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1. Introduction

Let (A,m) be a Noetherian local ring of dimension d with an infinite residue field, and let
I be an ideal of A. Denote by r(I) the reduction number of I , by �(I) the analytic spread of
I . An interesting question is the relationship between the Cohen-Macaulay (CM) property of

the Rees algebra R(I) := ⊕
n≥0 In and the associated graded ring G(I) := ⊕

n≥0(I
n/In+1).

In the case that A is a CM ring, one approach to this problem was taken first by Goto-Shimoda
when I is m-primary [5] in 1979. The theorem of Goto and Shimoda states:

THEOREM 1.1 [5]. Let (A,m) be a CM ring of dimension d with infinite residue field.
Let I be an m-primary ideal. Then R(I) is CM iff G(I) is CM and r(I) ≤ d − 1.

Next, other authors extended this theorem to ideals having small analytic deviation, see,
e.g., [2, 4, 6]. But the most general result was obtained by Johnston-Katz in [9, Theorem
2.3], independently, Aberbach-Huneke-Trung in [1, Theorem 5.1]. Moreover, [1] also gave a
similar characterization for the Gorenstein property of R(I) [1, Theorem 5.8]. The method
used in [1] is the study of the relationship between the so-called local reduction numbers of
an ideal I and the a-invariant of G(I) in the case that G(I) is CM.

Set Li(I) := {I ⊆ p ∈ Spec A | �(I�) = ht(p) ≤ i}; i ≤ �(I). The number

ri (I ) =
{

i − ht(I) if i < ht(I)

max{r(I�) − ht(p) | p ∈ Li(I)} + i if ht(I) ≤ i ≤ �(I)

is called the i − th local reduction number of I (see [1]). These invariants have been shown
to play an important role in studying the CM and Gorenstein property of Rees algebras, see,
e.g., [1] and [15]. Note that Aberbach-Huneke-Trung’s method in [1] yielded important in-
formation concerning the local reduction numbers of an ideal I and a-invariant of G(I) in the
case that G(I) is CM. The aims of [1] were achieved by the following result.
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THEOREM 1.2 [1, Theorem 4.4]. Assume that G(I) is a CM ring. Set � = �(I) and let
J be a minimal reduction of I . Then

(i) max{r�−1(I) + 1, rJ (I)} = r�(I).

(ii) max{r�−1(I) + 1, a(G(I)) + �} = r�(I).

Let S := ⊕
n≥0 Sn be a finitely generated standard graded algebra over a Noetherian

local ring S0 (i.e., S = S0[S1]). We denote by S+ the ideal generated by all homogeneous
elements of positive degree of S. Set

a0(S) := inf{a ∈ Z | [H 0
S+(S)]n = 0 for all n > a} .

The aim of this note is to show that one can extend Theorem 4.4 and Theorem 5.8 in [1]
to rings satisfying the Serre’s condition (S�) (� the analytic spread of S+). Although most of
the arguments in the proofs of [1, Theorem 4.4] can be applied to these rings, there are some
critical places which have to be dealt with. For example, the notion of local reduction numbers
in [1] and [15] is not suitable in the case of a graded ring S having grade S+ < ht (S+) (see
the proofs of [1, Theorem 4.4] and [15, Theorem 3.3]). To overcome this difficulty, the notion
of a local reduction number is defined as follows.

The number

ri (I ) =
{

max{−ht(I), a0(G)} + i if i < ht(I)

max{a0(G), r(I�) − ht(p) | p ∈ Li(I)} + i if ht(I) ≤ i ≤ �(I)

is called the i − th local reduction number of I. For any p ∈ Spec S0 we denote by S� the

localization of S at the multiplicatively closed set S0\p. Set ht(S+) = h,

Li(S) := {p ∈ Spec S0 | �(S+
� ) = ht(p) + h ≤ i}; for i ≤ �(S+).

The number

ri (S) =
{

max{−h, a0(S)} + i if i < h

max{a0(S), r(S+
� ) − ht(p) − h | p ∈ Li(S)} + i if h ≤ i ≤ �(S+)

is called the i − th local reduction number of S.

Recall that if G(I) is CM, then a0(G(I)) = −∞. So this new definition reduces to the
old definition [1] in the case that the graded ring is CM. Set

a∗(S) := inf{a ∈ Z | [Hi
M(S)]n = 0 for all n > a and i ≤ d}

where d = dim S and M is the maximal graded ideal of S.

By studying the relationship between the local reduction numbers and the a∗-invariant of
a graded ring, we get interesting results. Now, we summarize some important results of this
paper. The first main result of this paper is the following theorem.

THEOREM 2.7. Let J be an arbitrary minimal reduction of S+ generated by forms of
degree 1 and �(S+) = �. Suppose that S satisfies the Serre’s condition (S�). Then
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(i) max{r�−1(S) + 1, rJ (S+)} = r�(S).

(ii) max{r�−1(S) + 1, a∗(S) + �} = r�(S).

This result has some interesting consequences. First, we obtain Theorem 3.2 which is a
generalization of Theorem 4.4 [1]. Especially, if I is equimultiple (i.e., ht (I) = �(I)), then
we have the following result.

THEOREM 3.3. Let I be an equimultiple ideal of A with h = ht(I) > 0 and let J

be a minimal reduction of I . Suppose that G(I) satisfies the Serre’s condition (Sh) and A is
equidimensional and catenary. Then rJ (I) = rh(I) = a∗(G(I)) + h.

By using the above results to study the Gorenstein property of R(I), we get the following
second main result which is a generalization of [1, Theorem 5.8].

THEOREM 4.1. Let I be an ideal of A. Suppose that grade I ≥ 2, A satisfies the
Serre’s condition (S�(I )). Then R(I) is Gorenstein if and only if the following conditions are
satisfied :

(i) G(I) is Gorenstein.
(ii) r(I�) = ht(p) − 2 for every prime ideal p � I with ht(p/I) = 0.

(iii) r(I�) ≤ ht(p) − 2 for every prime ideal p � I with �(I�) = ht(p) ≤ �(I).

In this case, A is a Gorenstein ring.

In addition assume that I is equimultiple, then as an immediate consequence of Theorem
4.1 we have the following theorem.

THEOREM 4.2. Let (A,m) be a Noetherian local ring with dim A = d ≥ 2, I an equi-
multiple ideal of A with grade I ≥ 2. Assume that A satisfies the Serre’s condition (Sht(I )).

Then R(I) is a Gorenstein ring if and only if G(I) is Gorenstein and r(I) = ht(I)− 2. In this
case, A is Gorenstein.

Finally, we close the paper with a different proof of the following theorem.

THEOREM 4.3 [15, Theorem 4.1]. Let I be an ideal of A with ht(I) > 0. Suppose that
dim A = d. Then R(I) is CM if and only if the following conditions are satisfied :

(i) [Hi
M(G(I))]n = 0 for all n �= −1, i = 0, . . . , d − 1.

(ii) r(I�) ≤ ht(p) − 1 for every prime ideal p � I with �(I�) = ht(p).

We emphasize that Johnston-Katz’s method in [9] yielded important information con-
cerning the so-called Castelnuovo regularity of a graded ring S with respect to an ideal of S,
see [9, Proposition 2.1]. Using Proposition 2.1 [9], we can give a single proof of Theorem
4.3.

2. Local reduction numbers of a graded algebra

In this section, we define the notion of local reduction numbers and give the proof of
Theorem 2.7.
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Let I be an ideal of A. An ideal J is called a reduction of I if J ⊆ I and In+1 = J In

for some non-negative integer n. A reduction J is called a minimal reduction if it does not
properly contain any other reduction of I. These notions were introduced by Northcott and
Rees [10]. They proved that every minimal reduction of I is minimally generated by � =
�(I) := dim

⊕
n≥0 (In/mIn) elements, and �(I) is called the analytic spread of I . It is well-

known that ht(I) ≤ �(I) ≤ dim A and the difference ad(I) := �(I) − ht(I) is called the
analytic deviation of I . In the case ad(I) = 0, the ideal I is called equimultiple. Let J be
a reduction of I. The least integer n such that In+1 = J In is called the reduction number
of I with respect to J and we denote it by rJ (I). The reduction number of I is defined by
r(I) := min{rJ (I) | J is a minimal reduction of I }.

Throughout this paper let S := ⊕
n≥0 Sn be a finitely generated standard graded algebra

over a Noetherian local ring S0 having an infinite residue field. Recall that an graded ideal
J generated by 1-forms of S is a reduction of S+ if Jn = Sn for some integer n. The least
integer n such that Jn+1 = Sn+1 is called the reduction number of S+ with respect to J and
we denote it by rJ (S+). Set

ai(S) := inf{a ∈ Z | [Hi
S+(S)]n = 0 for all n > a} ,

ai(S) := inf{a ∈ Z | [Hi
M(S)]n = 0 for all n > a} ,

a∗(S) := max{ai(S); for all i ≤ dim S}
where d = dim S and M is the maximal graded ideal of S.

Note that ad(S) = a(S), which is called the a-invariant of S [3] and if S is CM then
a∗(S) = a(S).

DEFINITION. Set Li(I) := {I ⊆ p ∈ Spec A | �(I�) = ht(p) ≤ i}; i ≤ �(I), ht (I) =
h. The number

ri (I ) =
{

max{−h, a0(G(I))} + i if i < h

max{a0(G(I)), r(I�) − ht(p) | p ∈ Li(I)} + i if h ≤ i ≤ �(I)

is called the i − th local reduction number of I.

For any p ∈ Spec S0 we denote by S� the localization of S at the multiplicatively closed

set S0\p. Set ht(S+) = h,

Li(S) = {p ∈ Spec S0 | �(S+
� ) = ht(p) + h ≤ i}; for i ≤ �(S+).

The number

ri(S) =
{

max{−h, a0(S)} + i if i < h

max{a0(S), r(S+
� ) − ht(p) − h | p ∈ Li(S)} + i if h ≤ i ≤ �(S+)

is called the i − th local reduction number of S.

A sequence x1, . . . , xr of homogeneous elements of S is called [t1, . . . , tr ]-regular if
[(x1, . . . , xi−1) : xi]n = (x1, . . . , xi−1)n for all n ≥ ti , i = 1, . . . , r [1], [11]. If all
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t1, . . . , tr are finite then x1, . . . , xr is called a filter-regular sequence [11]. By [11, Lemma
3.1], every minimal reduction of S+ can be minimally generated by a filter-regular sequence
of homogeneous forms of degree 1.

Let J be a minimal reduction of S+. We denote by S(J ) the least number t such that there
exists a homogeneous minimal generating set x1, . . . , x� of J which is [t + 1, . . . , t + �]-
regular on S [1].

In [14, Theorem 2.2] Trung gave the following characterization of a∗(S).

LEMMA 2.1 [14, Theorem 2.2]. Let J be an arbitrary reduction of S+ generated by
forms of degree 1. Then a∗(S) = max{S(J ), rJ (S+) − �(S+)}.

This lemma is a bridge between the a∗-invariant and the local reduction numbers, which
is an important key to the proof of Theorem 2.7.

LEMMA 2.2 [15, Proposition 2.1 (iv)]. Let J be a minimal reduction of S+. If Y is a
minimal reduction of S+ such that r(S+) = rY (S+) then

rJ (S+) ≤ max{S(J ) + �(S+), S(Y ) + �(S+)} .

Although the notion of local reduction numbers is generalized, it is an easy check that
the following result holds.

REMARK 2.3.
(i) ri+1(S) = ri(S) + 1 for all i < h − 1,

ri+1(S) = max{ri (S) + 1, r(S+
� ) | p ∈ Li+1(S)\Li(S)}, h ≤ i ≤ �(S+) − 1 ,

rh(S) = max{a0(S) + h, r(S+
� ) | ht(p) = 0}

≥ max{0, a0(S) + h} = rh−1(S) + 1 .

(ii) ri (S�) ≤ ri(S), i ≤ �(S+).

Let us consider the following conditions.

(Ci) : [(x1, . . . , xi) : xi+1]n = (x1, . . . , xi)n for all n ≥ ri (S) + 1, 0 ≤ i < � .

(C�) : rJ (S+) ≤ r�(S) .

Using the same arguments as in the proofs of Lemma 3.4 and Lemma 3.5 in [1], we get
the following lemmas.

LEMMA 2.4. Let J be a minimal reduction of S+ generated by forms of degree 1 and
�(S+) = �. Suppose that S satisfies the Serre’s condition (S�) and J = (x1, . . . , x�). Fix i

such that 0 ≤ i < �. Assume that the sequence x1, . . . , x� satisfies (Cj ) for all 0 ≤ j < i.

Let P = p + S+ for p ∈ Spec S0 with ht(P) > i. Then

[Hk
��

(S�/(x1, . . . , xi)�)]n = 0

for all n ≥ ri−1(S) + 2 and all k < min{ht P, �} − i.
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LEMMA 2.5. Let S, J, � be as in Lemma 2.4. Let Ui be the intersection of the primary
components of the ideal (x1, . . . , xi) such that their associated prime ideals contain S+ and
have the height at most i,

Vi =
⋃
n≥0

[(x1, . . . , xi) : (S+)n] .

Assume that (Cj ) holds for all 0 ≤ j < i < �. Then [Ui ∩ Vi]n = (x1, . . . , xi)n for all
n ≥ ri−1 + 2.

Note that when S satisfies the Serre’s condition (S�), the proofs of Lemma 2.4 and
Lemma 2.5 only use the increasing property of a sequence of local reduction numbers as
in [1] and [15]. But this property is also true for our new local reduction numbers by Remark
2.3. So using the same arguments as in [1] and [15] we get the above lemmas.

Satisfactory tools for the proof of Theorem 2.7 are Lemma 2.1 and the following propo-
sition.

PROPOSITION 2.6. Let J be a minimal reduction of S+ generated by forms of degree
1 and �(S+) = �. Suppose that S satisfies the Serre’s condition (S�). Then

(i) For any filter-regular sequence x1, . . . , x� of S which generates J , x1, . . . , x�

is [r0(S) + 1, . . . , r�−1(S) + 1] -regular.
(ii) rJ (S+) ≤ r�(S).

By using the above lemmas and the notion of our local reduction numbers and by arguing
as in the proof of [1, Theorem 3.2], we see that the key to the proof of this proposition is the
starting point of the following inductive argument.

PROOF. Set Ji = (x1, . . . , xi), ht (S+) = h. Note that

r0(S) =
{

max{−h, a0(S)} if 0 < h

max{a0(S), r(S+
� ) − ht(p) − h | p ∈ L0(S)} if h ≤ 0 ≤ �(S+) .

The proof is by induction on d = dim S. If d = 0 then � = h = 0, so we only need to
check the condition (C0). In this case, we have J = 0. Consequently

r0(S) = max{a0(S), r(S+
� ) | p ∈ L0(S)} = a0(S) = r(S+) = rJ (S+) .

Hence (C0) holds. Thus, the result is true for d = 0.
Assume now that d > 0. Suppose that the result has been proved for dim S < d. We

need to show that the result is true for d.

We first will prove by induction on i that (Ci) holds whenever i < � = �(S+).

We need to check the condition (C0). We shall see that the conclusion follows from the
following cases.

Note that if ht(S+) = 0 then r0(S) = max{a0(S), r(S+
� ) | p ∈ L0(S)} and if h =

ht(S+) > 0 then r0(S) = max{−h, a0(S)}.
Suppose that h = ht(S+) = 0.
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If L0(S) = ∅. Then r0(S) = a0(S). Thus, (C0) is true.
If L0(S) �= ∅. By p ∈ L0(S), �(S+

� ) = 0, S+
� is nilpotent. From this it follows that

r(S+
� ) = a0(S�) ≤ a0(S). Hence r0(S) = a0(S), so (C0) is also true.

Now suppose that h = ht(S+) > 0.

If H 0
S+(S) = 0. Then r0(S) = −h and 0 : x1 = 0. Hence (C0) is true.

If H 0
S+(S) �= 0. Then a0(S) ≥ 0 and r0(S) = a0(S). So (C0) is true.

Thus, the condition (C0) has been proved.
Assume that i ≥ 1 and assume by induction that (Cj ) holds for all 0 ≤ j < i. As the

next step, we claim that (Ci) is true. By Lemma 2.5 we know that

(x1, x2, . . . , xi)n = [Ui ∩ Vi]n for all n ≥ ri (S) + 1

since ri(S) + 1 ≥ ri−1(S) + 2. Let P ∈ Ass(S/Ui) and p = P ∩ S0. Since ht(P) ≤ i < �, it
follows that dim S� ≤ i < �. Then by [1, Corollary 2.2 and Lemma 2.4], (Ji)� is a reduction

of S+
� . Since dim S� ≤ i < � ≤ dim S = d, applying the inductive hypothesis to S� we have

r(Ji)�(S
+
� ) ≤ rk(S�) ≤ rk(S) ≤ ri (S)

for k = min{i, �(S+
� )}. Thus,

[(Ji)�]n = [S�]n for all n ≥ ri (S) + 1 .

By [1, Lemma 3.3] we get [Ui]n = [Si ]n for all n ≥ ri (S) + 1.

Next, the same arguments as in the proof of [1, Theorem 3.2] show (Ci) if i < �. Thus,
the induction on i is complete. So we have proved that (Ci) is true for all i < �. This implies
that S(J ) ≤ r�−1(S)− �+ 1. Then by Lemma 2.2, we get rJ (S+) ≤ r�−1(S)+ 1. By this fact
and r�−1(S) + 1 ≤ r�(S), it follows that rJ (S+) ≤ r�(S). Hence (C�) holds. So the induction
on d is complete. Proposition 2.6 has been proved.

THEOREM 2.7. Let J be an arbitrary minimal reduction of S+ generated by forms of
degree 1 and �(S+) = �. Suppose that S satisfies the Serre’s condition (S�). Then

(i) max{r�−1(S) + 1, rJ (S+)} = r�(S).

(ii) max{r�−1(S) + 1, a∗(S) + �} = r�(S).

PROOF. By Remark 2.3 (i), we get

r�(S) = max{r�−1(S) + 1, r(S+
� ) | p ∈ L�(S)\L�−1(S)}

≤ max{r�−1(S) + 1, rJ (S+)} .

By Proposition 2.6, we have rJ (S+) ≤ r�(S). Using the above facts and r�−1(S) + 1 ≤ r�(S)

we can deduce that

r�(S) = max{r�−1(S) + 1, rJ (S+)} .

Hence (i) of Theorem 2.7 holds. By Lemma 2.1, we get

a∗(S) + � = max{S(J ) + �, rJ (S+)} .
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Therefore

max{r�−1(S) + 1, a∗(S) + �} = max{S(J ) + �, r�−1(S) + 1, rJ (S+)} .

By Proposition 2.6 we have S(J ) + � ≤ r�−1(S) + 1. Using this inequality we get

max{S(J ) + �, r�−1(S) + 1, rJ (S+)} = max{r�−1(S) + 1, rJ (S+)} .

Combining the above facts we obtain

max{r�−1(S) + 1, a∗(S) + �} = max{r�−1(S) + 1, rJ (S+)} .

This equality together with the equality (i) proves that

max{r�−1(S) + 1, a∗(S) + �} = max{r�−1(S) + 1, rJ (S+)} = r�(S) .

Thus, (ii) of Theorem 2.7 holds. The proof of Theorem 2.7 is now completed.

3. Local reduction numbers of ideals

In this section we give some interesting applications of Theorem 2.7.
We will be concerned with a Noetherian local ring (A,m, k) of dim A = d > 0 having an

infinite residue field k. Set G = G(I) and G+ = ⊕
n≥1 (In/In+1). For any prime ideal p of

A we denote by G� the localization of G at the multiplicative closed set A\p. Set R = R(I).

It can be verified that if P = p + R+(I) then dim G� = dim G� and G(I�) = G(I)�. Set
h = ht (I), � = �(I).

REMARK 3.1. If A is equidimensional and catenary and ht(I) = h, then

ri (G) =
{

max{−h, a0(G)} + i if i < h

max{a0(G), r(G+
� ) − ht(p) | p ∈ Li(I)} + i if h ≤ i ≤ �

and since r(G+
� ) = r(I�) for every p ∈ Spec A, we have ri (G) = ri(I ) for all i ≤ �.

Then as immediate consequences of Theorem 2.7 we have the following results.

THEOREM 3.2. Let I be an ideal of A with ht(I) > 0. Set � = �(I). Let J be a min-
imal reduction of I . Suppose that G(I) satisfies the Serre’s condition (S�) and A is equidi-
mensional and catenary. Then

(i) max{r�−1(I) + 1, rJ (I)} = r�(I).

(ii) max{r�−1(I) + 1, a∗(G) + �} = r�(I).

In the case that A and G(I) are CM, we get Theorem 4.4 in [1]. And in the case that I is
equimultiple, we get the following theorem.

THEOREM 3.3. Let I be an equimultiple ideal of A with h = ht(I) > 0 and let J be
a minimal reduction of I . Suppose that G(I) satisfies the Serre’s condition (Sh) and A is
equidimensional and catenary. Then rJ (I) = rh(I) = a∗(G) + h.
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PROOF. We see that if I is an equimultiple ideal of A with ht (I) = h > 0, then
Li(I) = ∅ for all i < h. From this it follows that

max{rh−1(I) + 1, rJ (I)} = max{0, a0(G) + h, rJ (I)}
= max{a0(G) + h, rJ (I)} = rh(I)

and

max{rh−1(I) + 1, a∗(G) + h} = max{0, a0(G) + h, a∗(G) + h} = rh(I)

By [14, Corollary 2.8] we have a∗(G) ≥ a0(G). Hence

rJ (I) = max{0, rJ (I)} = rh(I) = max{0, a∗(G) + h} .

By Lemma 2.1, a∗(G) + h ≥ rJ (I). So rh(I) = rJ (I) = a∗(G) + h.

Note that

rh(I) = max{a0(G) + h, r(I�) | I ⊆ p ∈ Spec A with ht (p) = h} .

As a consequence of Theorem 3.3 we have the following proposition.

PROPOSITION 3.4. Let I be an equimultiple ideal of of A with h = ht(I) > 0 and let
J be a minimal reduction of I. Suppose that grade G(I)+ ≥ h and A is equidimensional and
catenary. Then

rJ (I) = a∗(G(I)) + h = max{r(I�) | I ⊆ p ∈ Spec A with ht (p) = h} .

PROOF. Since grade G(I)+ ≥ h, G(I) satisfies the Serre’s condition (Sh). By Theo-
rem 3.3, rJ (I) = a∗(G) + h. Since grade G+ > 0,

rh(I) = max{r(I�) | I ⊆ p ∈ Spec A with ht (p) = h} .

In the case that G(I) is CM, from Proposition 3.4 we immediately get the following
corollary.

COROLLARY 3.5. Let I be an equimultiple ideal of A and let J be a minimal reduction
of I . Suppose that G = G(I) is CM and A is equidimensional and catenary. Then

rJ (I) = a(G) + h = max{r(I�) | I ⊆ p ∈ Spec A with ht (p) = h} .

And I is an ideal of the principal class if and only if a(G) = −h.

4. On the Cohen-Macaulayness and Gorensteinness of Rees algebras

In this section, we first will use the results of Section 3 to study the Gorenstein property
of the Rees algebra R(I). Next, we give a different proof of Theorem 4.1 [15].

THEOREM 4.1. Suppose that I is an ideal with grade I ≥ 2, A satisfies the Serre’s
condition (S�(I )). Then R(I) is Gorenstein if and only if the following conditions are satisfied :
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(i) G(I) is Gorenstein.
(ii) r(I�) = ht(p) − 2 for every prime ideal p � I with ht(p/I) = 0.

(iii) r(I�) ≤ ht(p) − 2 for every prime ideal p � I with �(I�) = ht(p) ≤ �(I).

In this case, A is a Gorenstein ring.

PROOF. (⇒) Set R = R(I) and G = G(I). Let P be a prime ideal of R with P∩A =
p ∈ Spec A. If P �⊇ R+ then G� is CM by [12, Proposition 3.3]. If P ⊇ R+ then from R is

CM, by [12, Theorem 2.1] we get [Hi
��

(G�)] 
 Hi
�A�

(A�) for all i < dim A�. Combining

the above facts with the property of A, it follows that G satisfies the Serre’s condition (S�).

Let p � I be a minimal prime ideal of I. After localizing we get that I� is pA�-primary. R�

Gorenstein, by [12, Theorem 2.1] we have ai(G�) < 0 for all i < ht (p) = ht (I) := h. And

by [8], ah(G�) = a(G�) = −2. By [11, Proposition 3.2] we get r(I�) = a(G�) + h = h − 2.

This gives (ii). We now prove (iii) by induction on ht(p) with I ⊆ p and �(I�) = ht(p) ≤ �(I).

Assume by induction that (iii) holds for all q � I with �(I�) = ht(q) < ht(p). Set �(I�) := ��.

Since A satisfies the Serre’s condition (S�), A� is CM. Note that R� is Gorenstein. Hence, by
[13, Corollary 3.5], G� is CM and a∗(G�) = a(G�) = −2. Applying Theorem 3.2 we get

r��(I�) = max{r��−1(I�) + 1, a∗(G�) + ��}.
Since

r��−1(I�) =
{

max{− ht (I�), a0(G�)} + �� − 1 if �� ≤ ht(I�)

max{a0(G�), r(I�) − ht(q) | q ∈ L��−1(I�)} + �� − 1 if �� > ht(I�)

and grade G+
� > 0, by the inductive hypothesis r(I�) ≤ ht(q) − 2 we have

r��−1(I�) ≤ �� − 3 .

Combining this inequality with a∗(G�) = −2 and Theorem 3.2 (ii) we get

r��(I�) ≤ �� − 2 = ht(p) − 2 .

Hence, by r(I�) ≤ r��(I�) we get r(I�) ≤ ht(p) − 2. Thus, (iii) holds. By the condition (iii)
we know that r(I�) ≤ ht(p) − 2 for every prime ideal p � I with

�(I�) = ht(p) ≤ �(I) .

Therefore ri (I ) ≤ i − 2 for all i ≤ �(I). Applying Theorem 3.2 we get a∗(G) ≤ −2. Since
R(I) CM, by [12, Theorem 2.1] we have

[Hi
M(G)]n = 0 for all n �= −1 , i = 0, . . . , d − 1

where M is the maximal graded ideal of R(I). Hence Hi
M(G) = 0 for all i < d. Thus, G is

CM. Hence A is a CM ring by [12]. R(I) is Gorenstein, by [13, Corollary 3.5] we get that A

and G are Gorenstein.
(⇐) The proof is immediate from [1, Theorem 5.8].
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If I is equimultiple, then from Theorem 4.1 and Corollary 3.5 we immediately get the
following result.

THEOREM 4.2. Let (A,m) be a Noetherian local ring with dim A = d ≥ 2, I an equi-
multiple ideal of A with grade I ≥ 2. Assume that A satisfies the Serre’s condition (Sht(I )).

Then R(I) is a Gorenstein ring if and only if G(I) is Gorenstein and r(I) = ht(I)− 2. In this
case, A is Gorenstein.

By the study of the relationship between the local reduction numbers of an ideal I and
the a∗-invariant of the Rees algebra R(I) satisfying the Serre’s condition (S�(I )), Viet in [15]
gave the following theorem.

THEOREM 4.3 [15, Theorem 4.1]. Let I be an ideal of A with ht(I) > 0. Suppose that
dim A = d and M is the maximal graded ideal of R(I). Then R(I) is CM if and only if the
following conditions are satisfied:

(i) [Hi
M(G(I))]n = 0 for all n �= −1, i = 0, . . . , d − 1.

(ii) r(I�) ≤ ht(p) − 1 for every prime ideal p � I with �(I�) = ht(p).

We would like to point out that by applying [11, Proposition 3.2] and the following
lemma [9, Proposition 2.1], we can give a different proof of this theorem.

LEMMA 1 [9, Proposition 2.1]. Let S := ⊕
n≥0 Sn be a finitely generated standard

graded algebra over a Noetherian local ring S0. Set d(p) = dim Sp and p = p + S+ with
p ∈ Spec S0. Suppose that dim S = d. Then

(i) Let r be an integer such that Hi
�(Sp)j = 0, for all j ≥ r, p ∈ Spec S0, and all i,

0 ≤ i ≤ d(p). Then for any homogeneous ideal J which contains S+, H i
�
(S)j = 0 for all

j ≥ r and 0 ≤ i ≤ d.

(ii) Conversely, suppose that s be an integer satisfying Hi
S+(S)j = 0 for all j ≥ s and

0 ≤ i ≤ d. Then, for all p ∈ Spec S0 and 0 ≤ i ≤ d(p), H i
�(Sp)j = 0 for all j ≥ s.

(iii) Let t be an integer such that H
d(p)

S+
p

(Sp)j = 0, for all j ≥ t and p ∈ Spec S0. Then

for any homogeneous ideal J which contains S+, Hd
�
(S)j = 0, for all j ≥ t .

PROOF OF THEOREM 4.3. (⇒) Set R = R(I) and G = G(I), d(p) = dim Ap,

ai(G) := inf{a ∈ Z | [Hi
G+(G)]n = 0 for all n > a} ,

ai(G) := inf{a ∈ Z | [Hi
M(G)]n = 0 for all n > a} ,

a∗(G) := max{ai(G); for all i ≤ dim G} ,

L(I) := {I ⊆ p ∈ Spec S0 | �(Ip) = dim Ap} .

Suppose that R is CM and p ∈ L(I). By [12, Theorem 2.1] we get (i) and Rp is also CM.
By [12, Theorem 2.1], a∗(Gp) < 0. For all q ⊆ p and q ∈ Spec A, set q∗ = qAp, we have
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(Rp)q∗ CM. Hence a∗((Gp)q∗) < 0. By Lemma (i), ai(Gp) < 0 for all i. Hence, by [11,
Proposition 3.2], r(Ip) ≤ �(Ip) − 1 = ht(p) − 1. So (ii) holds.

(⇐) First we show that ad(p)(Gp) < 0 for all p ∈ Spec A. If p �∈ L(I), then
�(Ip) < d(p), so ad(p)(Gp) = −∞. If p ∈ L(I), by (ii) we have

r(Ip) ≤ ht(p) − 1 = d(p) − 1 .

Hence, by [11, Proposition 3.2] we get ad(p)(Gp) < 0. So ad(p)(Gp) < 0 for all p ∈
Spec A. By Lemma(iii), a(G) < 0. Thus, R is CM by [12, Theorem 2.1]. The proof is

complete.
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