ be the root system of the pair $\left(\mathfrak{g}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. We put, for $\alpha \in \Sigma$,

$$
\mathfrak{g}_{\alpha}=\left\{X \in \mathfrak{g}_{\mathbf{C}}: \operatorname{ad}(H) X=\alpha(H) X \text { for all } H \in \mathfrak{b}_{\mathbf{C}}\right\}
$$

Then we have $\mathfrak{g}_{\mathbf{C}}=\mathfrak{b}_{\mathbf{C}} \oplus\left(\oplus_{\alpha \in \Sigma} \mathfrak{g}_{\alpha}\right)$. Let $\mathfrak{g}_{u}=\mathfrak{k} \oplus \sqrt{-1} \mathfrak{p}$ be the compact real form of $\mathfrak{g}_{\mathbf{C}}$. We choose a canonical Weyl basis $X_{\alpha} \in \mathfrak{g}_{\alpha}, \alpha \in \Sigma$ satisfying the followings (cf. the proof of Theorem 6.3 in [2]):

$$
\begin{equation*}
X_{\alpha}-X_{-\alpha}, \quad \sqrt{-1}\left(X_{\alpha}+X_{-\alpha}\right) \in \mathfrak{g}_{u} \quad \text { and } \quad \phi\left(X_{\alpha}, X_{-\alpha}\right)=1 \tag{2.1}
\end{equation*}
$$

where $\phi(X, Y)=\operatorname{trace}(\operatorname{ad}(X) \operatorname{ad}(Y))$ is the Killing form on $\mathfrak{g}_{\mathbf{C}}$. We put $H_{\alpha}=\operatorname{ad}\left(X_{\alpha}\right) X_{-\alpha}$. Then we have $\phi\left(H_{\alpha}, H\right)=\alpha(H)$ for all H in $\mathfrak{b}_{\mathbf{C}}$. Let μ be a linear form on the real vector
space $\sqrt{-1} \mathfrak{b}$. Then there exists a unique H_{μ} in $\sqrt{-1} \mathfrak{b}$ such that $\phi\left(H_{\mu}, H\right)=\mu(H)$ for all H in $\sqrt{-1} \mathfrak{b}$. Let $(\sqrt{-1} \mathfrak{b})^{*}$ be the dual space of $\sqrt{-1} \mathfrak{b}$. We define a positive definite bilinear form (μ, λ) by $(\mu, \lambda)=\phi\left(H_{\mu}, H_{\lambda}\right)$ for $\mu, \lambda \in(\sqrt{-1} \mathfrak{b})^{*}$. We put, for each pair of α and β in Σ, a complex number $<\alpha, \beta>$ by

$$
\langle\alpha, \beta\rangle= \begin{cases}\phi\left(\operatorname{ad}\left(X_{\alpha}\right) X_{\beta}, X_{-\alpha-\beta}\right) & \text { if } \alpha+\beta \in \Sigma, \tag{2.2}\\ 0 & \text { otherwise } .\end{cases}
$$

Then $\langle\alpha, \beta\rangle$ is a pure imaginary number. Let p and q be two nonnegative integers satisfying $j \alpha+\beta \in \Sigma$ iff $-q \leq j \leq p$. Then we have (cf. Lemma 4.3.8 and Corollary 4.3.12 in [4])

$$
\begin{equation*}
2(\beta, \alpha)|\alpha|^{-2}=q-p, \quad p+q \leq 3 . \tag{2.3}
\end{equation*}
$$

Furthermore, we have (cf. Lemma 4.3.22 in [4])

$$
\begin{equation*}
|\langle\alpha, \beta\rangle|^{2}=p(q+1) \frac{|\alpha|^{2}}{2} \tag{2.4}
\end{equation*}
$$

A root α in Σ is compact (resp. noncompact) if $X_{\alpha} \in \mathfrak{k}_{\mathbf{C}}$ (resp. $X_{\alpha} \in \mathfrak{p}_{\mathbf{C}}$). Since $\mathfrak{k}_{\mathbf{C}}$ and $\mathfrak{p}_{\mathbf{C}}$ are invariant under $\operatorname{ad}(\mathfrak{b}), \Sigma$ is given by the disjoint union of the set of all compact roots Σ_{K} and the set of all noncompact roots $\Sigma_{n} . \Sigma_{K}$ is also the root system of the pair $\left(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. Let σ (resp. τ) be the conjugation of $\mathfrak{g}_{\mathbf{C}}$ with respect to the real form \mathfrak{g} (resp. \mathfrak{g}_{u}). By our choice for the Weyl basis of $\mathfrak{g}_{\mathbf{C}}$ we have

$$
\begin{equation*}
\sigma\left(X_{\alpha}\right)=-X_{\alpha} \quad \text { for } \quad \alpha \in \Sigma_{K}, \quad \sigma\left(X_{\alpha}\right)=X_{-\alpha} \quad \text { for } \alpha \in \Sigma_{n}, \tag{2.5}
\end{equation*}
$$

$$
\begin{equation*}
\tau\left(X_{\alpha}\right)=-X_{-\alpha} \quad \text { for } \quad \alpha \in \Sigma \tag{2.6}
\end{equation*}
$$

3. Two step tensor K-module

The adjoint action $\operatorname{Ad}(k)(k \in K)$ on $\mathfrak{p}_{\mathbf{C}}$ will be denoted by $k X$ for X in $\mathfrak{p}_{\mathbf{C}}$. We define a hermitian structure (X, Y) of $\mathfrak{p}_{\mathbf{C}}$ by $(X, Y)=-\phi(X, \tau(Y)), X, Y \in \mathfrak{p}_{\mathbf{C}}$. Thereby $\mathfrak{p}_{\mathbf{C}}$ is a unitary K-module. Fix $\mu \in \Gamma_{K}$, and consider a unitary simple K-module (π_{μ}, V_{μ}) with highest weight μ. For the simplicity of our notations we shall denote the action $\pi(k)(k \in K)$ on V_{μ} by $k v$ for $v \in V_{\mu}$. Let $d k$ be the Haar measure on K normalized as $\int_{K} d k=1$. We define a character χ_{μ} of the K-module $\left(\pi_{\mu}, V_{\mu}\right)$ by

$$
\begin{equation*}
\chi_{\mu}(k)=\operatorname{deg} \pi_{\mu} \operatorname{trace} \pi_{\mu}(k), \tag{3.1}
\end{equation*}
$$

where $k \in K$ and $\operatorname{deg} \pi_{\mu}=\operatorname{dim} V_{\mu}$. Then we have

$$
\begin{equation*}
\int_{K} \chi_{\mu}\left(k^{-1} k^{\prime}\right) \chi_{\mu}(k) d k=\chi_{\mu}\left(k^{\prime}\right) . \tag{3.2}
\end{equation*}
$$

Let V be a finite dimensional K-module. We define a projection operator P_{μ} on V by

$$
\begin{equation*}
P_{\mu}(v)=\int_{K} k v \overline{\chi_{\mu}(k)} d k \quad \text { for } v \in V \tag{3.3}
\end{equation*}
$$

where $\overline{\chi_{\mu}(k)}$ is the complex conjugate of $\chi_{\mu}(k)$. By (3.2) we have

$$
\begin{equation*}
\left(P_{\mu}\right)^{2}=P_{\mu} \tag{3.4}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
k P_{\mu}=P_{\mu} k \quad \text { for all } k \in K . \tag{3.5}
\end{equation*}
$$

A unitary K-module structure on the two step tensor space $\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ is defined by

$$
\begin{gather*}
k(X \otimes Y \otimes v)=(k X \otimes k Y \otimes k v) \quad \text { for } X, Y \in \mathfrak{p}_{\mathbf{C}}, \quad v \in V_{\mu} \text { and } k \in K \tag{3.6}\\
\left(X \otimes Y \otimes v, X^{\prime} \otimes Y^{\prime} \otimes v^{\prime}\right)=\left(X, X^{\prime}\right)\left(Y, Y^{\prime}\right)\left(v, v^{\prime}\right) \tag{3.7}
\end{gather*}
$$

for $X, Y, X^{\prime}, Y^{\prime} \in \mathfrak{p}_{\mathbf{C}}$ and $v, v^{\prime} \in V_{\mu}$. The K-module $M(\mu)=P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ is decomposed into a finite number of the simple modules which are K-isomorphic to V_{μ}. Therefore

$$
\begin{equation*}
M(\mu) \cong m(\mu) V_{\mu} \tag{3.8}
\end{equation*}
$$

where $m(\mu)$ is the multiplicity of V_{μ} in $M(\mu)$.
Lemma 3.1. We put

$$
W(\mu)=\{Z \in M(\mu): H Z=\mu(H) Z \text { for all } H \in \mathfrak{b}\}
$$

Then we have $m(\mu)=\operatorname{dim} W(\mu)$.
Proof. Let $M(\mu)=\bigoplus_{i=1}^{m(\mu)} V_{i}$ be the decomposition of $M(\mu)$ by the simple K modules V_{i}. Then we have

$$
W(\mu)=\bigoplus_{i=1}^{m(\mu)} W(\mu) \cap V_{i}
$$

Since V_{i} is a simple K-module, we have $\operatorname{dim} W(\mu) \cap V_{i}=1$ for all $i, 1 \leq i \leq m(\mu)$. This implies that $\operatorname{dim} W(\mu)=m(\mu)$.

Definition 3.2. Let p be a nonnegative integer and $\tilde{\phi}$ a symbol. We define Π_{p} by $\Pi_{0}=\{\tilde{\phi}\}, \Pi_{p}=\left\{\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right): \alpha_{i} \in P_{K}\right\}$ for $p>0$, and put $\Pi=\bigcup_{p=0}^{\infty} \Pi_{p}$. Then Π is a semigroup by the \star-operation with the identity $\tilde{\phi}$, where \star is defined by

$$
I \star J=\left(\alpha_{1}, \cdots, \alpha_{p}, \beta_{1}, \cdots, \beta_{q}\right), \quad I=\left(\alpha_{1}, \cdots, \alpha_{p}\right), \quad J=\left(\beta_{1}, \cdots, \beta_{q}\right) \in \Pi
$$

Definition 3.3. Let $U\left(\mathfrak{k}_{\mathbf{C}}\right)$ be the universal enveloping algebra of $\mathfrak{k}_{\mathbf{C}}$. We define a semigroup homomorphism of Π to $U\left(\mathfrak{k}_{\mathbf{C}}\right)$ by

$$
Q(\tilde{\phi})=1 \quad \text { and } \quad Q(I)=X_{-\alpha_{1}} X_{-\alpha_{2}} \cdots X_{-\alpha_{p}} \quad \text { for } I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right)
$$

Definition 3.4. Let $I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right) \in \Pi$ and $J \in \Pi$. When J is of the form $J=\left(\alpha_{i_{1}}, \alpha_{i_{2}}, \cdots, \alpha_{i_{q}}\right), 1 \leq i_{1}<i_{2}<\cdots<i_{q} \leq p$ or $J=\tilde{\phi}$ we denote by $J \preccurlyeq I$. We also
define $I \backslash J \in \Pi$ by
$I \backslash J=\left(\alpha_{j_{1}}, \alpha_{j_{2}}, \cdots, \alpha_{j_{p-q}}\right), \quad$ where $\left\{j_{1}, j_{2}, \cdots, j_{p-q}\right\}=\{1,2, \cdots, p\} \backslash\left\{i_{1}, \cdots, i_{q}\right\}$
satisfying $j_{1}<j_{2}<\cdots<j_{p-q}$.
We note that $I \backslash(I \backslash J)=J$ and $I \backslash J \preccurlyeq I$.
Let ψ be the mapping of Π defined by $\psi(I)=\left(\alpha_{p}, \alpha_{p-1}, \cdots, \alpha_{1}\right), I=$ $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right)$
$\in \Pi$. Since ψ^{2} is the identity on Π, ψ is a bijection. Let $J \in \Pi$ and $\alpha \in P_{K}$. Then we have

$$
\begin{equation*}
Q(\psi(J)) X_{-\alpha}=Q(\psi(\alpha \star J)) \tag{3.9}
\end{equation*}
$$

For $I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right)$, we put $\sharp I=p$ and $\langle I\rangle=\sum_{i=1}^{p} \alpha_{i}$.
Lemma 3.5. Let $\gamma, \delta \in \Sigma_{n}$ and $I \in \Pi$. Assume that $\gamma+\delta=\langle I\rangle$. Then we have $P_{\mu}\left(X_{\gamma} \otimes X_{\delta} \otimes Q(I) v(\mu)\right)=\sum_{J \preccurlyeq I, J \in \Pi}(-1)^{\sharp I} P_{\mu}\left(Q(\psi(J)) X_{\gamma} \otimes Q(\psi(I \backslash J)) X_{\delta} \otimes v(\mu)\right)$,
where $v(\mu)$ is the highest weight vector of V_{μ} normalized as $|v(\mu)|=1$.
Proof by an induction on $\sharp I$. When $\sharp I=0$, our assertion is obvious. Assume that the identity is true for all L in Π and $\xi, \eta \in \Sigma_{n}$ satisfying $\sharp L<\sharp I$ and $\xi+\eta=\langle L\rangle$. We have $\alpha \star L=I$ for $\alpha \in P_{K}$ and $L \in \Pi$. Bearing in mind $-\langle L\rangle+\gamma+\delta+\mu>\mu$ and μ is the highest weight of $M(\mu)$ we have $P_{\mu}\left(X_{\gamma} \otimes X_{\delta} \otimes Q(L) v(\mu)\right)=0$. Since $Q(I)=X_{-\alpha} Q(L)$, we have

$$
\begin{aligned}
P_{\mu}\left(X_{\gamma} \otimes X_{\delta} \otimes Q(I) v(\mu)\right)= & P_{\mu}\left(X_{\gamma} \otimes X_{-\alpha}\left(X_{\delta} \otimes Q(L) v(\mu)\right)\right) \\
& -P_{\mu}\left(X_{\gamma} \otimes \operatorname{ad}\left(X_{-\alpha}\right) X_{\delta} \otimes Q(L) v(\mu)\right) \\
= & -P_{\mu}\left(\operatorname{ad}\left(X_{-\alpha}\right) X_{\gamma} \otimes X_{\delta} \otimes Q(L) v(\mu)\right) \\
& -P_{\mu}\left(X_{\gamma} \otimes \operatorname{ad}\left(X_{-\alpha}\right) X_{\delta} \otimes Q(L) v(\mu)\right) .
\end{aligned}
$$

Applying the inductive hypothesis to $L \in \Pi$ and $\gamma, \delta-\alpha$ (resp. $\gamma-\alpha, \delta$) we have

$$
\begin{align*}
& P_{\mu}\left(X_{\gamma} \otimes X_{\delta} \otimes Q(I) v(\mu)\right) \\
&=(-1)^{\sharp I} \sum_{J \preccurlyeq L}\left\{P_{\mu}\left(Q(\psi(\alpha \star J)) X_{\gamma} \otimes Q(\psi(L \backslash J)) X_{\delta} \otimes v(\mu)\right)\right. \tag{3.10}\\
&\left.\quad+P_{\mu}\left(Q(\psi(J)) X_{\gamma} \otimes Q(\psi(\alpha \star(L \backslash J))) X_{\delta} \otimes v(\mu)\right)\right\} .
\end{align*}
$$

Here we used (3.9). Since $\alpha \star(L \backslash J)=I \backslash J, L \backslash J=I \backslash \alpha \star J$ for $J \preccurlyeq L$ and

$$
\{J: J \preccurlyeq I, J \in \Pi\}=\{J: J \preccurlyeq L, J \in \Pi\} \cup\{\alpha \star J: J \preccurlyeq L, J \in \Pi\},
$$

(3.10) implies the identity of this lemma.

LEmma 3.6. Let S be the set of all vectors $P_{\mu}\left(X_{-\gamma} \otimes X_{\gamma} \otimes v(\mu)\right), \gamma \in \Sigma_{n}$. Then we have $W(\mu)=[S]$, where $[S]$ is the linear span of the set S.

Proof. Since V_{μ} is a simple K-module, V_{μ} is generated by the set $\{Q(I) v(\mu): I \in$ $\Pi\}$. By (3.5) we have $H P_{\mu}=P_{\mu} H, H \in \mathfrak{b}$. This implies that $W(\mu)$ is generated by the set

$$
\left.S^{\prime} \equiv\left\{P_{\mu}\left(X_{\gamma} \otimes X_{\delta} \otimes Q(I) v(\mu)\right)\right): \gamma, \delta \in \Sigma_{n}, I \in \Pi, \gamma+\delta=\langle I\rangle\right\}
$$

Let us prove that $S^{\prime} \subset[S]$. Let $Z=P_{\mu}\left(X_{\gamma} \otimes X_{\delta} \otimes Q(I) v(\mu)\right)$ be each element in S^{\prime}. By Lemma 3.5 we have

$$
\begin{aligned}
Z & =(-1)^{\sharp I} \sum_{J \preccurlyeq I} P_{\mu}\left(Q(\psi(J)) X_{\gamma} \otimes Q(\psi(I \backslash J)) X_{\delta} \otimes v(\mu)\right) \\
& =(-1)^{\sharp I} \sum_{J \preccurlyeq I} c_{\gamma, J} c_{\delta, I \backslash J} P_{\mu}\left(X_{\gamma-\langle J\rangle} \otimes X_{\delta-\langle I \backslash J\rangle} \otimes v(\mu)\right),
\end{aligned}
$$

where $c_{\gamma, J}=\phi\left(Q(\psi(J)) X_{\gamma}, X_{-\gamma+\langle J\rangle}\right)$. Since $\langle J\rangle+\langle I \backslash J\rangle=\langle I\rangle$ and $\gamma+\delta=\langle I\rangle$, we have $S^{\prime} \subset[S]$. Moreover since $W(\mu)=\left[S^{\prime}\right] \subset[S] \subset W(\mu)$, we have $W(\mu)=[S]$.

4. Weight subspace $W(\mu)$ of $M(\mu)$

First we restate the following three lemmas in [3].
Lemma 4.1. Let $\left(\pi_{\mu}, V_{\mu}\right)$ be a simple K-module with highest weight μ. Then we have

$$
\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}=\bigoplus_{\omega \in \Sigma_{n}, \mu+\omega \in \Gamma_{K}} P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)
$$

where $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)=\{0\}$ or is a simple K-module.
For a proof cf. Lemma 3.4 in [3].
The following two lemmas are also proved respectively by Corollary 3.5 and Lemma 3.6 in [3].

LEmmA 4.2. Let ω be a noncompact root in Σ. Assume that $\mu \in \Gamma_{K}$ and $P_{\mu+\omega}(\mathfrak{p} \mathbf{C} \otimes$ $\left.V_{\mu}\right) \neq\{0\}$. Then we have $\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right| \neq 0$, where $v(\mu)$ is the highest weight vector in V_{μ}.

Lemma 4.3. Let $\mu \in \Gamma_{K}, \omega \in \Sigma_{n}$, and assume that $\mu+\omega \in \Gamma_{K}, P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq$ $\{0\}$. Then, for each $\gamma \in \Sigma_{n}$, we have

$$
\left(|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}\right)\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=\sum_{\alpha \in P_{K}} 2|\langle\alpha, \gamma\rangle|^{2}\left|P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right)\right|^{2},
$$

where $\lambda=\mu+\rho_{K}$ and ρ_{K} is one half the sum of all roots in P_{K}.
Lemma 4.4. Let $\mu \in \Gamma_{K}$ and $\gamma, \omega \in \Sigma_{n}$. Assume that $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes\right.$ $\left.V_{\mu}\right) \neq\{0\}$. Then we have

$$
\begin{gathered}
\left(P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right), P_{\mu}\left(X_{-\omega} \otimes P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right)\right) \\
\quad=c(\mu ; \omega)^{2}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
\end{gathered}
$$

where $c(\mu ; \omega)=\sqrt{\frac{\operatorname{deg} \pi_{\mu}}{\operatorname{deg} \pi_{\mu+\omega}}}$.
Proof. We note that $\left(k X_{-\omega}, X_{-\omega}\right)=\overline{\left(k X_{\omega}, X_{\omega}\right)}$. By (3.6) and (3.7) we have (4.1) $\quad\left(P_{\mu}(X \otimes Y \otimes v), P_{\mu}\left(X^{\prime} \otimes Y^{\prime} \otimes v^{\prime}\right)\right)=\int_{K}\left(k X, X^{\prime}\right)\left(k Y, Y^{\prime}\right)\left(k v, v^{\prime}\right) \overline{\chi_{\mu}(k)} d k$.

Let $\left\{v_{i}\right\}\left(1 \leq i \leq \operatorname{deg} \pi_{\mu}, v_{1}=v(\mu)\right)$ be an orthonormal basis of V_{μ}. Since $\chi_{\mu}(k)=$ $\operatorname{deg} \pi_{\mu} \sum_{i}\left(k v_{i}, v_{i}\right)$, we have

$$
\begin{aligned}
& \left(P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right), P_{\mu}\left(X_{-\omega} \otimes P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right)\right) \\
& \quad=\operatorname{deg} \pi_{\mu} \sum_{i} \int_{K} \overline{\left(k\left(X_{\gamma} \otimes v_{i}\right), X_{\omega} \otimes v_{i}\right)}\left(k P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right) d k \\
& =\operatorname{deg} \pi_{\mu} \sum_{i} \int_{K} \overline{\left(k P_{\mu+\omega}\left(X_{\gamma} \otimes v_{i}\right), P_{\mu+\omega}\left(X_{\omega} \otimes v_{i}\right)\right)} \\
& \quad \times\left(k P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right) d k \\
& =\operatorname{deg} \pi_{\mu}\left(\operatorname{deg} \pi_{\mu+\omega}\right)^{-1} \sum_{i}\left(P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\gamma} \otimes v_{i}\right)\right) \\
& \quad \times \overline{\left(P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\omega} \otimes v_{i}\right)\right)} \\
& =c(\mu ; \omega)^{2}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} .
\end{aligned}
$$

Here we used the orthogonality relation on K. Hence the lemma follows.
Corollary 4.5. Assume that $\mu, \mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$. Then $P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)\right)$ is a simple K-module with highest weight μ. Let $v_{\omega}(\mu)$ be the highest weight vector of the simple K-module $P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)\right)$ determined by

$$
P_{\mu}\left(X_{-\omega} \otimes P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right)=c(\mu ; \omega)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} v_{\omega}(\mu)
$$

Then we have $\left|v_{\omega}(\mu)\right|=1$ and

$$
P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right)=c(\mu ; \omega)\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} v_{\omega}(\mu) \quad \text { for all } \gamma \in \Sigma_{n},
$$

where $c(\mu ; \omega)=\sqrt{\frac{\operatorname{deg} \pi_{\mu}}{\operatorname{deg} \pi_{\mu}+\omega}}$.
Proof. By Lemma 4.2 and Lemma 4.4, we have

$$
\left|P_{\mu}\left(X_{-\omega} \otimes P_{\mu+\omega}\left(X_{\omega} \otimes v_{\mu}\right)\right)\right|=c(\mu ; \omega)\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \neq 0
$$

Therefore $P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)\right) \neq\{0\}$ and $\left|v_{\omega}(\mu)\right|=1$. Replacing V_{μ} with the simple K-module $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ in Lemma 4.1, we have $P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)\right)$ is simple. We put

$$
P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right)=c(\gamma) c(\mu ; \omega)\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} v_{\omega}(\mu),
$$

where $c(\gamma)$ is a complex number. By Lemma 4.4 we have

$$
\begin{aligned}
& c(\gamma) c(\mu ; \omega)^{2}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} \\
& \quad=\left(P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right), P_{\mu}\left(X_{-\omega} \otimes P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right)\right) \\
& \quad=c(\mu ; \omega)^{2}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} .
\end{aligned}
$$

This implies that $c(\gamma)=1$, and hence we have the formula.
Theorem 4.6. Let $\mu \in \Gamma_{K}$ and $W(\mu)$ the weight subspace of the K-module $M(\mu)$. Then we have

$$
\begin{equation*}
\operatorname{dim} W(\mu)=\sharp \Sigma_{W(\mu)}, \tag{4.2}
\end{equation*}
$$

where $\Sigma_{W(\mu)}=\left\{\omega \in \Sigma_{n}: \mu+\omega \in \Gamma_{K}, P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}\right\}$.
Proof. We put $A=\left\{P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right): \gamma, \omega \in \Sigma_{n}, \mu+\omega \in \Gamma_{K}\right\}$. First we shall prove that $W(\mu)=[A]$. Let $Z=P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right)$ be an element in A. Since the action of K commutes with P_{μ} and $P_{\mu+\omega}$ (see (3.5)), we have $H Z=\mu(H) Z$ for all H in $\mathfrak{b}_{\mathbf{C}}$. This implies that $A \subset W(\mu)$. Conversely let Z be an element in $W(\mu)$. By Lemma 3.6 we have

$$
Z=\sum_{\gamma \in \Sigma_{n}} c_{\gamma} P_{\mu}\left(X_{-\gamma} \otimes X_{\gamma} \otimes v(\mu)\right)
$$

where c_{γ} is a complex constant. Then by Lemma 4.1 we have

$$
Z=\sum_{\gamma \in \Sigma_{n}} \sum_{\omega \in \Sigma_{n}, \mu+\omega \in \Gamma_{K}} c_{\gamma} P_{\mu}\left(X_{-\gamma} \otimes P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right) .
$$

Thus $W(\mu)=[A]$ as claimed. Let us now prove this theorem. By Corollary 4.5 we have

$$
\begin{equation*}
W(\mu)=[A]=\left[\left\{\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2} v_{\omega}(\mu): \omega \in \Sigma_{n}, \mu+\omega \in \Gamma_{K}\right\}\right] \tag{4.3}
\end{equation*}
$$

Let $\omega, \gamma \in \Sigma_{n}, \omega \neq \gamma$. Assume that $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ and $P_{\mu+\gamma}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$ are nontrivial. Since these spaces are orthogonal, $P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)\right)$ and $P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes P_{\mu+\gamma}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)\right)$ are also orthogonal (see (4.1)). Hence (4.3) and Lemma 4.2 imply (4.2).

In view the proof of the above theorem we have the following.
Corollary 4.7. Let $\omega, \gamma \in \Sigma_{n}, \omega \neq \gamma$. Consider two highest weight vectors $v_{\omega}(\mu)$ and $v_{\gamma}(\mu)$ as in Corollary 4.5. Then $v_{\omega}(\mu)$ and $v_{\gamma}(\mu)$ are orthogonal. Moreover, we have

$$
P_{\mu}\left(X_{-\gamma} \otimes X_{\gamma} \otimes v(\mu)\right)=\sum_{\omega \in \Sigma_{W(\mu)}} c(\mu ; \omega)\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} v_{\omega}(\mu)
$$

5. Admissible dominant integral form

In this section we shall determine the multiplicity $m(\mu)$ of V_{μ} in the K-module $M(\mu)$ for an admissible integral form μ in Γ_{K} (for the definition, see below). Let $\mathfrak{z}\left(H_{\mu}\right)$ be the
centralizer of H_{μ} in $\mathfrak{g}_{\mathbf{C}}$. Since one dimensional algebra $\mathbf{C} H_{\mu}$ is σ and τ invariant, $\mathfrak{z}\left(H_{\mu}\right)$ is also invariant under these anti-automorphisms of $\mathfrak{g}_{\mathbf{C}}$. We now put $\mathfrak{l}(\mu)=\mathfrak{z}\left(H_{\mu}\right) \cap \mathfrak{g}$. Since $\theta=\sigma \tau, \mathfrak{l}(\mu)$ is a θ-stable reductive algebra with Cartan subalgebra \mathfrak{b}. Therefore $\mathfrak{l}(\mu)$ has the following Cartan decomposition.

$$
\begin{equation*}
\mathfrak{l}(\mu)=\mathfrak{k}(\mu) \oplus \mathfrak{p}(\mu), \quad \text { where } \quad \mathfrak{k}(\mu)=\mathfrak{k} \cap \mathfrak{l}(\mu) \text { and } \mathfrak{p}(\mu)=\mathfrak{p} \cap \mathfrak{l}(\mu) . \tag{5.1}
\end{equation*}
$$

Let $L(\mu)$ be the centralizer of H_{μ} in G. We put $K(\mu)=K \cap L(\mu)$. Then $K(\mu)$ is a maximal compact subgroup of $L(\mu)$. Furthermore, since $H_{\mu} \in \mathfrak{b}_{\mathbf{C}}, B$ is a Cartan subgroup of $K(\mu)$ (resp. $L(\mu)$).

DEFINITION 5.1. Let $\mu \in \Gamma_{K}$ and $K(\mu)$ the centralizer of H_{μ} in K. For the root system $\Sigma_{K(\mu)}$ of the pair $\left(\mathfrak{k}(\mu) \mathbf{C}, \mathfrak{b}_{\mathbf{C}}\right)$ we put $P_{K(\mu)}=P_{K} \cap \Sigma_{K(\mu)}$.

DEFINITION 5.2. An element $\mu \in \Gamma_{K}$ is admissible if μ has the following properties.
For $S p(n, \mathbf{R})$ and $S O(2 m, 2 n+1),(\mu, \alpha) \geq 2$ for all short roots $\alpha \in P_{K} \backslash P_{K(\mu)}$.
For the the type of $G_{2}, 2(\mu, \alpha)|\alpha|^{-2} \geq 3$ for all short roots $\alpha \in P_{K} \backslash P_{K(\mu)}$.
If G satisfies that all noncompact roots have the same length, then μ is always admissible.
REMARK. The inner type noncompact real simple Lie groups are classified by $S p(n, \mathbf{R}), S O(2 m, 2 n+1)$, the type G_{2} and the groups which satisfy all noncompact roots have the same length (cf. Table II, p. 354 in [2]). When G is of the type G_{2} then P_{K} has exactly one simple short (resp. long) root.

DEFINITION 5.3. A noncompact root ω in Σ is $P_{K(\mu)}$-highest if $\omega+\alpha \notin \Sigma$ for all $\alpha \in P_{K(\mu)}$.

Let ω be a noncompact root and m a nonnegative integer. We define five sets $\Delta(\omega)$, $\Delta_{ \pm}(\omega), \Delta_{m}(\omega)$ and $\Delta_{m}(\omega)^{*}$ by

$$
\begin{align*}
& \Delta(\omega)=\left\{\alpha \in P_{K}: \omega+\alpha \in \Sigma\right\}, \\
& \Delta_{ \pm}(\omega)=\left\{\alpha \in P_{K}: \pm(\alpha, \omega)>0\right\}, \\
& \Delta_{m}(\omega)=\left\{\alpha \in \Delta(\omega): 2(\omega, \alpha)|\alpha|^{-2}=m\right\}, \tag{5.2}\\
& \Delta_{m}(\omega)^{*}=\left\{\alpha \in \Delta_{m}(\omega): \omega-\alpha \in \Sigma\right\} .
\end{align*}
$$

We have the following lemma (see Lemma 6.1 in [3]).
LEMMA 5.4. Let G be an inner type noncompact real simple Lie group and ω a noncompact root. Then we have the followings.
(1) $\Delta(\omega)=\Delta_{-}(\omega) \cup \Delta_{0}(\omega) \cup \Delta_{1}(\omega), \Delta_{0}(\omega)=\Delta_{0}(\omega)^{*}$ and $\Delta_{1}(\omega)=\Delta_{1}(\omega)^{*}$.
(2) If $\Delta_{0}(\omega) \neq \phi$, then G is either $\operatorname{Sp}(n, \mathbf{R})$ or $S O(2 m, 2 n+1)$, and $\Delta(\omega)=$ $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)$.
(3) If $\Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*} \neq \phi$, then G is of the type G_{2}.

Let $\mu \in \Gamma_{K}$ and $\omega \in \Sigma_{n}$. Assume that $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$. Then there exists a rational function $f(\eta ; \omega)$ in $\eta \in(\sqrt{-1} \mathfrak{b})^{*}$ (cf. Theorem 5.5 in [3]) such that

$$
\begin{equation*}
\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=f(\lambda+\omega ; \omega) \tag{5.3}
\end{equation*}
$$

where $\lambda=\mu+\rho_{K}$. The function $f(\eta ; \omega)$ has the following product formula (cf. Theorem 6.5 in [3]).

THEOREM 5.5. Let ω be a noncompact root in Σ. Then $f(\eta+\omega ; \omega)$ is given by the followings.
(1) If $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$, then we have

$$
f(\eta+\omega ; \omega)=\prod_{\alpha \in \Delta_{-}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} .
$$

(2) If $\Delta_{0}(\omega)^{*} \neq \phi$, then G is either $\operatorname{Sp}(n, \mathbf{R})$ or $S O(2 m, 2 n+1)$ and

$$
\begin{aligned}
f(\eta+\omega ; \omega)= & \prod_{\alpha \in \Delta_{-1}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} \\
& \times \prod_{\alpha \in \Delta_{0}(\omega)^{*}}\left(2(\eta, \alpha)-|\alpha|^{2}\right)\left(2(\eta, \alpha)+|\alpha|^{2}\right)^{-1}
\end{aligned}
$$

(3) If $\Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \neq \phi$, then G is of the type G_{2} and

$$
\begin{aligned}
f(\eta+\omega ; \omega)= & \prod_{\alpha \in \Delta_{-}(\omega)}(\eta+\omega, \alpha)(\eta, \alpha)^{-1} \\
& \times \prod_{\alpha \in \Delta_{1}(\omega)^{*}}\left(2(\eta, \alpha)-|\alpha|^{2}\right)\left(2\left((\eta, \alpha)+|\alpha|^{2}\right)\right)^{-1} \\
& \times \prod_{\alpha \in \Delta_{-1}(\omega)^{*}} 2\left((\eta, \alpha)-|\alpha|^{2}\right)\left(2(\eta, \alpha)+|\alpha|^{2}\right)^{-1} .
\end{aligned}
$$

We also restate the following theorem (see Theorem 7.6 in [3]).
Theorem 5.6. Let $\mu \in \Gamma_{K}$ and $\omega \in \Sigma_{n}$. Assume that $\mu+\omega \in \Gamma_{K}$. Then the K-module $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$ if and only if $f(\lambda+\omega ; \omega)>0$.

Lemma 5.7. Let $\mu \in \Gamma_{K}$ and $\omega \in \Sigma_{n}$. Assume that $\mu+\omega \in \Gamma_{K}$ and $\Delta_{0}(\omega)^{*} \cap$ $P_{K(\mu)} \neq\{\phi\}$. Then there exists a simple root $\alpha \in P_{K}$ such that $\alpha \in \Delta_{0}(\omega)^{*} \cap P_{K(\mu)}$.

Proof. Let α be the lowest root in $\Delta_{0}(\omega)^{*} \cap P_{K(\mu)}$. Assume that α is not simple in P_{K}. Then we can choose $\beta, \gamma \in P_{K}$ satisfying $\alpha=\beta+\gamma$. From $(\mu, \alpha)=0$ and $\mu \in \Gamma_{K}$, it follows that $(\mu, \beta)=(\mu, \gamma)=0$. Moreover, since $(\omega, \alpha)=0$, we have either $(\omega, \beta)=(\omega, \gamma)=0$ or $(\omega, \beta)(\omega, \gamma)<0$. Consider the first case. Since $\left[X_{\omega},\left[X_{\beta}, X_{\gamma}\right]\right] \neq 0$, Jacobi's identity implies $\omega+\beta \in \Sigma$ or $\omega+\gamma \in \Sigma$. There is no loss of generality assuming that $\omega+\beta \in \Sigma$. Since $\beta \in \Delta_{0}(\omega)^{*} \cap P_{K(\mu)}$ and $\alpha>\beta$, we have a contradiction to the choice of α. For the latter case we can assume $(\omega, \beta)<0$. Therefore $(\mu+\omega, \beta)<0, \beta \in P_{K}$. This is a contradiction to the assumption $\mu+\omega \in \Gamma_{K}$. Thus α is simple in P_{K}.

Lemma 5.8. Let $\mu \in \Gamma_{K}$ and $\omega \in \Sigma_{n}$. Assume that μ is admissible. Then we have that $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$ if and only if ω is $P_{K(\mu)}$-highest.

Proof. Bearing in mind ω is $P_{K(\mu)}$-highest iff $\Delta(\omega) \cap P_{K(\mu)}=\phi$, it is sufficient to prove that $\mu+\omega \in \Gamma_{K}$ and $f(\lambda+\omega ; \omega)>0$ iff $\Delta(\omega) \cap P_{K(\mu)}=\phi$ (see Theorem 5.6). First we assume that $\Delta(\omega) \cap P_{K(\mu)}=\phi$. We note that $(\mu, \alpha)>0$ for $\alpha \in \Delta(\omega)$. Let us prove that $\mu+\omega \in \Gamma_{K}$ and $f(\lambda+\omega ; \omega)>0$. If $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}=\phi$, then by (1) in Lemma 5.4 we have $\Delta(\omega)=\Delta_{-}(\omega)$. By (2.3) we have $\Delta(\omega)=\Delta_{-1}(\omega) \cup \Delta_{-2}(\omega) \cup \Delta_{-3}(\omega)$. Let α be an element in $\Delta_{-1}(\omega)$. Since $(\mu, \alpha)>0$, we have $2(\lambda+\omega, \alpha)|\alpha|^{-2}>0$. If $\alpha \in \Delta_{-2}(\omega)$, then $\alpha \in \Delta_{0}(\omega+\alpha)^{*}$. By (2) in Lemma 5.4 we have G is one of $\operatorname{Sp}(n, \mathbf{R})$ and $S O(2 m, 2 n+1)$. Since α is a short root, the admissibility of μ implies $2(\lambda+\omega, \alpha)|\alpha|^{-2}>0$. If $\alpha \in \Delta_{-3}(\omega)$, then $\alpha \in \Delta_{-1}(\omega+\alpha)^{*}$. By (3) in Lemma $5.4 G$ is of the type G_{2}, and α is a short root. By the admissibility of μ we have also $(\lambda+\omega, \alpha)>0$. Thus $(\lambda+\omega, \alpha)>0$ for all $\alpha \in P_{K}$, and especially $\mu+\omega \in \Gamma_{K}$. Moreover, by (1) in Theorem 5.5 we have $f(\lambda+\omega ; \omega)>0$. Consider the case $\Delta_{0}(\omega)^{*} \neq \phi$. By (2) in Lemma 5.4 we have $\Delta(\omega)=\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)$. By using the same arguments as above we can prove that $\mu+\omega \in \Gamma_{K}$ and $(\lambda+\omega, \alpha)>0$ for $\alpha \in P_{K}$. Moreover, since $(\mu, \alpha)>0$ for $\alpha \in \Delta_{0}(\omega)^{*}$, we have $2(\lambda, \alpha)|\alpha|^{-2}>1$. Hence by (2) in Theorem 5.5 we have $f(\lambda+\omega ; \omega)>0$ for this case. Assume that $\Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*} \neq \phi$. Then G is of the type G_{2}. From Lemma 5.4 and (2.3) it follows that $\Delta(\omega)=\Delta_{-3}(\omega) \cup$ $\Delta_{-1}(\omega) \cup \Delta_{1}(\omega)^{*}$. For $\alpha \in \Delta_{-3}(\omega)$ the admissibility of μ implies $(\mu+\omega, \alpha) \geq 0$. If $\alpha \in \Delta_{-1}(\omega)$, then by $(\mu, \alpha)>0$ we have $(\mu+\omega, \alpha) \geq 0$. Let $\alpha \in \Delta_{1}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*}$. Since α is a short root, the admissibility implies $2(\mu, \alpha)|\alpha|^{2} \geq 3$. Therefore $\mu+\omega \in \Gamma_{K}$ and $2(\lambda, \alpha)|\alpha|^{-2}>1$ (resp. $(\lambda, \alpha)|\alpha|^{-2}>1$) for $\alpha \in \Delta_{1}(\omega)^{*}$ (resp. $\left.\alpha \in \Delta_{-1}(\omega)^{*}\right)$. By (3) in Theorem 5.5 we have $f(\lambda+\omega ; \omega)>0$. Conversely assume that $\mu+\omega \in \Gamma_{K}$ and $f(\lambda+\omega ; \omega)>0$. Since $\Delta(\omega)=\Delta_{-}(\omega)$, for the case $\Delta_{0}(\omega)^{*} \cup \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)=\phi$, the assumption $\mu+\omega \in \Gamma_{K}$ implies that $\Delta(\omega) \cap P_{K(\mu)}=\phi$. Suppose that $\Delta_{0}(\omega)^{*} \neq \phi$. Then we have $(\mu, \alpha)>0$ for $\alpha \in \Delta_{-1}(\omega)$. Let $\alpha \in \Delta_{0}(\omega)^{*}$. We shall prove that $(\mu, \alpha)>0$. Suppose that $(\mu, \alpha)=0$. Since $\Delta_{0}(\omega)^{*} \cap P_{K(\mu)} \neq \phi$, Lemma 5.7 implies that there is a simple root β in P_{K} such that $\beta \in \Delta_{0}(\omega)^{*} \cap P_{K(\mu)}$. We have $2(\lambda, \beta)|\beta|^{-2}=1, \beta \in \Delta_{0}(\omega)^{*}$, and hence by (2) in Theorem 5.5 we have $f(\lambda+\omega, \omega)=0$. This is a contradiction to the assumption $f(\lambda+\omega ; \omega)>0$. Thus $(\mu, \alpha)>0$ for $\alpha \in \Delta(\omega)$, and hence $\Delta(\omega) \cap P_{K(\mu)}=\phi$ for the case $\Delta_{0}(\omega)^{*} \neq \phi$. Finally assume that $\alpha \in \Delta_{-1}(\omega)^{*} \cup \Delta_{1}(\omega)^{*}$. We note that α is a simple short root in P_{K}. Since $\mu+\omega \in \Gamma_{K}$ and $f(\lambda+\omega ; \omega)>0$, (3) in Theorem 5.5 implies $(\mu, \alpha)>0$. Thus we can prove that if $\mu+\omega \in \Gamma_{K}$ and $f(\lambda+\omega ; \omega)>0$, then $\Delta(\omega) \cap P_{K(\mu)}=\phi$.

THEOREM 5.9. Let $\mu \in \Gamma_{K}$ and V_{μ} a simple K-module with the highest weight μ. Consider the K-module $M(\mu)=P_{\mu}\left(\mathfrak{p}_{\mathbf{C}} \otimes \mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right)$, and assume that μ is admissible. Then the multiplicity $m(\mu)$ of V_{μ} in $M(\mu)$ is given by

$$
m(\mu)=\sharp\left\{\omega \in \Sigma_{n}: \omega \text { is } P_{K(\mu)} \text {-highest }\right\} .
$$

Proof. Let $\omega \in \Sigma_{n}$. Then by Lemma $5.8 \mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$ if and only if ω is $P_{K(\mu)}$-highest. Consequently by Theorem 4.6 we have our assertion.

6. Positive root system associated with a P_{K}-dominant integral form

In this section we shall give a good positive root system associated with $\mu \in \Gamma_{K}$ (see Lemma 6.5 below). An element H in $\sqrt{-1} \mathfrak{b}$ is said to be regular if $\alpha(H) \neq 0$ for all α in Σ. An element H in $\sqrt{-1} \mathfrak{b}$ is said to be singular unless H is regular. Let $(\sqrt{-1} \mathfrak{b})^{\prime}$ denote the set of all regular elements in $\sqrt{-1} \mathfrak{b}$ and P a positive root system satisfying $P_{K} \subset P$. We define a subset C in $(\sqrt{-1} \mathfrak{b})^{\prime}$ by

$$
C=\{H \in \sqrt{-1} \mathfrak{b}: \alpha(H)>0 \text { for all } \alpha \in P\} .
$$

Each topological connected component of $(\sqrt{-1} \mathfrak{b})^{\prime}$ is said to be a Weyl chamber. Especially C is the positive Weyl chamber corresponding to P. Let W be the Weyl group of the pair $\left(\mathfrak{g}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right) . W$ acts simply transitively on the set of all Weyl chambers (cf. Theorem 4.3.18 in [4]). Moreover we have

$$
(\sqrt{-1} \mathfrak{b})^{\prime}=\bigcup_{s \in W} s C(\text { disjoint union }) .
$$

Let s be an element in W. Then $s C$ is the positive Weyl chamber corresponding to the positive root system $s P$.

LEMMA 6.1. The number of positive root systems containing P_{K} is $\left(W: W_{K}\right)$, where $(*: *)$ is the group index and W_{K} is the Weyl group of $\left(\mathfrak{k}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$.

Proof. We denote the set of all positive root systems containing P_{K} by $\left\{s_{i} P: 1 \leq\right.$ $\left.i \leq p, s_{i} \in W, s_{1}=1\right\}$. It is enough to prove that

$$
\begin{equation*}
W=\bigcup_{i=1}^{p} W_{K} s_{i} \text { (disjoint union) } \tag{6.1}
\end{equation*}
$$

Let C_{K} be the positive Weyl chamber corresponding to P_{K}. First we shall prove $W=$ $\bigcup_{i=1}^{p} W_{K} s_{i}$. Let s be an element in W. Since $s C \subset \bigcup_{t \in W_{K}} t C_{K}$, there is t in W_{K} such that $t C_{K} \cap s C \neq \phi$. We can choose $H \in C$ satisfying $t^{-1} s H \in C_{K}$. Since $\alpha\left(t^{-1} s H\right)>0$ for all $\alpha \in P_{K}$, we have $P_{K} \subset t^{-1} s P$. We let $t^{-1} s=s_{i}$ for $i, 1 \leq i \leq p$. Then $s \in W_{K} s_{i}$, and hence the identity in (6.1) follows. Next we shall prove that if $W_{K} s_{i} \cap W_{K} s_{j} \neq \phi$, then $i=j$. There is $t \in W_{K}$ such that $t s_{i}=s_{j}$. If $t \neq 1$, then we have $t \alpha<0$ for $\alpha \in P_{K}$. Since $\alpha \in s_{i} P$, we have $\alpha=s_{i} \beta$ for $\beta \in P$. This implies that $t s_{i} \beta \in s_{j} P \cap\left(-P_{K}\right)$. Since $s_{j} P$ is a positive root system and $P_{K} \subset s_{j} P$, we have a contradiction. Thus $t=1$ and $i=j$.

Lemma 6.2. Assume that the pair (G, K) is hermitian symmetric. Then for the positive root system P_{K} of Σ_{K} we can choose a positive root system P^{\prime} satisfying the following properties:

$$
P_{K} \subset P^{\prime}, \quad \mathfrak{p}_{\mathbf{C}}=\mathfrak{p}^{+} \oplus \mathfrak{p}^{-} \text {and ad }\left(\mathfrak{k}_{\mathbf{C}}\right) \mathfrak{p}^{ \pm} \subset \mathfrak{p}^{ \pm}
$$

where $\mathfrak{p}^{ \pm}$is the subspace of $\mathfrak{p}_{\mathbf{C}}$ generated by the set of all root vectors corresponding to the noncompact roots in P^{\prime} (resp. $-P^{\prime}$).

Proof. Let H_{0} be a nonzero element in the center of $\mathfrak{k}_{\mathbf{C}}$. We note that $\gamma\left(H_{0}\right) \neq 0$ for all $\gamma \in \Sigma_{n}$ (cf. Corollary 7.3 in [2]). We can assume that $H_{0} \in \sqrt{-1} \mathfrak{b}$. Let \mathfrak{b}_{1} be the orthogonal complement of H_{0} in \mathfrak{b}. Then \mathfrak{b}_{1} is a Cartan subalgebra of the semisimple Lie algebra $\mathfrak{k}_{1}=[\mathfrak{k}, \mathfrak{k}]$. Let K_{1} be the analytic subgroup of G corresponding to \mathfrak{k}_{1}. Then $P_{K_{1}}=P_{K}$ is a positive root system of $\left(\left(\mathfrak{k}_{1}\right)_{\mathbf{C}},\left(\mathfrak{b}_{1}\right)_{\mathbf{C}}\right)$. Let $C_{K_{1}}$ be the positive Weyl chamber in $\sqrt{-1} \mathfrak{b}_{1}$ corresponding to $P_{K_{1}}$. We choose $H \in C_{K_{1}}$, and put $H_{n}=\frac{1}{n} H+H_{0}$ for all positive integers n. Since $\lim _{n \rightarrow+\infty} \gamma\left(H_{n}\right)=\gamma\left(H_{0}\right)$, there exists a sufficiently large number N such that $\gamma\left(H_{N}\right)$ and $\gamma\left(H_{0}\right)$ have the same signature for all $\gamma \in \Sigma_{n}$. We put

$$
P^{\prime}=\left\{\alpha \in \Sigma: \alpha\left(H_{N}\right)>0\right\} .
$$

Since H_{N} is regular, P^{\prime} is a positive root system of Σ containing P_{K}. Then $\mathfrak{p}^{ \pm}$are $\mathfrak{k}_{\mathbf{C}}$-invariant and $\mathfrak{p}_{\mathbf{C}}=\mathfrak{p}^{+} \oplus \mathfrak{p}^{-}$.

Lemma 6.3. Let $\mu \in \Gamma_{K}$ and $\mathfrak{l}(\mu)$ the centralizer of H_{μ} in \mathfrak{g}. Then the inner type reductive Lie algebra $\mathfrak{l}(\mu)$ has the following decomposition by the ideals.

$$
\mathfrak{l}(\mu)=\mathfrak{l}_{0} \oplus \mathfrak{l}_{1} \oplus \mathfrak{l}_{2}
$$

where all \mathfrak{l}_{i} 's are inner and θ-invariant, $\mathfrak{l}_{0} \subset \mathfrak{k}$, and each simple ideal of $\mathfrak{l}_{1}\left(\right.$ resp. $\left.\mathfrak{l}_{2}\right)$ is noncompact nonhermitian (resp. hermitian).

Proof. Let $\mathfrak{l}(\mu)=\bigoplus_{i=0}^{p} \mathfrak{q}_{i}$ be the decompostion by ideals of $\mathfrak{l}(\mu)$, where \mathfrak{q}_{0} is the center of $\mathfrak{l}(\mu)$ and the other $\mathfrak{q}_{i}^{\prime} \mathfrak{s}$ are all simple. Since $\mathfrak{q}_{0} \subset \mathfrak{b}$, it is enough to prove that \mathfrak{q}_{i} $(1 \leq i \leq p)$ is an inner type θ-invariant simple Lie algebra. Let p_{i} be the projection of $\mathfrak{l}(\mu)$ to \mathfrak{q}_{i}. Then we have $\left[p_{i}(\mathfrak{b}), p_{j}(\mathfrak{b})\right]=\{0\}$ for $i, j, i \neq j$. This implies that $\{0\}=[\mathfrak{b}, \mathfrak{b}]=$ $\bigoplus_{i=1}^{q}\left[p_{i}(\mathfrak{b}), p_{i}(\mathfrak{b})\right]$, and hence $p_{i}(\mathfrak{b})$ is an abelian subalgebra of \mathfrak{q}_{i}. Since $\left[\mathfrak{b}, p_{i}(\mathfrak{b})\right]=\{0\}$ and \mathfrak{b} is a maximal abelian subalgebra of $\mathfrak{l}(\mu)$, we have $p_{i}(\mathfrak{b}) \subset \mathfrak{b}$ and $p_{i}(\mathfrak{b})$ is maximal abelian in \mathfrak{q}_{i}. Thus \mathfrak{q}_{i} is an inner type simple Lie algebra. Moreover since $p_{i}(\mathfrak{b}) \subset \mathfrak{q}_{i} \cap \theta\left(\mathfrak{q}_{i}\right) \subset$ $\mathfrak{l}(\mu)$, we have $\mathfrak{q}_{i}=\theta\left(\mathfrak{q}_{i}\right)$.

DEFINITION 6.4. Let P be a positive root system of Σ containing P_{K}. We put $\mathfrak{p}^{+}=$ $\bigoplus_{\alpha \in \Sigma_{n} \cap P} \mathfrak{g}_{\alpha}$ and $\mathfrak{p}^{-}=\bigoplus_{\alpha \in \Sigma_{n} \cap P} \mathfrak{g}_{-\alpha}$. Let \mathfrak{q} be a simple $K(\mu)$-submodule of $\mathfrak{p}_{\mathbf{C}}$. Then \mathfrak{q} is said to be the first (resp. the second) kind with respect to P if $\tau(\mathfrak{q})=\mathfrak{q}$ (resp. $\mathfrak{q} \subset \mathfrak{p}^{+}$or $\mathfrak{q} \subset \mathfrak{p}^{-}$).

Lemma 6.5. Let $\mu \in \Gamma_{K}$. Then we can choose a positive root system P^{\star} of Σ satisfying the following properties: $P_{K} \subset P^{\star}$, and each $K(\mu)$-simple submodule \mathfrak{q} of $\mathfrak{p}_{\mathbf{C}}$ is either the first kind or the second kind with respect to P^{\star}.

Proof. Consider the decomposition of $\mathfrak{l}(\mu)$ as in Lemma 6.3. Let $\Sigma_{i}(0 \leq i \leq 2)$ be the root system of the pair $\left(\left(\mathfrak{l}_{i}\right)_{\mathbf{C}},\left(\mathfrak{l}_{i} \cap \mathfrak{b}\right)_{\mathbf{C}}\right)$. Since each $\alpha \in \Sigma_{i}$ can be extended to \mathfrak{b}, we have $\Sigma_{i} \subset \Sigma$. Furthermore since \mathfrak{l}_{i} is θ-invariant, we have $P_{K(\mu)}=\bigcup_{i=0}^{2}\left(P_{K(\mu)} \cap \Sigma_{i}\right)$ and
$P_{K(\mu)} \cap \Sigma_{i}$ is a positive root system of $\left(\left(\mathfrak{l}_{i} \cap \mathfrak{k}\right)_{\mathbf{C}},\left(\mathfrak{l}_{i} \cap \mathfrak{b}\right)_{\mathbf{C}}\right)$. We put $P_{0}=P_{K(\mu)} \cap \Sigma_{0}$. For the algebra l_{1} we choose a positive root system P_{1} of Σ_{1} satisfying $P_{K(\mu)} \cap \Sigma_{1} \subset P_{1}$. For the hermitian case \mathfrak{l}_{2}, we choose a positive root system P_{2} of Σ_{2} satisfying $P_{K(\mu)} \cap \Sigma_{2} \subset P_{2}$ as in Lemma 6.2. We now put

$$
\begin{equation*}
P(\mu)=\bigcup_{i=0}^{2} P_{i} \tag{6.2}
\end{equation*}
$$

Then $P(\mu)$ is a positive root system of $\left(\mathfrak{l}(\mu) \mathbf{C}_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$, and $P_{K(\mu)} \subset P(\mu)$. Let us now choose a positive root system P^{\star} of Σ as follows. Let $\mathfrak{l}_{*}=[\mathfrak{l}(\mu), \mathfrak{l}(\mu)]$ be the drived algebra of $\mathfrak{l}(\mu)$. We put $\mathfrak{b}_{*}=\mathfrak{b} \cap \mathfrak{l}_{*}$. Then \mathfrak{b}_{*} is a Cartan subalgebra of the real semisimple Lie algebra \mathfrak{l}_{*}. Let $C_{*}(\mu)$ be the positive Weyl chamber of $\sqrt{-1} \mathfrak{b}_{*}$ corresponding to $P(\mu)$. We choose an element H_{0} in $C_{*}(\mu)$ and put $H_{n}=\frac{1}{n} H_{0}+H_{\mu}$ for all positive integers n. Then for a sufficiently large number $N, \alpha\left(H_{\mu}\right)$ and $\alpha\left(H_{N}\right)$ have the same signature for all $\alpha \in \Sigma \backslash(P(\mu) \cup-P(\mu))$. We now put

$$
\begin{equation*}
P^{\star}=\left\{\alpha \in \Sigma: \alpha\left(H_{N}\right)>0\right\} . \tag{6.3}
\end{equation*}
$$

Immediately we have $P(\mu) \subset P^{\star}$. Moreover by the choice of H_{N} we have $\alpha\left(H_{N}\right)>0$ for $\alpha \in P_{K} \backslash P_{K(\mu)}$. This implies that $P_{K} \subset P^{\star}$. Finally we shall prove that each simple $K(\mu)$-submodule \mathfrak{q} of $\mathfrak{p}_{\mathbf{C}}$ is the first kind or the second kind with respect to P^{\star}. Let $\mathfrak{l}(\mu)=$ $\mathfrak{k}(\mu) \oplus \mathfrak{p}(\mu)$ be the Cartan decomposition of $\mathfrak{l}(\mu)$ as in (5.1) and \mathfrak{r} the orthogonal complement of $\mathfrak{p}(\mu)$ in \mathfrak{p}. Then \mathfrak{r} is $K(\mu)$-invariant and $\mathfrak{p}_{\mathbf{C}}=\mathfrak{p}(\mu)_{\mathbf{C}} \oplus \mathfrak{r}_{\mathbf{C}}$. Since \mathfrak{q} is a simple $K(\mu)$ module, we have

$$
\begin{equation*}
\mathfrak{q} \subset \mathfrak{p}(\mu) \mathbf{C} \quad \text { or } \quad \mathfrak{q} \subset \mathfrak{r}_{\mathbf{C}} \tag{6.4}
\end{equation*}
$$

In the first case in (6.4), we have (1) $\mathfrak{q} \subset\left(\mathfrak{l}_{1}\right) \mathbf{C}$ or (2) $\mathfrak{q} \subset\left(\mathfrak{l}_{2}\right) \mathbf{C}$. Since each simple ideal of \mathfrak{l}_{1} is nonhermitian, \mathfrak{q} is the first kind for the case (1). For the case (2) the choice of the positive root system P_{2} implies that \mathfrak{q} is the second kind. Let us consider the latter case in (6.4). Let X_{ω} be the $K(\mu)$-highest weight vector in \mathfrak{q}. Since $\omega \notin P(\mu)$, we have that $\omega\left(H_{\mu}\right) \neq 0$. Since each weight (noncompact root) δ of \mathfrak{q} is of the form $\delta=\omega-\sum_{\alpha \in P_{K(\mu)}} m_{\alpha} \alpha, m_{\alpha}$ is an integer, we have $\delta\left(H_{\mu}\right)=\omega\left(H_{\mu}\right)$. This implies that $\delta\left(H_{N}\right)$ and $\omega\left(H_{N}\right)$ have the same signature. Hence \mathfrak{q} is the second kind for this case. Thus each $K(\mu)$-simple submodule \mathfrak{q} of $\mathfrak{p}_{\mathbf{C}}$ is the first kind or the second kind.

Corollary 6.6. Let $P(\mu)$ be the positive root system of $\Sigma\left(\mathfrak{r}(\mu)_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$ as in (6.2) and $\mathfrak{p}(\mu)=\mathfrak{p} \cap \mathfrak{l}(\mu)$. Then each simple $K(\mu)$-submodule of $\mathfrak{p}(\mu)_{\mathbf{C}}$ is the first kind or the second kind with respect to $P(\mu)$. Moreover each simple root in $P(\mu)$ is also simple in P^{\star}.

Proof. It is sufficient to prove that if α is simple in $P(\mu)$, then α is simple in P^{\star}. Suppose that α is not simple in P^{\star}. Then there exist β and γ in P^{\star} such that $\alpha=\beta+\gamma$. Therefore $0=\alpha\left(H_{\mu}\right)=\beta\left(H_{\mu}\right)+\gamma\left(H_{\mu}\right)$. By the choice of P^{\star} in (6.3) we have $\beta\left(H_{\mu}\right)=0$ and $\gamma\left(H_{\mu}\right)=0$, and hence $\alpha=\beta+\gamma, \beta, \gamma \in P_{K(\mu)}$. This is a contradiction to α is simple in $P_{K(\mu)}$.

7. Standard triple of the positive root systems

Our purpose of this section is to prove Theorem 7.5.
Lemma 7.1. Let P be a positive root system of Σ containing P_{K} and Ψ the simple root system of P. For a subset Θ of Ψ we denote by $P(\Theta)$ the set of all roots in P generated by the set Θ over the ring of integers. Then there exists a reductive subalgebra $\mathfrak{l}(\Theta)$ of \mathfrak{g} containing \mathfrak{b} such that $P(\Theta)$ is a positive root system of the pair $\left(\mathfrak{l}(\Theta) \mathbf{C}, \mathfrak{b}_{\mathbf{C}}\right)$.

Proof. Let C be the positive Weyl chamber of $\sqrt{-1} \mathfrak{b}$ corresponding to P. We put

$$
\begin{equation*}
C(\Theta)=\{H \in \operatorname{cl}(C): \alpha(H)=0 \text { for } \alpha \text { in } \Theta \text { and } \alpha(H)>0 \text { for } \alpha \text { in } \Psi \backslash \Theta\}, \tag{7.1}
\end{equation*}
$$

where $\operatorname{cl}(C)$ is the topological closure of C in $\sqrt{-1} \mathfrak{b}$. It is sufficient to prove this lemma for the case $P(\Theta) \neq P$. Since $\Theta \neq \Psi$, we can choose $H \in C(\Theta) \backslash\{0\}$. The centralizer $\mathfrak{l}(H)$ of H in \mathfrak{g} is reductive, and contains \mathfrak{b}. Let Σ_{H} be the root system of $\left(\mathfrak{l}(H)_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$. Then we have $P(\Theta)=\Sigma_{H} \cap P$. Hence $P(\Theta)$ is a positive root system of the pair $\left(\mathfrak{l}(\Theta)_{\mathbf{C}}, \mathfrak{b}_{\mathbf{C}}\right)$, where $\mathfrak{l}(\Theta)=\mathfrak{l}(H)$.

Lemma 7.2. Let Θ be a subset of Ψ, and define $C(\Theta)$ by (7.1). Let H be an element in $C(\Theta)$ and $K(\Theta)$ the centralizer of H in K. Then the group $K(\Theta)$ is determined independently by the choice of H in $C(\Theta)$.

Proof. Let $K(\Theta)^{0}$ be the analytic subgroup of G corresponding to $l(\Theta) \cap \mathfrak{k}$. In view of the proof of Lemma 7.1 $K(\Theta)^{0}$ is uniquely determined by Θ. Let k be an element in $K(\Theta)$. Then there exists k_{0} in $K(\theta)^{0}$ such that $\operatorname{Ad}(k)=A d\left(k_{0}\right)$. We put $z=k^{-1} k_{0}$. Since z belongs to the center Z of K, we have $K(\Theta) \subset Z K(\Theta)^{0}$. On the other hand, since K is connected, B is a maximal abelian subgroup of K (cf. Corollary 2.7 in [2]). This implies that $Z \subset B$. Since $B \subset K(\Theta)$, we have $K(\Theta)=Z K(\Theta)^{0}$. Thus $K(\Theta)$ is determined independently by the choice of H.

DEFINITION 7.3. Let P be a positive root system of Σ containing P_{K}. For a subset Θ in the simple root system Ψ of P, we consider the positive root system $P(\Theta)$ as in Lemma 7.1. Then the triple $\left(P_{K}, P(\Theta), P\right)$ is standard if each simple $K(\Theta)$-submodule of $\mathfrak{p}_{\mathbf{C}}$ is either the first kind or the second kind with respect to P.

DEFinition 7.4. Let $\left(P_{K}, P(\Theta), P\right)$ be a standard triple. A root γ in Σ_{n} is said to be the first (resp. the second) kind if the simple $K(\Theta)$-module \mathfrak{q}_{γ} generated by X_{γ} is the first (resp. the second) kind.

REMARK. Let P be a positive root system containing P_{K}. For $\Theta=\phi$, we have $P(\Theta)=\phi$ and $K(\Theta)=B$. Moreover, $\left(P_{K}, \phi, P\right)$ is standard, and $C(\Theta)$ is the positive Weyl chamber.

Theorem 7.5. For $\mu \in \Gamma_{K}$, there exists a standard triple $\left(P_{K}, P(\Theta), P\right)$ such that $H_{\mu} \in C(\Theta)$. Moreover we have $K(\Theta)=K(\mu)$.

Proof. We first assume that H_{μ} is regular. Then we have $\mathfrak{k}(\mu)=\mathfrak{b}$. In this case we put $P=\left\{\alpha \in \Sigma: \alpha\left(H_{\mu}\right)>0\right\}$. Then $\left(P_{K}, \phi, P\right)$ is standard, $H_{\mu} \in C(\phi), K(\Theta)=K(\mu)$ and $\mathfrak{l}(\Theta)=\mathfrak{b}$. Let us now assume that H_{μ} is singular. Let $\mathfrak{l}(\mu)$ be the centralizer of H_{μ} in \mathfrak{g}. We choose the positive root systems P^{\star} and $P(\mu)$ the same as in Lemma 6.5 and Corollary 6.6 respectively. Let Ψ^{\star} be the simple root system of P^{\star}. By Corollary 6.6 the simple root system Θ of $P(\mu)$ is a subset of Ψ^{\star}. We put $P=P^{\star}$. Since $P(\Theta)=P(\mu)$, the triple $\left(P_{K}, P(\Theta), P\right)$ is standard, $H_{\mu} \in C(\Theta)$ and $K(\Theta)=K(\mu)$.

8. Principal weight space $P W(\mu)$

In this section we shall fix a standard triple $\left(P_{K}, P(\Theta), P\right)$, and consider the convex cone $C(\Theta)$ corresponding to this triple. We now put $C(\Theta)^{*}=\left\{\eta \in(\sqrt{-1} \mathfrak{b})^{*}: H_{\eta} \in C(\Theta)\right\}$. Let $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ and V_{μ} a unitary simple K-module with highest weight μ. We shall fix the highest weight vector $v(\mu)$ normalized as $|v(\mu)|=1$.

DEFINITION 8.1. Let P_{n} be the set of all noncompact roots in P. We define a projection operator P_{+}on the K-module $\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}$ by $P_{+}=\sum_{\omega \in P_{n}, \mu+\omega \in \Gamma_{K}} P_{\mu+\omega}$.

DEFINITION 8.2. Let $W(\mu)$ be the weight subspace of $M(\mu)$ as in Lemma 3.1. We define a subspace $P W(\mu)$ of $W(\mu)$ by

$$
P W(\mu)=\left[\left\{P_{\mu}\left(X_{-\gamma} \otimes P_{+}\left(X_{\gamma} \otimes v(\mu)\right)-X_{\gamma} \otimes P_{+}\left(X_{-\gamma} \otimes v(\mu)\right)\right): \gamma \in P_{n}\right\}\right] .
$$

Lemma 8.3. Let $N(\mu)$ be the K-submodule of $M(\mu)$ generated by the set

$$
\left\{P_{\mu}\left(X \otimes P_{+}(Y \otimes v)-Y \otimes P_{+}(X \otimes v)\right): X, Y \in \mathfrak{p}_{\mathbf{C}}, v \in V_{\mu}\right\}
$$

Then we have $N(\mu) \cap W(\mu)=P W(\mu)$. Especially $\operatorname{dim} P W(\mu)$ is the multiplicity of V_{μ} in $N(\mu)$.

Proof. It is enough to prove that $N(\mu) \cap W(\mu) \subset P W(\mu)$. Let Z be an element in $N(\mu) \cap W(\mu)$. We can assume that

$$
Z=P_{\mu}\left(X_{\gamma} \otimes P_{+}\left(X_{\delta} \otimes Q(I) v(\mu)\right)-X_{\delta} \otimes P_{+}\left(X_{\gamma} \otimes Q(I) v(\mu)\right)\right)
$$

where $\gamma, \delta \in \Sigma_{n}, I \in \Pi, \gamma+\delta=\langle I\rangle$. By Lemma 3.5 we have

$$
\begin{aligned}
Z= & \sum_{J \preccurlyeq I}(-1)^{\sharp I}\left\{P_{\mu}\left(Q(\psi(J)) X_{\gamma} \otimes P_{+}\left(Q(\psi(I \backslash J)) X_{\delta} \otimes v(\mu)\right)\right)\right. \\
& \left.-P_{\mu}\left(Q(\psi(J)) X_{\delta} \otimes P_{+}\left(Q(\psi(I \backslash J)) X_{\gamma} \otimes v(\mu)\right)\right)\right\} .
\end{aligned}
$$

Since $(I \backslash J) \preccurlyeq I$ and $I \backslash(I \backslash J)=J$, we have

$$
\begin{aligned}
Z= & (-1)^{\sharp}\left\{\sum_{J \preccurlyeq I} P_{\mu}\left(Q(\psi(J)) X_{\gamma} \otimes P_{+}\left(Q(\psi(I \backslash J)) X_{\delta} \otimes v(\mu)\right)\right)\right. \\
& \left.-\sum_{J \preccurlyeq I} P_{\mu}\left(Q(\psi(I \backslash J)) X_{\delta} \otimes P_{+}\left(Q(\psi(J)) X_{\gamma} \otimes v(\mu)\right)\right)\right\} .
\end{aligned}
$$

Since $\gamma+\delta=\langle J\rangle+\langle I \backslash J\rangle$, we have $Z \in P W(\mu)$.
LEMMA 8.4. Let μ be an element in $C(\Theta)^{*} \cap \Gamma_{K}$ and V_{μ} the simple K-module with highest weight μ. Suppose that $U(\mathfrak{k}(\Theta) \mathbf{C}) X_{\gamma} \ni X_{\delta}$ for two noncompact roots γ, δ in Σ. Then, for each noncompact root ω satisfying $\mu+\omega \in \Gamma_{K}$, we have

$$
\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=\left|P_{\mu+\omega}\left(X_{\delta} \otimes v(\mu)\right)\right|^{2}
$$

Proof. We first prove that $X_{\alpha} v(\mu)=0$ for all $\alpha \in \Sigma_{K(\Theta)}$. Since $v(\mu)$ is the highest weight vector of V_{μ}, it is sufficient to prove that $X_{-\alpha} v(\mu)=0$ for all $\alpha \in P_{K(\Theta)}$. Since $\operatorname{ad}\left(X_{\alpha}\right) X_{-\alpha} v(\mu)=\alpha\left(H_{\mu}\right) v(\mu)=0$, we have $X_{\alpha} X_{-\alpha} v(\mu)=0$. By the choice of X_{α} in (2.1), we have $0=\left(X_{\alpha} X_{-\alpha} v(\mu), v(\mu)\right)=\left|X_{-\alpha} v(\mu)\right|^{2}$. This implies that $X_{-\alpha} v(\mu)=0$. Let us now prove this lemma. By the asummption for γ and δ, there exist a nonzero complex number c and a finite number of roots $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{q} \in \Sigma_{K(\Theta)}$ such that

$$
\operatorname{ad}\left(X_{\alpha_{1}} X_{\alpha_{2}} \cdots X_{\alpha_{q}}\right) X_{\gamma}=c X_{\delta}
$$

Then we have

$$
\begin{aligned}
& c\left|P_{\mu+\omega}\left(X_{\delta} \otimes v(\mu)\right)\right|^{2}=\left(P_{\mu+\omega}\left(\operatorname{ad}\left(X_{\alpha_{1}} X_{\alpha_{2}} \cdots X_{\alpha_{q}}\right) X_{\gamma} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\delta} \otimes v(\mu)\right)\right) \\
&=\left(X_{\alpha_{1}} P_{\mu+\omega}\left(\operatorname{ad}\left(X_{\alpha_{2}} \cdots X_{\alpha_{q}}\right) X_{\gamma} \otimes v(\mu)\right), P_{\mu+\omega}\left(X_{\delta} \otimes v(\mu)\right)\right) \\
&-\left(P_{\mu+\omega}\left(\operatorname{ad}\left(X_{\alpha_{2}} \cdots X_{\alpha_{q}}\right) X_{\gamma} \otimes X_{\alpha_{1}} v(\mu)\right), P_{\mu+\omega}\left(X_{\delta} \otimes v(\mu)\right)\right), \\
&=\left(P_{\mu+\omega}\left(\operatorname{ad}\left(X_{\alpha_{2}} \cdots X_{\alpha_{q}}\right) X_{\gamma} \otimes v(\mu)\right), P_{\mu+\omega}\left(\operatorname{ad}\left(X_{-\alpha_{1}}\right) X_{\delta} \otimes v(\mu)\right)\right) \\
& \cdots \\
&=\left(P_{\mu}\left(X_{\gamma} \otimes v(\mu)\right), P_{\mu}\left(\operatorname{ad}\left(X_{-\alpha_{q}} \cdots X_{-\alpha_{1}}\right) X_{\delta} \otimes v(\mu)\right)\right) \\
&= c^{\prime} \mid P_{\mu+\omega}\left(\left.X_{\gamma} \otimes v(\mu)\right|^{2},\right.
\end{aligned}
$$

where $c^{\prime}=\phi\left(\operatorname{ad}\left(X_{-\alpha_{q}} \cdots X_{-\alpha_{1}}\right) X_{\delta}, X_{-\gamma}\right)$. Since the Killing form ϕ is τ invariant, (2.6) implies that

$$
c^{\prime}=(-1)^{q} \phi\left(\operatorname{ad}\left(X_{\alpha_{q}} \cdots X_{\alpha_{1}}\right) X_{-\delta}, X_{\gamma}\right)=\phi\left(X_{-\delta}, \operatorname{ad}\left(X_{\alpha_{1}} X_{\alpha_{2}} \cdots X_{\alpha_{q}}\right) X_{\gamma}\right)=c
$$

Thus we have $\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|=\left|P_{\mu+\omega}\left(X_{\delta} \otimes v(\mu)\right)\right|$.
THEOREM 8.5. Let $\left(P_{K}, P(\Theta), P\right)$ be a standard triple and $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$. Assume that μ is admissible. Then we have

$$
P W(\mu)=\left[\left\{Z(\gamma): \gamma \text { is a } P_{K(\Theta)} \text {-highest root in } P_{n} \text { and of the second kind }\right\}\right],
$$

where $Z(\gamma)=P_{\mu}\left(X_{-\gamma} \otimes P_{+}\left(X_{\gamma} \otimes v(\mu)\right)-X_{\gamma} \otimes P_{+}\left(X_{-\gamma} \otimes v(\mu)\right)\right)$.
Proof. Let γ be a noncompact root in Σ. By using Corollary 4.7 we have

$$
\begin{equation*}
Z(\gamma)=\sum_{\omega \in P_{n} \cap \Sigma_{W(\mu)}} c(\mu ; \omega)\left(\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}-\left|P_{\mu+\omega}\left(X_{-\gamma} \otimes v(\mu)\right)\right|^{2}\right) v_{\omega}(\mu) \tag{8.1}
\end{equation*}
$$

By Lemma 8.4 if two vectors X_{γ} and X_{δ} belong to the same simple $K(\Theta)$-submodule in $\mathfrak{p}_{\mathbf{C}}$, then we have

$$
\begin{equation*}
Z(\gamma)=Z(\delta) \tag{8.2}
\end{equation*}
$$

Especially if γ is of the first kind, then we have

$$
\begin{equation*}
Z(\gamma)=0 \tag{8.3}
\end{equation*}
$$

Hence by (8.1), (8.2) and (8.3) we have our assertion of this theorem.
DEFINITION 8.6. Let $\left(P_{K}, P(\Theta), P\right)$ be a standard triple and $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$. We define $|\mu|_{\Theta}$ by

$$
\begin{equation*}
|\mu|_{\Theta}=\min \left\{\frac{2(\mu, \alpha)}{|\alpha|^{2}}: \alpha \in P_{K} \backslash P_{K(\Theta)}\right\} . \tag{8.4}
\end{equation*}
$$

We note that if $|\mu|_{\Theta} \geq 3$, then μ is admissible. Hence by Lemma 5.8 we have $P_{\mu+\omega}(\mathfrak{p} \mathbf{C} \otimes$ $\left.V_{\mu}\right) \neq\{0\}$ for μ satisfying $|\mu|_{\Theta} \geq 3$ and a $P_{K(\Theta)}$-highest root $\omega \in P_{n}$.

Lemma 8.7. Let ω be a $P_{K(\Theta)}$-highest noncompact root in P and γ a noncompact root. Then there exists a positive integer $N(\geq 3)$ such that

$$
\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} \leq\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
$$

for all $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ satisfying $|\mu|_{\Theta} \geq N$.
Proof. Let \mathfrak{q}_{ω} be the simple $K(\Theta)$-module generated by X_{ω}. Suppose that $X_{\gamma} \in \mathfrak{q}_{\omega}$. By Lemma 8.4 we have the inequality in this lemma for all $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ satisfying $|\mu|_{\Theta} \geq 3$. Let us consider the case $X_{\gamma} \notin \mathfrak{q}_{\omega}$. By Lemma 4.3 we have

$$
\begin{equation*}
\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=\sum_{\alpha \in P_{K}} \frac{2|\langle\alpha, \gamma\rangle|^{2}}{|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}}\left|P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right)\right|^{2} . \tag{8.5}
\end{equation*}
$$

By (2.4) we have

$$
\begin{equation*}
2|\langle\alpha, \gamma\rangle| \leq 3|\alpha|^{2} . \tag{8.6}
\end{equation*}
$$

By Lemma 3.8 in [3] if $P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right) \neq 0$, then there exists $I=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{q}\right) \in \Pi$ such that $\omega-\gamma=\langle I\rangle$. Moreover, since $X_{\gamma} \notin \mathfrak{q}_{\omega}$, we have $\alpha_{p} \notin P_{K(\Theta)}$ for a root α_{p} in $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{q}\right\}$. This implies that

$$
\begin{align*}
|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}= & \sum_{i=1}^{q} 2\left(\mu, \alpha_{i}\right)+|\omega|^{2}-|\gamma|^{2} \\
& \geq 2\left(\mu, \alpha_{p}\right)+|\omega|^{2}-|\gamma|^{2} \tag{8.7}\\
& \geq|\mu|_{\Theta}\left|\alpha_{p}\right|^{2}+|\omega|^{2}-|\gamma|^{2} .
\end{align*}
$$

Hence by (8.5), (8.6) and (8.7) there exists a positive integer N_{1} such that

$$
\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} \leq \max _{\alpha \in P_{K}}\left|P_{\mu+\omega}\left(X_{\gamma+\alpha} \otimes v(\mu)\right)\right|^{2}
$$

for all $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ satisfying $|\mu|_{\Theta} \geq N_{1}$. By using this argument successively we can prove this lemma.

Corollary 8.8. Let $\omega, \gamma \in \Sigma_{n}$. Suppose that ω and γ are $P_{K(\Theta)}$-highest. Then we have

$$
\lim _{|\mu|_{\Theta} \rightarrow+\infty}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=\delta_{\omega, \gamma},
$$

where $\delta_{\omega, \gamma}$ is Kronecker's delta.
Proof. Assume that $X_{\gamma} \notin \mathfrak{q}_{\omega}$. By Lemma 8.7 and (8.5), there exists a number N^{\prime} such that

$$
\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2} \leq \sum_{\alpha \in P_{K}} \frac{2|\langle\alpha, \gamma\rangle|^{2}}{|\lambda+\omega|^{2}-|\lambda+\gamma|^{2}}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}
$$

for all $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ satisfying $|\mu|_{\Theta} \geq N^{\prime}$. This inequality and (8.7) imply

$$
\lim _{|\mu|_{\Theta} \rightarrow+\infty}\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}=0
$$

Consider the case $\gamma=\omega$. We can assume that $|\mu|_{\Theta}$ of $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ is sufficiently large. Then $\mu+\omega \in \Gamma_{K}$ and $P_{\mu+\omega}\left(\mathfrak{p}_{\mathbf{C}} \otimes V_{\mu}\right) \neq\{0\}$. Since $\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=f(\lambda+\omega: \omega)$, Theorem 5.5 implies that

$$
\lim _{|\mu|_{\Theta \rightarrow+\infty}}\left|P_{\mu+\omega}\left(X_{\omega} \otimes v(\mu)\right)\right|^{2}=1
$$

ThEOREM 8.9. Let $\left(P_{K}, P(\Theta), P\right)$ be a standard triple, and $C(\Theta)^{*}=\{\eta \in$ $\left.(\sqrt{-1} \mathfrak{b})^{*}: H_{\eta} \in C(\Theta)\right\}$. Then there exists a sufficiently large number N such that
$\operatorname{dim} P W(\mu)=\sharp\left\{\omega \in P_{n}: \omega\right.$ is $P_{K(\Theta)}$-highest and of the second kind $\}$ for all $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ satisfying $|\mu|_{\Theta} \geq N$.

Proof. Let ω and γ be two $P_{K(\Theta)}$-highest roots in P_{n}. We put

$$
a_{\omega, \gamma}(\mu)=c(\mu ; \omega)\left(\left|P_{\mu+\omega}\left(X_{\gamma} \otimes v(\mu)\right)\right|^{2}-\left|P_{\mu+\omega}\left(X_{-\gamma} \otimes v(\mu)\right)\right|^{2}\right)
$$

By Corollary 4.5 we have

$$
\begin{align*}
P_{\mu}\left(X_{-\gamma}\right. & \left.\otimes P_{+}\left(X_{\gamma} \otimes v(\mu)\right)-X_{\gamma} \otimes P_{+}\left(X_{-\gamma} \otimes v(\mu)\right)\right) \\
& =\sum_{\omega \in P_{n} \cap \Sigma_{W(\mu)}} a_{\omega, \gamma}(\mu) v_{\omega}(\mu) \tag{8.8}
\end{align*}
$$

Since deg $\pi_{\mu}=\prod_{\alpha \in P_{K}}(\lambda, \alpha)\left(\rho_{K}, \alpha\right)^{-1}$, we have $\lim _{|\mu|_{\Theta \rightarrow+\infty}} c(\mu ; \omega)=d(\omega)$, where $d(\omega)$ is a positive constant. Hence by Corollary 8.8 we have

$$
\lim _{|\mu|_{\Theta} \rightarrow+\infty} a_{\omega, \gamma}(\mu)=d(\omega) \delta_{\omega, \gamma} \quad \text { for } \omega, \gamma \in P_{\Theta}
$$

where

$$
P_{\Theta}=\left\{\gamma \in P_{n}: \gamma \text { is } P_{K(\Theta)} \text {-highest and of the second kind }\right\} .
$$

In view of Theorem 8.5 and (8.8) we can prove there exists a number N such that $\operatorname{dim} P W(\mu)=\sharp P_{\Theta}$ for all $\mu \in C(\Theta)^{*} \cap \Gamma_{K}$ satisfying $|\mu|_{\Theta} \geq N$.

References

[1] J. Deximier, Reprèsentation intègrables du groupe De Sitter, Bull. Soc. Math. 89 (1961), 9-41.
[2] S. Helgason, Differential geometry and symmetric space, Academic Press (1962).
[3] H. Midorikawa, On chracteristic function of a tensor module for the maximal compact subgroup of inner type real simple groups, preprint (2002).
[4] V. S. Varadarajan, Lie groups, Lie algebras and their representations, Springer.

Present Address:

Department of Mathematics, Tsuda College, Kodaira, Tokyo, 187-8577 Japan.

