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0. Introduction

The present paper can be viewed as a continuation of [6], where we treated the case of
Barnes’ double zeta function. Here we handle mainly the case of Barnes’ triple zeta function
and prove the three term formula for odd Apostol’s generalized Dedekind sum. It seems to be
new.

Our method is the same as [6], namely we compute the contour integral representation of
the Barnes’ triple zeta function. Section 1 concerns the general Barnes multiple and twisted
multiple Bernoulli polynomials. This, in section 2, enables us to get generally residues at
poles of the integrand of the contour integral of the Barnes multiple zeta function. In section
3, we shall quote results of Apostol[1] for later use and derive some formulas relative to
Lambert series and Apostol’s generalized Dedekind sum.

In the last of section 3, we derive the formula to be called the "three term formula" for
odd Apostol’s generalized Dedekind sum.

1. Multiple Bernoulli numbers and polynomials twisted by &

1.1. Barnes’ polynomial. Barnes[2] (cf. [7]) introduced r-ple Bernoulli polynomials
rSn(u; @) by

(—Drre™ I (=DESE s o)
[T (=) ~ = k=1
(1.1.1) N
(=) (u; @) ,
+2 p '
n=I1
for |#| < min{|27/w1], -, |27 /w:|}. Here wy, ---, @, are complex numbers with positive
real parts and @ = (w1, -+, wp). rka)(u; @) means the k-th derivative of S| (u; @) with

respect to u.
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The n-th Bernoulli polynomial B, (u) is defined by

B, = B,(0) is the n-th Bernoulli number. Then
By(u) = (B +u)",

where we understand B/ = B ;. the j-th Bernoulli number, in the binomial expansion of the
right-hand side.
Observing that

(=D"te™  Tli_i(=wit) ot [ St 0
[T —e@t) [l =1 =l [lis o
1 -1
= exp(—(lBa)l + .- +"Bw, + u)t)ﬁ . (r—) ,
t [Ti2, wi

we have forn = 1

1 r n+r—1
Bw, +---+'B !
(1.1.2) LS (s @y = Bt @ Fu) n
[Toywi-(m+r—1)

where in the multinomial expansion of the right,

(‘B)’ (= j-th power of '‘B) = B;,

but
(B - ('B)* # Bjy for i+#i.

1.2. Twisted Bernoulli for r = 1. Let o # 1 be a complex number. We define the
Bernoulli number B[«], twisted by « (simply twisted Bernoulli number) by

1 & Blal,
(1.2.1) (1—a)1_—w_r§)—n! "

Then Bla]o = 1. Differentiating (1.2.1) with respect to #, we have

—t

e o~ Blatlut
_ n+l pn
(1.2.2) —a(l _“)(1—ae—f)2 => et
n=0
The left hand side is
1 —t
—a(l —a)

1 —qe! 1—ae"e

x 1 X 2 x n
o Blal, n Bla], n (=D n
T -« Z n! r Z n! r Z n! !

n=0 n=0 n=0
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.« 1 2
= — exp(('Bla] +“Bla] — D)t).

Hence

ProprosiTION 1.2.1
Blaliy1 = ——('Blal+?Bla] = )" for nZ0.

In the above,
‘Blar)’ (j — th power of ‘Bla]) = Bla]; for i =1,2,
but
1 j 2 k .
Bla) ?Blal* # Blaljk .

From the proposition, we have for example,

o a(l + ) a(@® +4a+1)
Blalj = ——, Bloh=——", Bloh=————=,
ol = o= Blelk =y Blals P
a(@® + 112 +1la+ 1) oo + 2603 + 6602 + 26a + 1)
Blals = : . Blals = - :
(@—1) (@—1)
a(@® 4 57a* 4+ 302a3 + 30202 + 57 + 1)
(@—1)
and
a(@® + 1200 + 1191a* + 241603 + 119102 + 120« + 1)
Blal; = 7
(@—1)
Put
(o — 1)n+l
(1.2.3) Py(@) = ————Blalyy1 for n=20.
o

P, () is called the Euler polynomial. It is first introduced by Euler in his “Institutiones
Calculi Differentialis, 1755 (cf. [3]). In [3],

Yn(p) = (=1)"Py—1(=p)

is called the Eulerian polynomial.

It is known that with respect to «, P, () is a reciprocal and monic polynomial of degree
n with positive integral coefficients.

The Bernoulli polynomial B[«], (1) twisted by « is defined by

—u

(1 —a)—— Z B[“]n(”)

1 —ae?
n=
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Then the left hand side is

S Blaly , = ()",
PIE D Bh

n=0 : n=0
Hence we have

(1.2.4) Blal,(u) = (Bla] —u)" .

In (1.2.4), we mean that (B[a])* = B[a]k.

1.3. Twisted Bernoulli for r > 1. Letay, - -, a, be complex numbers such that
ol £1, a;#1 fori=1,2,---,p,
(13.1) lei| = t #* p
ap=1 fori=p+1,---,p+q(=r).
Further, let w1, - - -, w, be complex numbers with positive real parts. Then we define

twisted multiple Bernoulli polynomials B[]y (u; @) by

(1.3.2)

’

Hle(l _ai)e_uttq i Ol]]\/(u ) N
[Tio, (1 —ajeit)

where @ = («q, ---, o) and @ = (w, - -+, wy).
When p =0, i.e.,all o; are 1, the relation with ,-S) (u; @) is given by

(—DN, Sy_, ;@) - N!

B[(L, -+, DIn(u; @) =

(N—r+1)!
The left hand side of (1.3.2) is equal to
+
ﬁ l—a ’i_i’ (o) a1
— qje—oil —wit _ ptq
i:ll e i=p+1 € “ 1 [T:Z =p+1 @i
)4 [} p+q 00 [}
Blailn - (0)" , B, - (—w)" , (—w)" ,
=[](Z e ) T (™) S
i=1 “n=0 i=p+1 “n=0 n=0
1
p+q
Hi=p+] wj
= exp(('Blay]wy + - - +7 Blalpwp —P T ' Bwpyt — -« =P Bw,y, — u)t)
1
pte
Hz =p+1 i

By (1.3.2), we have
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PROPOSITION 1.3.1

~ ~ 1
Blaly (u; ©) = —r——
i=p+1 i
- (Blar]w1 + -+ + Blaplop =" Bopiy — - =" Bapy — )N .

In the multinomial expansion of the right, the general term is of the form

(_1)k1+~~'+kr+1 . 'B[al]kl "‘B[ap]kkap+1 "‘Bkr 'l/tkrJrl .

1 keg!
and
Blaili; = aPy—1(a;)/(c; — DFi

with Euler polynomial Py ().
In particular, this means that B[@]x (1; @) is a polynomial of

1 1

1—o 1 —ap

’

since we can write Py (¢;) as a polynomial of 1 — ¢; and we have

o 1—0[,'—1_ 1

I—ap)) — (A—a))  (I—a)

2. Barnes’ multiple zeta functions

2.1. Barnes’ r-ple zeta functions. Letu, w1, -- -, @, be complex numbers with pos-
itive real parts. Barnes’ r-ple zeta function ¢, (s; u, ®) ([2]. cf. [7]) is defined by
> 1

Glsu, @)=Yy Re(s) > r.

0 (u+miw) +---+mpwp)t

my ey =

Here w® = exp(slog w) and logw = log |w| + i argw with —7 < argw < 7 for any
complex number w not on the non-positive real line. We have a contour integral representa-
tion of ¢,:

_ F(l _ s)e—sm' e—utts—l
2.1.1) o (s u, @) = 4/
1

, _ ¢ u
2mi (A, 00) l_[?:] (1 — e—wil)

where I (A, 00) is the path consisting of the real line from +oco to A, the circle around 0
of radius A counter-clock wise from XA to A and the real line from A to +o00. Via (2.1.1),
¢r(s; u, @) can be continued holomorphically to the whole complex plane, except for simple
polesats =1,---,r.
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We have, for a positive integer m,
(=D"S,, (u; @)
m

Gl —myu, @) =

2.1.2
( ) B (_1)r(lel+“.+rBa)r+u)m+r—l
S ommA ) mAr—1) - [[ wi
2.2. Representation of Barnes’ multiple zeta function by residues. Lethy,---, A,

be integers such that (h;,h;) = 1 fori # j. We take w; = 1/h; and write h =
(I/hy, -, 1/ hy).
We consider the integral of f (¢, h)*~! with
E_t
[Tio (1 —e=t/hiy”

along the path W, not going through any poles of the integrand, consisting of the rectangle G
and the bottle B with the edge P, as indicated in Fig. 1:

ft, h)=

ioo

. s
ku—

4

G

FIGURE 1.

Then we have

/+/ fa.ye~lde Y Resof f(t, ™!
G B

all poles
insideW

We can show that for P — oo,

/ f@t, e dr - 0
G

in the same way as in Siegel [9]. Hence
-1

(2.2.1) —
2 1 (X,00)

f.ye~'dt =" Resof f(t, !
all poles

#0

if the right hand side is convergent.
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Now forg with0 < g S r,t = —2minhy - - - hy with

(2.2.2) nx(modh;) forgq+1=j<r

is a pole of order ¢ of f(t, h).

PROPOSITION 2.2.1. Put oy = e*"hiha/hgrk o =1,... p p+q=r.
The residue of f(t, e~V art = —2mwinhy - -~ hg with (2.2.2) is given by

q
(s—1)--(s—q+k) . g 14k
(2.2.3) Cgth—1 (=2minhy ---hy)*~471+
; q+ (q—k)! q
with
4 p;
Cogthk—1 = =7 =1
Pd=a)- (k=1
k—1
1 1 1 1
- Bles]-—— + - - + Blay] —p+13——---—l’+43——1> .
< 1 hq+1 " hpq hi hq

PROOF.  For simplicity, put 2(q) = hy ---hy. Let the Laurent expansion of f(z, h) at
t = —2minh(q) be

~ C_ c_q
e —  —4 . 4y =
(2.2.4) f. k) (t +2minh(q))? * +t+27tinh(q)

+co+c1(t +2minh(g)) +--- .

Putt =1 4 2ninh(q). Then (2.2.4) becomes

-7

e
(1 —aje he+ry. .. (1 — o,pe—r/hr)(l —e /Yy ... (1 — e T/hg)
C—q c_1
=—+"'+—+CO+C1T+"' .
T4 T

By (1.3.2), the left hand side of this times (1 — 1) -+ - (1 — o) 77 is

B i Bl(a1, -+ ap, Lo+, DIN( )y
- NI ‘

N=0
with #’ = (1/hgs1, -+, 1/hy, 1/ hy1, -+, 1/ hy). Hence we have c_,4«_1 in the Proposition.
Since #*~! has the Taylor expanssion

s = Z (s =1 k' (s = k) (=27inh(¢))* ¥t + 2minh(q))*,
k=0 ’

we have (2.2.3) by Proposition 1.3.1.
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3. Generalized Dedekind sum

3.1. Some computations. Our intention is to compute (2.2.1) for the case r = 3.

- 1 1
Proposition 2.2.1. shows that the residue of f(z, h)r*~! is a polynomial of T—a 1 Iz
f— a f—

1
- of degree at most 2. Hence only the three types

and
1

1 1 1
l—a"’ (I—am(1—=p"" (1—a")?

appear. Here
o= g=Pi (jk=1,2,3).

We gather here the fundamental computation necessary in the following.
Let p be an integer= 1. In what follows, we denote by

> oo Y
n=—oo n=—o0
(k) k), (h)
the sum over all nonzero n such that
nx0(modk) or “nx0(modk) and =0 (modh)”.
The ' of " means “omitting n = 0”.
Here and hereafter, we understand that for p = 1,
00 n=M 00 n=M
/ / / /
= l. = 1 .
2 = jm 2, and ) = fim )
n=—00 n=—M n=-—00 n=—M

() (k) (k). (h) (k) (h)

LEMMA 1. Leta, B be the complex numbers suchthato # 1, B # land o = 1, g =
1. Then we have

(e.¢]
/
i — = ,
(i) Z wr —a”) Z for p even
n=—oo
(k) (k)
oo

.. ! a" 1
(i1) Z m = Z: m for podd,
(k) (k)
/ 1
(iii) nZ A= a5
(k). (h)




BARNES’ MULTIPLE ZETA FUNCTION AND APOSTOL’S GENERALIZED DEDEKIND SUM

_ 2 Z —nl’(l—a”) —; 4’117(1 ) Jor podd,

n_f

(k), () (k) (h)

n

o0
. ! o
(iv) Z P — a2 =0 for podd.

(k)

PROOF OF (i). Since

1 _ 1
l—an l—an’
we have
o0 o o
/
:Xzoonl’(l—a") ; ; nl’(l—ot m)
(k) (k) (k)
-y - %
= np £ nl’(l —an)’
(k) (
PROOF OF (ii). This follows from
o o
/ al ’ a "
Y o =0 Y s
n?(l —a™) nP(l —a™")
n=—oo =—0Q

(k) (k)

9]

/ 1

()

PROOF OF (iii). We have
1 1 1 1

T-an(—p) T-a" 1-F7" U—ani_pmn
Hence
o0 , 1 o0 , 1
n;oo nP(1—am) (1 — B _Z:oo np _n;oo nP(1—a=")
(k),(h) (k),(h) (k),(h)
ad 1

65

- Z nﬂ(l— SRy 0P (1= o) (1 = )

(k) (h) (k) (h)
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e¢]

ady 1 ’ 1
:n;oo nP(l —a") +nzoo nP(1—p")

(k),(h) (k),(h)

oo/ 1
L e

n=—oo

k), (h)

since
00 L1
Z — =0 forodd p.
np
n=-—00
k), (h)
Then (iii) follows.
PROOF OF (iv). From
o _ 1 n 1
1-—am2 1—a" (1—am?’
follows
o0 o0 o
/ o ’ 1 / 1
3.1.1 —_— = 4+ _.
( ) Z np(l_an)z Z nP (1 —am) Z np(l_an)Z
n=—0oo n=—oo n=—oo

(k) (k) k)
Since p is odd, we have
Pl — o2 2P (1 — o™
= nP(l1 —a") nt nP(l1 —a)
(k) k)
by putting ¢ = $ in (iii). Put this into (3.1.1) to get (iv).
Further we need the following ([1]) : for xo such that xé =1, xo #1,
k—1

1 v,
(3.1.2) T -> %o holds.

v=1
. . . . d

This is easily derived by operating xd— to
X

_ 1 —xk

T+x+x2 4 xF 1=
1 —x
and putting x = xg.
3.2. Apostol’s generalized Dedekind sum. B, (x) being the p-th Bernoulli polyno-
mial, we put

B,(x) =B,(x —[x]), for p>1land p=1, x¢Z,
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Bi(x)=0 for xeZ,

where [x] means the greatest integer not exceeding x. It is well known that

00

D P! 1 2winx
3.2.1 B =— E — , for 0= 1,
( ) p(X) (Z”i)p,,:_oo npe or 0= x <

under the convention for the sum, aforementioned for the case p = 1.
Apostol [1] generalized Dedekind sum to
k—1 v
(322) sp(h, k) = X}%Bp(hv/k),
V=

where i and k are positive integers.

s1(k, h) = s(h, k) is the original Dedekind sum. (3.2.2) is called the Apostol-Dedekind
sum.

In [1], he proved “the reciprocity formula” for odd p and (h, k) = 1:

(3.2.3) (p + D{hkPs,(h, k) + khPs,(k, h)} = (Bh — BK)"*' + pB,.1 .

Further Apostol derived the Lambert series expression for (3.2.2):

o
P! C1 1
(324) Sp(h, k) = (27‘[[)1’ E n_p . m , for odd P z 1.
n

(k)

For p = 1, (3.2.4) has been found by Dedekind from the transformation theory of
Dedekind n-function.

It is known by Rademacher [5] the three term relation for the original Dedekind sum
s(h, k) (also see Berndt [4]):

1 1 [(a b c
325 be' ' b pooy=_Ly (e b )
(3.2.5) s(bc’, a) + s(ca’, b) + s(ab’, c) 7t 12<bc+ac+ab)

where (a,b) = (b, ¢) = (c,a) = 1,aa’ = 1(mod b), bb' = 1(modc) and cc’ = 1(mod a).
Further the following three term congruence relation is known [5]:

be ca ab
(s(bc, a) — E) + <s(ca, b) — @) + (s(ab, c) — E)

_ 1 abc+ 1 (mod2)
=727 12 T 12abe M9

(3.2.6)

3.3. Lambert series and Apostol’s generalized Dedekind sum. Here 41, />, h3 are
positive integers with (h;, hj) = 1fori # j.

For brevity, we write (1) or (1, 2), for example, under ) instead of writing the sum
condition n # 0 (mod &) or “n %% 0 (mod /1) and (mod /,)” respectively.
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LEMMA 2. Foroddp =1,

- @iy
Z np(l —_ ezﬂ'li’ll’”/hz) p' sp(hl’ h2) -

2.3

1
_psp(hla h37 hZ)} )
h3

PROOF. Puta = e*"1/h Then a2 =1 and « # 1. By (3.1.2) and (3.2.1), we have

o0 o0 hy—1

/ 1 o1
D DD B
n=—oo n ( -« ) n=—oo n s 2

2.03) 2.0

hy—1 " e8] ;1 00 , 1
S e ¥
20 {,,:_oo n? (han)?
o0 o

1 -
,,Bp<h1h3u/hz)}
h3

o0 1
since E — = 0 for odd p and we get the Lemma.
n=—00 n

By Lemma 1, (iii) and Lemma 2, we get easily the following

LEMMA 3. Foroddp = 1,

o0

’ 1
Z np(l _ eZm’nhl/hz)(l _ eZm’nhl/h3)

n=—oo

(2),(3)
. Qmri)?
2p!

sp(hiha, h3)  sp(hihs, ho)
{Sp(hl7h2)+sp(hl’h3)_ £ L }

p - p
hy h3
LEMMA 4. Foroddp 2 1,

oo

! 1 Qmi)P
Z np (1 — e2minhihy/h3) = Dl sp(hiha, h3).
n=—00

3

PROOF. Puta = ¢¥Mh2/h3 By (3.1.2) and (3.2.1), we have

oo h';l

Y i >y np2h3

n=-—00 n=-—00

3 (©)
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1

h371 o0 o0
o r 1, ’
== E{Z LS W}

le n=—o0o n=—oo
@iy " @mi)?
. > iy Bphan/ hs) = == =sp (hiha, h3)
n=1
3.4. Poles. We shall compute both hands of
1=p)mi i 1 i
- G =p;lih)=—-— f@ e rdt,
I'(p) 27i J1(x,00)
3.4.1 -
41 = Z Res of f(t, h)t~P
all poles
#0
where
~ g_t
J = Ty (1 = e Thay(1 = e 177)
By (2.1.2), the left hand side of (3.4.1) is equal to
(3.4.2) (_1)17,,}1 hah (‘B ! gl pply 1>p+2
- G+t T T T T T '

There are three types of poles of f (¢, h):

Type 1. t = —2minhy, n x 0 (mod h2) and (mod £3),
t = —2minhy, n %0 (mod h3) and (mod k1),
t = —2minhy, n=x0 (modhy)and (mod hy), neZ.

All of these are poles of order 1

Type I.  t = —2mwinhihy nx0 (modh3),
t = —2mwinhyhs nx0 (modhy),
t = —2minhsh nx0 (modhy), nelZ.

All of these are poles of order 2.
Type HI. t = —2minhihoh;3, n#0, nel.

All of these are poles of order 3.

(I) For poles of type I, we have, putting o = €271/ g = ¢27iha/hs
o0 o0 1
’ ~ 1— o~ /
3.4.3 Res t, )t P =h, P(=27i)7P .
(3.4.3) Z t=—2rinh D) 1 (72mh) Z nP (1 —a)(1 — pn)

n=—0o0

n=—00o
2),(3) 2.3

69
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(II) Putt = —2minhihy, with n 50 (mod 43). This is a pole of f(z, h) of order 2.
Hence f has the Laurent expansion, around there:

c_) + Cc_1 i
(t +2mwinhi1h2)?  t+2mwinhihy

f@t, h) = co+ -

By Propositon 2.2.1

e¢]

/ ~
R t,h)™?
n; t=—2winhihy . h)
3.4.4 @
(3.4.4) .
= ) (~ea(=2minhihy)™' P p + c_i(=2minhiha)~P)
n=—oo
3)
with
1 1
h1h2 h1h2 ot Eh] +Eh2_h1h2
C_) = s C_1 = — .
2T ! hy (1 —a)? 1 —an
o = eznih]hz/h:; X
Hence
o
hihy _ / o
3.4.4) = ———=2uihihy) P S S
(3.4.4) ny ihiho) > 0o
n=—00
3)
(Lny 4 Lny (2'hh)*1’i/ 1
p— — J— —_ 7‘[‘ —_—
S+ She = hihy thihy 2 (i —an
3)
(=2ih hy)~P i/ 1
(—2mi) nPti(1 —an)

I8
(IIl) t = —2minhihyhz is a pole of order 3 of f (¢, h). Hence

A €3 c-2 Cc_]
s = (t + 2minhihah3)? " (t + 2minhihahs)? *3 + 2minhihahs teo.
By Proposition 2.2.1, we have
oo , ) 00 ) |
Z t:—27§22|h2h; fmet = Z <C3§P(P + 1)(=2minhyhyh3) P72
(3.45) "= ’ n=—00

— pcfz(—27tinh1h2h3)7p7] + c1(—27tinh1h2h3)p>
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with
c_3 = hihshsz,

c_» = —hihyh ‘Bi+23i+33i+1
-2 = 11213 hl hz h3

1 1 1
=hihohs(=— + — +— 1],
123(2h1+2h2+2h3 >

2
Lok 1Bl+231+331+1
C_1 = — — — — .
1= hihahs e I I

Thus we have

1

o0
1 ,
_1 i —p-2
(3.4.5) = 2 p(p + Dhihohs (=21 ihihahs) > e

n=—oo

1
nptl

o0
1 1 1 )
— phihohs| — + — + — — 1 |(=27ih1hahz) P!
phih; 3(2}” +2h2+2h3 )( wihihah3) Z

n=—oo

—i—lhhh Bl+zBl+3Bl+l2(2'hhh)_p g
= — — — —27 —.
21231h1 ha h3 HANS np

n=—oo

3.5. Three term formula of Apostol’s generalized Dedekind sum for odd p. In this
subsection, p is assumed to be odd throughout and we shall compute the right hand side of
(3.4.1). Because of Lemma 1(iv), the case of odd p can be handled easily.

For poles t = —2minh; of type (I), we have by Lemma 3,

(3.4.3) = h) P(=2mi)~P
Qmi)?
. 2p!

sp(hiha, h3) Sp(hlh?nhZ)}

{Sp(hl,h2)+5p(hl,h3)— P 1z
hz h3

For other poles of type I, we compute in the same way, on cycling 1, 2, 3 to 2,3, 1 or 3,
2, 1. Hereafter we use the symbol Y ¢ to denote the cycling sum on 1, 2, 3. For example,
Y sp(hi, ha) = sp(hy, ha) + sp(ha, h3) + sp(h3, hy) .
Then the contribution of all poles of type I to the right hand side of (3.4.1) is

1 _
—z—p,Z”h} Psp(h1, h2) + sp(h1, h3))
(3.5.1) '

1 ¢, 1—p|splhiha, h3)  sp(hih3, hy)
+ _Zchl p{ + .
2p! hy hy
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We continue our computation: by the reciprocity formula (3.2.3), the first cycling sum
of (3.5.1)1is

S hy s p(hy, ha) + sp(hi, ha)) = by Psp(hi, o) + by Psp (ki hs)
+ 1y Psp(ha, h3) + by Ps,p(ha, hy)

+hy Psp(hs, hy) + by Psp(hs, o)

1
= W{fnhfsp(hl, h2) + hah{sp(h2, h1)}

1
(h Y )p{hzh Psp(ha, h3) + h3hb s, (h3, hy)}

1
P P
+ (h3h1)p{h3h1sp(h3,h1)+h1h3sp(h1,h3)}
1 (Bhi =2Bhp)P*1  p
= ZC p+lz
p+1 (h1ho)P p+1 (h1h )P

The second cycling sum of (3.5.1) is

ch1+h2
hiha, h
=y (hh)psp( 1h2, h3) .
Thus
1 (\Bh; =2 Bhy)Pt!
Cof 3.43) = — c
2 ( ) 2'(17—1-1)!2 (h1ho)?
p
3.5.2 -2 B c
(3-52) 2(p + 1! P (h1ha)P
1 . h1+h
— hiho., h3).
251 iy 112 1)

Here we used

1%, 1 ( +1)_(2n)p+1(_1)(p+3)/2
2,2 et TP TRG

For poles t = —2minh1h, of type (II), we have by Lemma 4 and Lemma 1 (i),

1 1
—| =h —hy —hih
(21+22 1h2

p(1 —1/R5%Y
Py e 3

G4d= 20+ DI Iy P
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We compute residues at other poles of type (II) in the same way. Thus the contribution
of all poles of type (II) to the right side of (3.4.1) is

1 1
=h + Ehz —hih;

1 2

(3.5.3) 25 of Guad) = HZC (hyha)P sp(hiha, h3)
PBpit (1= 1/R5
2(p + D! (h1hy)P

For poles t = —2mwinh1hyh3 of type (III), the first and the third sums of (3.4.5) vanish.
Hence the contribution of all poles of type (III) equals

— 1 1 1
(3.5.4) P == —— — —)Bps1.
(h1hah3)?(p + D! 2hy  2hy  2h3

By (3.4.1), (3.4.2), (3.5.2), (3.5.3) and (3.5.4), we have, after a straight-forward calcula-
tion, the following

THEOREM (THE THREE TERM FORMULA). For odd p = 1 and integers hy, hy, h3
such that (h;, hj) = 1,1 # j,

: hihahs)PHl 1 1 1 p+2
(p+ DY hihohYs,(hiha, h3) = %CB +2B— 3B 4 1)

p+2 hy ha h3

1
+ 5 (WS (Bhy = Bho)?™ !+ h{ ('Bha =2 Bh)"* + 13 (Bhs =2 Bh)"™*)
+ pBpy1.

Note that this is different from Rademacher’s (3.2.5) even in the case p = 1.

It may be worth noting that the right hand side of the formula in the Theorem can be
written as a linear combination of values of Barnes’ triple, double zeta functions and ordinary
Riemann zeta function (p > 1): namely

S hihohlsy(hihy, h3) = —p(hihah3)Pe3(1 — pi 1 1/hy, 1/ k. 1/ h3)
hE
+pzch 3 ;2(1 - p; ]/h], 1/h2) —Pé‘(_P)
1ho

In the above, 5:2 was introduced in [8]:

oo

ta(ss b, k) = Z/

m,n=0

1
(mh + nk)$

where / means that (m, n) = (0, 0) is omitted from the sum.
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