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A Proof of the Paley-Wiener Theorem for Hyperfunctions
with a Convex Compact Support

by the Heat Kernel Method

Masanori SUWA and Kunio YOSHINO

Sophia University

Abstract. In this paper we shall give a proof of the Paley-Wiener theorem for hyperfunctions supported by a
convex compact set by the heat kernel method.

1. Introduction

In 1987, T. Matsuzawa gave a new proof of the Paley-Wiener theorem for hyperfunctions
supported by a ball by the heat kernel method [4]. S. Lee and S.-Y. Chung gave a proof of the
Paley-Wiener-Schwartz theorem for distributions supported by a convex compact set by the
heat kernel method [3]. M. Suwa and K. Yoshino treated the case of tempered distributions
supported by a proper convex cone [6].

In this paper we shall treat the Paley-Wiener theorem for hyperfunctions supported by a
convex compact set by the heat kernel method (Theorem 4.2).

2. Preliminaries

DEFINITION 2.1. We define some notations:

x = (x1, · · · , xn) ∈ Rn , x2 = x2
1 + · · · + x2

n .

〈x, ξ〉 =
n∑

j=1

xjξj for x, ξ ∈ Rn .

B(0, δ) = {x ∈ Rn : |x| ≤ δ} .

α = (α1, · · · , αn) ∈ Nn, |α| = α1 + · · · + αn ,

α! = α1! · · · αn! .
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Dα = ∂α1

∂x
α1
1

· · · ∂αn

∂x
αn
n

, � =
n∑

j=1

∂2

∂x2
j

.

E(x, t) = (4πt)−
n
2 exp(−x2/4t) , (t > 0, x ∈ Rn) .

For ζ ∈ Cn, ζ = (ζ1, · · · , ζn), we put |ζ | = √|ζ1|2 + · · · + |ζn|2.

DEFINITION 2.2 ([1]). If K ⊂ Cn is a compact set, then A′(K), the space of analytic
functionals carried by K , is the space of linear forms u on the space A of entire functions in
Cn such that for every neighborhood ω of K

|u(ϕ)| ≤ Cωsup
ω

|ϕ| , ϕ ∈ A .

DEFINITION 2.3. Let K ⊂ Rn be a compact set. Then we call the element of A′(K)

hyperfunctions supported by K .

DEFINITION 2.4. D(Rn) is the space of C∞ functions with compact support. S(Rn) is
the space of rapidly decreasing C∞ functions.

DEFINITION 2.5. Let K be a convex compact set in Rn. Then for δ > 0 we set Kδ =
K + B(0, δ) and we define supporting function of K by hK(x) = supξ∈K〈ξ, x〉.

Let K ⊂ Rn. Then the following proposition is known for between A(K) and A. For
the details of the proof we refer the reader to [1]:

PROPOSITION 2.6 ([1]). Let K ⊂ Rn be a compact set, and set for ε > 0

K(ε) = {z ∈ Cn; |Rez − x| + 2|Imz| ≤ ε f or some x ∈ K} .

For every ϕ which is analytic in a neighborhood V of K(ε) one can then find a sequence
ϕj ∈ A such that

sup
K(ε)

|ϕj − ϕ| → 0 , j → ∞ .

3. A characterization of hyperfunctions by using the heat kernel

In this section, we shall introduce a characterization of hyperfunctions by the heat kernel
method. For the details, we refer the reader to [4], [5].

THEOREM 3.1 ([4], [5]). Let K be a compact set in Rn, u ∈ A′(K) and U(x, t) =
〈uy,E(x − y, t)〉. Then U(x, t) ∈ C∞(Rn × (0,∞)) and U(·, t) ∈ A for each t > 0.
Furthermore U satisfies the heat equation:

(
∂

∂t
− �

)
U(x, t) = 0 in Rn × (0,∞) .(1)
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For every ε > 0 we have

|U(x, t)| ≤ Cεe
ε
t in Rn × (0,∞) .(2)

We have for any δ > 0

U(·, t) → 0 uniformly in {x ∈ Rn; dis(x,K) ≥ δ} as t → 0+ .(3)

U(·, t) → u in A′(K) as t → 0+,(4)

i.e.

〈u, ϕ〉 = lim
t→0+

∫
Rn

U(x, t)χ(x)ϕ(x)dx , ϕ ∈ A .(5)

for any χ(x) ∈ D such that χ(x) = 1 in a neighborhood of K .
Conversely, every U(x, t) ∈ C∞(Rn × (0,∞)) satisfying the condition (1), (2) and (3)

can be expressed in the form U(x, t) = 〈uy,E(x − y, t)〉 with unique element u ∈ A′(K).

4. A proof of the Paley-Wiener theorem by the heat kernel method

In this section, we shall give a proof of the Paley-Wiener theorem for hyperfunctions
with a convex compact support by the heat kernel method given in section 3.

DEFINITION 4.1. Let u ∈ A′(K), K is a compact set in Rn. Then we denote the
Fourier-Laplace transform ũ(ζ ) by

ũ(ζ ) = 1

(2π)
n
2
〈ux, e−ıζx〉 .

Then the following Paley-Wiener type theorem is known [2]:

THEOREM 4.2. Let K be a convex compact set in Rn and u ∈ A′(K). Then ũ(ζ ) is an
entire function such that for every ε > 0 there exists a constant Cε ≥ 0 such that

|ũ(ζ )| ≤ Cεe
hK(η)+ε|ζ | , ζ = ξ + ıη ∈ Cn .(6)

Conversely, if F(ζ ) is an entire function satisfying the estimate (6) , then there exists a unique
u ∈ A′(K) such that F(ζ ) = ũ(ζ ).

PROOF. By the continuity, we have the necessity. Now we shall prove the sufficiency
by the heat kernel method.

Let δ > 0 and x ∈ Rn\K2δ. Since x /∈ Kδ , there exist η0 ∈ Rn, |η0| = 1, and c0 ∈ R
such that

〈x, η0〉 > c0 , 〈y, η0〉 < c0 , ∀y ∈ Kδ .

So we have

sup
y∈Kδ

〈y, η0〉 ≤ c0 ⇔ hKδ (η0) ≤ c0
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⇔ hK(η0) + hB(0,δ)(η0) ≤ c0

⇔ hK(η0) + δ|η0| ≤ c0

⇔ hK(η0) + δ ≤ c0 < 〈x, η0〉 .

Therefore

hK(η0) − 〈x, η0〉 < −δ .(7)

Now we set U(x, t) by

U(x, t) = 1

(2π)
n
2

∫
Rn

F (ξ)e−tξ2
eıξxdξ , t > 0 .(8)

Then for U(x, t), we have the following conditions [4]:(
∂

∂t
− �

)
U(x, t) = 0 ,

for every ε > 0, there exists a constant Cε ≥ 0 such that

|U(x, t)| ≤ Cεe
ε
t , in Rn × (0,∞) .

Now we shift the integration in (8) into the complex domain:

U(x, t) = 1

(2π)
n
2

∫
Rn

F (ξ + ıη′)e−t (ξ+ıη′)2
eı(ξ+ıη′)xdξ ,

where η′ = δ
2t

η0. Estimating this integral by using (7), we have

|U(x, t)| ≤ CehK(η′)+ε|η′|+tη′2−η′x
∫

Rn
e−tξ2+ε|ξ |dξ

= CehK(η′)+ε|η′|+tη′2−η′x+ ε2
4t

∫
Rn

e−t (|ξ |− ε
2t

)2
dξ

≤ CehK(η′)+ε|η′|+tη′2−η′x+ ε2
4t

∫
Rn

e− t
2 |ξ |2+ ε2

4t dξ

= CehK(η′)+ε|η′|+tη′2−η′x+ ε2
2t

∫
Rn

e− t
2 |ξ |2dξ

= C(2π)
n
2 t−

n
2 ehK(η′)+ε|η′|+tη′2−η′x+ ε2

2t

= C′t−
n
2 e

δ
2t

hK(η0)+ εδ
2t

+ δ2
4t

− δ
2t

η0x+ ε2
2t

≤ C′t−
n
2 e− δ2

2t
+ εδ

2t
+ δ2

4t
+ ε2

2t .

If we put ε = δ
4 , then

|U(x, t)| ≤ C′t−
n
2 e− δ2

2t
+ δ2

8t
+ δ2

4t
+ δ2

32t



A PROOF OF THE PALEY-WIENER THEOREM FOR HYPERFUNCTIONS 39

= C′t−
n
2 e− 3δ2

32t .

So we have

U(x, t) → 0 (t → 0+) ,

uniformly in Rn\K2δ . By Theorem 3.1, there exists u ∈ A′(K) such that

U(x, t) = 〈uy,E(x − y, t)〉 .

Since F(ξ)e−tξ2 ∈ S,

F(ξ)e−tξ2 = 1

(2π)
n
2

∫
Rn

U(x, t)e−ıξxdx

= 1

(2π)
n
2
〈U(x, t), e−ıξx 〉 .(9)

LEMMA 4.3.

lim
t→0+

∫
Rn

U(x, t)χ(x)e−ıξxdx = lim
t→0+

∫
Rn

U(x, t)e−ıξxdx,(10)

where χ(x) ∈ D and χ(x) = 1 in a neighborhood of K .

PROOF OF LEMMA. Since for ε > 0 there exists Cε ≥ 0 such that

|U(x, t)| ≤ Cεe
ε
t − dis(x,K)2

4t

(see [5]), for

χ(x) =
{

1 , x ∈ Kδ ,

0 , x ∈ Rn\K2δ ,

we have ∫
Rn

|U(x, t)(χ(x) − 1)eıξx |dx =
∫

Rn\Kδ

|U(x, t)(χ(x) − 1)eıξx |dx

≤ Cεe
ε
t − δ2

8t

∫
Rn\Kδ

e− dis(x,K)2
8t dx

≤ C′
εe

ε
t
− δ2

8t .

When we put ε = δ2

16 , we have

lim
t→0+

∫
Rn

|U(x, t)(χ(x) − 1)eıξx|dx ≤ C′
ε lim
t→0+

e− δ2
16t = 0 .

The proof is complete. �

Now we resume the proof of Theorem 4.2.
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By (4), (9) and (10),

F(ξ) = lim
t→0+

F(ξ)e−tξ2

= lim
t→0+

1

(2π)
n
2
〈U(x, t), e−ıξx 〉

= 1

(2π)
n
2
〈ux, e−ıξx〉 = ũ(ξ) .

Since F(ζ ) and ũ(ζ ) are entire functions, we have F(ζ ) = 1

(2π)
n
2
〈ux, e−ıζx〉, ζ = ξ + ıη ∈

Cn. If ũ(ζ ) = 0, then 〈ux, xm〉 = 0 for ∀m ∈ Nn. By Proposition 2.6, for any ϕ(z) ∈ A(K),
there exists ϕj (z) ∈ A such that

sup
z∈K(ε)

|ϕ − ϕj | → 0 , j → 0 .

So we have 〈u, ϕ〉 = 0 for ∀ϕ(z) ∈ A(K). This means that u is unique. �
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