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and Ramanujan’s Formula
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1. Introduction

Let ζ2(s; w; ω1, ω2) be the Barnes double zeta function [2], [9].
In the present paper, we show that the residue computation of the contour integral repre-

sentation of ζ2(s; 1; 1, ω) yields
(1) the reciprocity formula of Apostol’s generalized Dedekind sum [1] for rational ω,

and
(2) Ramanujan’s formula for values of Riemann zeta function at positive odd argu-

ments [6], [8] as the limit case of the formula obtained for irrational ω．This shows that, in a
sense, the Dedekind sum and Ramanujan’s formula live on the same ground provided by the
Barnes double zeta function.

As for (1), more generally, we shall derive the reciprocity formula for the Apostol-
Rademacher Dedekind sum using more general ζ2.

In [10], the authors investigated three kinds of Dedekind sums of Apostol and Apostol-
Rademacher type, by computing values of Barnes’ double zeta functions at non-positive inte-
gers and derived their reciprocity laws. Their method is algebraic. Our method is analytic.

In (2) the formula can be viewed as a limit case x + iω → iω (ω: irrational). This seems
a new view point for Ramanujan’s formula.

So, as for limit cases of (1), (2), we may think of a proof of the reciprocity formula
of Gaussian sum [12], of Riemann’s Fragmente [11] in which Riemann considered the limit
cases of formulas in Jacobi [7], and of Dedekind’s Erläuterungen [5] to it. This point of “lim-
iting” view will be important for further investigation of the Dedekind sum and Ramanujan’s
formula.

Our method is very powerful. Barnes’ multiple Riemann zeta functions of various types
relate with Dedekind sums of various types.

In a subsequent paper, we shall consider Barnes’ triple Riemann zeta function. Then, in
particular, we can derive the formula to be called “triple term formula” for Apostol’s Dedekind
sum, which is different from Rademacher’s for ordinary Dedekind sum.
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2. Barnes’ double zeta funtion

We define the Barnes double zeta function [2] (cf. [9]) by

ζ2(s; w; ω1, ω2) =
∞∑

m,n=0

(w + mω1 + nω2)
−s , Re s > 2 ,

for complex numbers w �= 0, ω1, ω2 with positive real parts. Here, for a complex number
z /∈ (−∞, 0], we put

zs = es log z , log z = log |z| + i arg z , −π < arg z < π .

The function ζ2 has the contour integral representation

ζ2(s; w; ω1, ω2) = Γ (1 − s)e−sπi

2πi

∫
I (λ,∞)

e−wt ts−1dt

(1 − e−ω1t )(1 − e−ω2 t)
,(2.1)

through which ζ2 is continued analytically to the whole complex plane except for simple poles
at s = 1 and s = 2.

Here I (λ,∞) is the contour consisting of the real line from ∞ to λ, the circle U(λ)

around the origin counterclockwise from λ to λ and the real line from λ to∞．
We have the expression

e−wt t

(1 − e−ω1t )(1 − e−ω2 t)
= 1

ω1ω2t
+

(
ω1 + ω2

2ω1ω2
− w

ω1ω2

)

+
∞∑

n=1

(−1)n−1
2S

′
n(w; ω1, ω2)t

n

n!

(2.2)

for |t| < |2π/ω1|, |2π/ω2|．Here 2S
′
n(w; ω1, ω2) is the derivative of the polynomial

2Sn(w; ω1, ω2), with respect to w, which is called the Barnes double n-th Bernoulli poly-
nomial [2] (cf. [9]).

The connection of 2S
′
n(w; ω1, ω2) with ordinary Bernoulli polynomial Br(w) is given

by

2S
′
n(w; ω1, ω2) = (1Bω1 +2Bω2 + w)n+1

(n + 1)ω1ω2
,(2.3)

where 1B =2 B is the ordinary Bernoulli number and in the multinomial expansion of the
numerator,

(iB)j = (the j -th power of iB) = Bj
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but

(iB)j · (i
′
B)k �= Bj+k for i �= i ′ .

Then we have

ζ2(1 − p; w; ω1, ω2) = 2S
′
p(w; ω1, ω2)

p
(2.4)

for a positive integer p, by the residue calculus around the origin.

3. Generalized Dedekind sum in the sense of Apostol-Rademacher

In [1], Apostol defined and investigated the generalized Dedekind sum

sp(h, k) =
k−1∑
µ=1

µ

k
B̄p

(
hµ

k

)
, h , k ∈ Z+ , (h, k) = 1 ,

where

B̄p(x) = Bp(x − [x]) for p > 1 and p = 1 , x /∈ Z ,

B̄1(x) = 0 for x ∈ Z .

We shall quote some of his results:
First we note that for odd p = 1,

(1Bh −2Bk)p+1 = (1Bh +2Bk)p+1

holds, because the left hand side is

p+1∑
s=0

(
p + 1

s

)
(−1)sBsh

sBp+1−sk
p+1−s =

p+1∑
s=0

(
p + 1

s

)
Bsh

sBp+1−sk
p+1−s

since Bs = 0 for odd s > 1 and the last formula equals (1Bh +2Bk)p+1.
For odd p, Apostol proved the reciprocity law

(p + 1){hkpsp(h, k) + khpsp(k, h)} = (1Bh −2Bk)p+1 + pBp+1(3.1)

and gives the representation of the Dedekind sum by Lambert series:
for odd p � 1,

sp(h, k) = p!
(2πi)p

∞∑
n=1

n�≡0 (mod k)

1

np

{
e2πinh/k

1 − e2πinh/k
− e−2πinh/k

1 − e−2πinh/k

}
,(3.2)
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and for even p � 2,

sp(h, k) = k − 1

kp
· Bp

2
− p!

(2πi)p

∞∑
n=1

n�≡0 (mod k)

1

np

{
e2πinh/k

1 − e2πinh/k
+ e−2πinh/k

1 − e−2πinh/k

}

= k − kp

kp
· Bp

2
.

(3.3)

In the present paper, more generally, we consider Apostol’s Dedekind sum of
Rademacher type (=Apostol-Rademacher Dedekind sum):

sp(h, k; x, y) =
k−1∑
ν=0

B̄1

(
ν + y

k

)
B̄p

(
h(ν + y)

k
+ x

)

where x, y are real numbers and we derive its reciprocity formula, from which (3.1) follows.
In “Erläuterungen” [5], Dedekind already obtained (3.2) for p = 1 and showed that the

series on the right of (3.2) is convergent for p = 1．
The points of deriving (3.2) are

k−1∑
µ=1

µxµ = k

x − 1
, for x �= 1 , xk = 1 ,(3.4)

and

B̄p(x) = −p!(2πi)−p

∞∑′

m=−∞
m−pe2πimx(3.5)

where
∑′ means the sum except for 0.

4. Ramanujan’s formula for ζ(2ν + 1)

We put, for x > 0, ν ∈ Z, ν >0,

Rν(x) = 1

(4πx)ν

{
1

2
ζ(2ν + 1) +

∞∑
m=1

1

m2ν+1(e2πmx − 1)

}
+ B2ν+2

(2ν + 2)!π
ν+1xν+1

+ πν+1
[ 1

2 (ν+1)]∑
k=1

(−1)k
B2k

(2k)! · B2ν+2−2k

(2ν + 2 − 2k)!x
ν+1−2k

= −1

(4πx)ν

{
1

2
ζ(2ν + 1) −

∞∑
m=1

1

m2ν+1(1 − e−2πmx)

}
+ B2ν+2

(2ν + 2)!π
ν+1xν+1

+ πν+1
[ 1

2 (ν+1)]∑
k=1

(−1)k
B2k

(2k)! · B2ν+2−2k

(2ν + 2 − 2k)!x
ν+1−2k
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where for odd ν, the term corresponding to k = 1

2
(ν + 1) is multiplied by

1

2
.

Then Ramanujan’s formula asserts that

Rν(x) = −Rν(−1/x) .(4.1)

This formula has been proved by several authors. A nice story of Ramanujan’s formula
can be found in Berndt’s [3], Chapt. 14.

For Lambert series
∞∑

n=1

anz
n

1 − zn
,(4.2)

it is known, in general, that

(4.2) is convergent, for any |z| �= 1, if
∞∑

n=1

an is convergent ,

and for any positive δ, 0 < δ < 1, (4.2) is uniformly convergent for |z| � 1 − δ and for
|z| � 1 + δ．Hence we do not mention the convergence of Lambert series appearing in the
sequel.

5. Deriving Ramanujan’s formula

Let ω be a positive irrational number (a complex number /∈ Q with positive real part).
We compute

1

2πi

∫
I (λ,∞)

f (t)ts−1dt , with f (t) = e−t

(1 − e−t )(1 − e−ωt )

by integrating on the path descibed below and letting P tend to ∞．Here poles

of the integrand are not on the path and Uλ does not contain any pole of the integrand except
for 0.

Then for P → ∞, the integral on the side of the square goes to 0. Its proof is the same

as in Siegel [12] using the larger one of |1 − e−t |−1 and |1 − e−ωt |−1
, so we do not reproduce

it here.
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Thus we have

−ζ2(s; 1; 1, ω) = Γ (1 − s)e−sπi
∑

all poles

Residue of f (t) ,(5.1)

provided the right hand side converges.
Now

2πin , n = ±1,±2,±3, · · ·
and

2πin
1

ω
, n = ±1,±2,±3, · · ·

are poles of the first order of the integrand.
We have

ts−1 =
{

(2πn)s−1eπi(s−1)/2 t = 2πin , n > 0 ,

(2πn)s−1e3πi(s−1)/2 t = −2πin , n > 0 .

For ω with Im ω > 0 (< 0), we have Im

(
1

ω

)
< 0 (> 0).

Then for n > 0, Im ω > 0,

arg(in/ω) = arg(n/ω) − 3

2
π , arg(−in/ω) = arg(n/ω) − 1

2
π

and for n > 0, Im ω < 0,

arg(in/ω) = arg(n/ω) + 1

2
π , arg(−in/ω) = arg(n/ω) + 3

2
π .

Hence we have, for Im ω > 0,

ts−1 =
{

(2πn/ω)s−1e−3πi(s−1)/2 t = 2πin/ω , n > 0 ,

(2πn/ω)s−1e−πi(s−1)/2 t = −2πin/ω , n > 0 ,

and for Im ω < 0,

ts−1 =
{

(2πn/ω)s−1eπi(s−1)/2 t = 2πin/ω , n > 0 ,

(2πn/ω)s−1e3πi(s−1)/2 t = −2πin/ω , n > 0 .

Then

(i) Residue at 2πin = (2π)s−1eπi(s−1)/2

n1−s (1 − e−2πinω)
, n > 0

Residue at − 2πin = (2π)s−1e3πi(s−1)/2

n1−s (1 − e2πinω)
, n > 0(ii)
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= (2π)s−1 e3πi(s−1)/2

n1−s
− (2π)s−1e3πi(s−1)/2

n1−s(1 − e−2πinω)
,

(iii) for Im ω > 0,

Residue at 2πin
1

ω
= (2π)s−1e−3πi(s−1)/2e−2πin/ω

n1−sωs(1 − e−2πin/ω)
, n > 0

= − (2π)s−1

ωs

e−3πi(s−1)/2

n1−s
+ (2π)s−1e−3πi(s−1)/2

ωsn1−s (1 − e−2πin/ω)
,

(iv) for Im ω < 0,

Residue at 2πin
1

ω
= (2π)s−1eπi(s−1)/2e−2πin/ω

n1−sωs(1 − e−2πin/ω)
, n > 0

= − (2π)s−1

ωs

eπi(s−1)/2

n1−s
+ (2π)s−1eπi(s−1)/2

ωsn1−s(1 − e−2πin/ω)
,

(v) for Im ω > 0,

Residue at − 2πin
1

ω
= (2π)s−1e−πi(s−1)/2e2πin/ω

n1−sωs(1 − e2πin/ω)
, n > 0

= −(2π)s−1e−πi(s−1)/2

n1−sωs(1 − e−2πin/ω)
,

(vi) for Im ω < 0,

Residue at − 2πin
1

ω
= (2π)s−1e3πi(s−1)/2e2πin/ω

n1−sωs(1 − e2πin/ω)
(n > 0)

= −(2π)s−1e3πi(s−1)/2

n1−sωs(1 − e−2πin/ω)
.

Assume that Re s < 0. Then the residue computation of the right hand side of (5.1) gives

(2π)s−1
∞∑

n=1

(eπi(s−1)/2 − e3πi(s−1)/2)

n1−s(1 − e−2πinω)
+ (2π)s−1ζ(1 − s)e3πi(s−1)/2




+ (2π)s−1

ωs

∞∑
n=1

(e−3πi(s−1)/2 − e−πi(s−1)/2)

n1−s (1 − e−2πin/ω)
− (2π)s−1

ωs
ζ(1 − s)eπi(s−1)/2

Im ω > 0 ,

+ (2π)s−1

ωs

∞∑
n=1

(eπi(s−1)/2 − e3πi(s−1)/2)

n1−s (1 − e−2πin/ω)
− (2π)s−1

ωs
ζ(1 − s)eπi(s−1)/2

Im ω < 0 .

Thus we have
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THEOREM 1. For Re s < 0 and irrational ω (with positive real part),

− ζ(s; 1; 1, ω) = Γ (1 − s)e−πis(2π)s−1

·
{
ζ(1 − s)e3πi(s−1)/2 +

∞∑
n=1

(eπi(s−1)/2 − e3πi(s−1)/2)

n1−s (1 − e−2πinω)

+




−ζ(1 − s)
eπi(s−1)/2

ωs
+

∞∑
n=1

(e−3πi(s−1)/2 − e−πi(s−1)/2)

ωsn1−s (1 − e−2πin/ω)

}

for Im ω > 0 ,

−ζ(1 − s)
eπi(s−1)/2

ωs
+

∞∑
n=1

(eπi(s−1)/2 − e3πi(s−1)/2)

ωsn1−s (1 − e−2πin/ω)

}

for Im ω < 0 .

(5.2)

Now for s = −2ν, ν � 1, ν ∈ Z, the left hand side of (5.2) is

−ζ(−2ν; 1, 1; ω) = 2S
′
2ν+1(1; 1, ω)

2ν + 1
= (1B + 2Bω + 1)2ν+2

(2ν + 1)(2ν + 2)ω

= 1

(2ν + 1)(2ν + 2)ω

2ν+2∑
k=0

(B + 1)k

k! · B2ν+2−kω
2ν+2−k

(2ν + 2 − k)! (2ν + 2)!

= (2ν)!
ω

ν+1∑
k=0

B2k

(2k)! · B2ν+2−2kω
2ν+2−2k

(2ν + 2 − 2k)!

(5.3)

since

Bk = 0 for odd k > 1 and (B + 1)k = Bk for k � 2 .

The right hand side of (5.2) is

2(−1)ν(2ν)!i
(2π)2ν+1

{
1

2
ζ(2ν + 1) −

∞∑
n=1

1

n2ν+1(1 − e−2πinω)

+ ω2ν 1

2
ζ(2ν + 1) − ω2ν

∞∑
n=1

1

n2ν+1(1 − e−2πin/ω)

}
.

1

(4πz)ν

{
1

2
ζ(2ν + 1) −

∞∑
n=1

1

n2ν+1(1 − e−2πnz)

}

+
(−z

4π

)ν{1

2
ζ(2ν + 1) −

∞∑
n=1

1

n2ν+1(1 − e2πn/z)

}

= πν+1
ν+1∑
k=0

(−1)k
B2k

(2k)! · B2ν+2−2k

(2ν + 2 − 2k)!z
ν+1−2k ,

(5.4)
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and the last is

= B2ν+2

(2ν + 2)!
{
zν+1πν+1 + (−π)ν+1

zν+1

}

+ πν+1
[ 1

2 (ν+1)]∑
k=1

(−1)k
B2k

(2k)! · B2ν+2−2k

(2ν + 2 − 2k)!
(

zν+1−2k +
(−1

z

)ν+1−2k)
,

where for odd ν, the term corresponding to k = 1

2
(ν + 1) is multiplied by

1

2
．

For z, with Im z > 0, we put

Fν(z) = −1

(4πz)ν

{
1

2
ζ(2ν + 1) −

∞∑
n=1

1

n2ν+1(1 − e−2πnz)

}

+ B2ν+2

(2ν + 2)!z
ν+1πν+1 + πν+1

[ 1
2 (ν+1)]∑
k=1

(−1)k
B2k

(2k)! · B2ν+2−2k

(2ν + 2 − 2k)!z
ν+1−2k ,

where for odd ν, the term corresponding to k = 1

2
(ν + 1) is multiplied by

1

2
．

Then we have

THEOREM 2.

Fν(z) = −Fν

(
− 1

z

)
.

COROLLARY (Ramanujan’s formula).

Rν(x) = −Rν

(
− 1

x

)
.

PROOF. Take the limit y → 0, z = x + iy, in Theorem 2.
This seems to be a new proof of Ramanujan’s formula.

6. Deriving the reciprocity formula for Apostol Dedekind sum

Let h, k be positive integers with (h, k) = 1. Let x, y be non-negative real numbers with
(x, y) �= (0, 0). For simplicity, we assume 1 − s = p > 0, p ∈ Z. Put

f (t) = e−(x/h+y/k)t

(1 − e−t/h)(1 − e−t/k)
.

Here we consider

−ζ2(1 − p; x/h + y/k; 1/h, 1/k)
(−1)p−1

Γ (p)
=

∑
all poles

Residue of f (t)t−p .(6.1)
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This is obtained in the same way to get (5.1).
Now poles of f (t) are given by

t = −2πinh , n �≡ 0 (mod k)(Type I)

t = −2πink , n �≡ 0 (mod h)(Type II)

and

t = −2πinhk , n = 0,±1,±2, · · · .(Type III)

Poles of (Type I) and (Type II) are of the first order and poles of (Type III) are of the
second order.

Then for residues of f (t)t−p , we have

Res at t = −2πinh is
(−2πi)−pe2πinh(x/h+y/k)

hp−1np(1 − e2πinh/k)
,(Type I)

Res at t = −2πink is
(−2πi)−pe2πink(x/h+y/k)

kp−1np(1 − e2πink/h)
.(Type II)

At t = −2πinhk, which is a pole of type (III), we have the expansions

e−(x/h+y/k)t

(1 − e−t/h)(1 − e−t/k)
= hke2πin(kx+hy)

(t + 2πinhk)2

+

(
kx + hy − 1

2
(h + k)

)
e2πin(kx+hy)

t + 2πinhk
+ · · ·

and

t−p = (−2πinhk)−p − p(−2πinhk)−p−1(t + 2πinhk) + · · · .

Hence

Res at t = −2πinhk is

(
kx + hy − 1

2
(h + k)

)
(−2πi)−pe2πin(kx+hy)

(hk)pnp

− p
(−2πi)−p−1e2πin(kx+hy)

(hk)pnp+1
.
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Therefore, the right hand side of (6.1) becomes

(−1)p

(2πi)php−1

∞∑′

n=−∞
(k)

e2πinh(x/h+y/k)

np(1 − e2πinh/k)

+ (−1)p

(2πi)pkp−1

∞∑′

n=−∞
(h)

e2πink(x/h+y/k)

np(1 − e2πink/h))

+
(−1)p

(
kx + hy − 1

2
(h + k)

)
(2πi)p(hk)p

∞∑′

n=−∞

e2πin(kx+hy)

np

− (−1)p+1p

(2πi)p+1(hk)p

∞∑′

n=−∞

e2πin(kx+hy)

np+1 ,

(6.2)

where (h), (k) under
∑

mean “n≡\ 0 (mod h)” and “n≡\ 0 (mod k)” respectively.
In (6.2), we have by (3.4) and (3.5),

∞∑′

n=−∞
(k)

e2πinh(x/h+y/k)

np(1 − e2πinh/k)
= −

∞∑′

n=−∞
(k)

e2πin(x+(h/k)y)

np

k−1∑
ν=1

ν

k
e2πinhν/k

= −
k−1∑
ν=1

ν

k

∞∑′

n=−∞
(k)

e2πin{x+(h/k)(y+ν)}

np

= −
k−1∑
ν=1

ν

k

{ ∞∑′

n=−∞

e2πin{x+(h/k)(y+ν)}

np
−

∞∑′

n=−∞

e2πin(kx+hy)

(kn)p

}

= (2πi)p

p!
{ k−1∑

ν=1

ν

k
B̄p((h/k)(y + ν) + x) −

1

2
(k − 1)

kp
B̄p(kx + hy)

}
.

(6.3)

Here we rewrite Apostol-Rademacher Dedekind sum as follows: For 1 > y � 0

sp(h, k; x, y) =
k−1∑
ν=0

B̄1

(
y + ν

k

)
B̄p

(
h

k
(y + ν) + x

)

=
k−1∑
ν=1

ν

k
B̄p

(
h

k
(y + ν) + x

)
+

(
y

k
− 1

2

) k−1∑
ν=0

B̄p

(
h

k
(y + ν) + x

)
.

(6.4)
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It is known, by Lemma 3.2 (2) of [10], that

B̄p(hv) = hp−1
h−1∑
ν=0

B̄p

(
v + µ

h

)
.

Hence

k−1∑
ν=0

B̄p

(
h

k
(y + ν) + x

)
= hp−1

k−1∑
ν=0

h−1∑
µ=0

B̄p

(
x + µ

h
+ y + ν

k

)
.

Put this into (6.4) and put the formula thus obtained into (6.3). Then we have, for the first sum
of (6.2),

(−1)p

(2πi)php−1

∞∑′

n=−∞
(k)

e2πinh(x/h+y/k)

np(1 − e2πinh/k)

= (−1)p

p!hp−1

{
sp(h, k; x, y) −

1

2
(k − 1)

kp
B̄p(kx + hy)

}

− (−1)p

p!
(

y

k
− 1

2

) k−1∑
ν=0

h−1∑
µ=0

B̄p

(
x + µ

h
+ y + ν

k

)
.

(6.5)

In the same way for the second sum of (6.2), we have, for 1 > x � 0,

(−1)p

(2πi)pkp−1

∞∑′

n=−∞
(h)

e2πink(x/h+y/k)

np(1 − e2πink/h)

= (−1)p

p!kp−1

{
sp(k, h; y, x) −

1

2
(h − 1)

hp
B̄p(kx + hy

}

− (−1)p

p!
(

x

h
− 1

2

) k−1∑
ν=0

h−1∑
µ=0

B̄p

(
x + µ

h
+ y + ν

k

)
.

(6.6)

Further, in (6.2), we have
∞∑′

n=−∞

e2πin(kx+hy)

np
= − (2πi)p

p! B̄p(kx + hy) ,(6.7)

∞∑′

n=−∞

e2πin(kx+hy)

np+1
= − (2πi)p+1

(p + 1)! B̄p+1(kx + hy)(6.8)
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and the left hand side of (6.1) equals

(−1)p
hk

(
1B

1

h
+2B

1

k
+ x

h
+ y

k

)p+1

(p + 1)! .

By the formulas just above, (6.7), (6.8), (6.5) and (6.6), we obtain

THEOREM 3. For 1 > x � 0, 1 > y � 0, (x, y) �= (0, 0), and (h, k) = 1,

(p + 1){hkpsp(h, k; x, y) + khpsp(k, h; y, x)}
= (1Bh +2Bk + kx + hy)p+1 + pB̄p+1(kx + hy)

+ (p + 1)(hk)p
(

x

h
+ y

k
− 1

) k−1∑
ν=0

h−1∑
µ=0

B̄p

(
x + µ

h
+ y + ν

k

)

− (p + 1)(kx + hy − hk)B̄p(kx + hy) .

Note that for p = 1, the formula in the Theorem becomes: for 0 < x < 1, 0 < y < 1,

kx + hy ∈ Z, and (h, k) = 1,

s1(h, k; x, y) + s1(k, h; y, x) = B1(x)B1(y)

+ 1

2

{
h

k
B̄2(y) + 1

hk
B̄2(kx + hy) + k

h
B̄2(x)

}
.

(6.9)

Here we used a consequence of the proof of the formula (2) of Lemma 3.2. [10],
k−1∑
ν=0

h−1∑
µ=0

B̄p

(
x + µ

h
+ y + ν

k

)
=

k−1∑
ν=0

h−1∑
µ=0

B̄p

(
kµ + hν + α

hk

)
= Bp

(hk)p−1 ,

with α = kx + hy ∈ Z.
Under our restriction on x and y, the formula (6.9) coincides with Rademacher’s reci-

procity formula in Theorem 4.1 [4].
So far, it is assumed that x � 0, y � 0, (x, y) �= (0, 0). In the formula of Theorem 3,

put y = 0. Then both hands are polynomials of x near 0+. Hence letting x tend to 0+, we
have the following

COROLLARY 1 (Reciprocity formula for Apostol’s Dedekind sum). For odd p � 1
and (h, k) = 1,

(p + 1){hkpsp(h, k) + khpsp(k, h)} = (1Bh −2Bk)p+1 + pBp+1 .
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PROOF OF COROLLARY. For y = 0, x → 0+, the formula in the Theorem becomes

(p + 1){hkpsp(h, k; 0, 0) + khpsp(k, h; 0, 0)}
= (1Bh +2Bk)p+1 + pBp+1

− (p + 1)(hk)p
k−1∑
ν=0

h−1∑
µ=0

B̄p

(
µ

h
+ ν

k

)
− (p + 1)hkBp .

(6.10)

By definition,

sp(h, k; 0, 0) = sp(h, k) + 1

2

k−1∑
ν=0

B̄p(hν/k)

and by Lemma 3.2. (2) of [10],

B̄p(hν/k) = hp−1
h−1∑
µ=0

B̄p

(
µ

h
+ ν

k

)
.

Hence

hkpsp(h, k; 0, 0) = hkpsp(h, k) − 1

2
(hk)p

k−1∑
ν=0

h−1∑
µ=0

B̄p

(
µ

h
+ ν

k

)
.(6.11)

Similarly,

khpsp(k, h; 0, 0) = khpsp(k, h) − 1

2
(hk)p

k−1∑
ν=0

h−1∑
µ=0

B̄p

(
µ

h
+ ν

k

)
.(6.12)

Put (6.11) and (6.12) into (6.10). Then the double sum

k−1∑
ν=0

h−1∑
µ=0

B̄p

(
µ

h
+ ν

k

)

disappears and (6.10) becomes

(p + 1){hkpsp(h, k) + khpsp(k, h)}
= (1Bh +2Bk)p+1 + pBp+1 − (p + 1)hkBp .

(6.13)

Then for odd p > 1, we have the Corollary, since Bp = 0 and

(1Bh +2Bk)p+1 = (1Bh −2Bk)p+1 .

Now for p = 1,
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2{sp(h, k) + sp(k, h)} = (1Bh +2Bk)2 + pBp+1 + 2hkB1

= (1Bh −2Bk)2 + pBp+1 .

Hence our formula holds for p = 1.
Put

sp(α; h, k) =
k−1∑
ν=1

ν

k
B̄p

(
α + hν

k

)
.

This is called the shifted Dedekind sum in [10].

COROLLARY 2. Let α be a real number such that 0 � α < h + k. Then for positive
integer p � 1 and (h, k) = 1,

1

p
{kp−1sp(α; h, k) + hp−1sp(α; k, h)}

= (1Bh +2Bk + α)p+1

p(p + 1)hk
+ B̄p+1(α)

(p + 1)hk
− 1

p

(
1 − α

hk

)
B̄p(α) .

This is nothing but Theorem 3.4 in [10].
PROOF. The case α = 0 is stated in Corollary 1.
We take α = kx + hy in (6.2). Hence 0 � α < h + k.
Then the first sum in (6.2). equals

(−1)p

hp−1p!
{
sp(α; h, k) −

1

2
(k − 1)

kp
B̄p(α)

}

and the second sum in (6.2) equals

(−1)p

kp−1p!
{
sp(α; k, h) −

1

2
(h − 1)

hp
B̄p(α)

}
.

A straightforward calculation, as in the proof of the Theorem, shows that our formula holds.
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