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Introduction

In this paper, we investigate how to construct imaginary cyclic fields of degree p − 1
whose Sylow p-subgroups of the ideal class groups are not cyclic. This paper supplements
our previous paper [6].

For a given integer n, Yamamoto [10] proved that there exist infinitely many imaginary

quadratic fields whose ideal class groups contain (Z/nZ)2 as a subgroup. Moreover, Nakano
[7] proved that there exist infinitely many algebraic number fields K of fixed degree m =
r1 + 2r2 whose ideal class groups contain (Z/nZ)r2+1 as a subgroup, where r1 and r2 denote
the number of real and imaginary embeddings of K into C, respectively. (Other related papers
are those by Ishida [5] and Azuhata and Ichimura [1].) In the present paper, we give another
way to construct imaginary cyclic fields of degree p − 1 whose ideal class groups contain

(Z/pZ)2 as a subgroup for a given prime p with p ≡ 1 (mod 4).

Let p be a fixed odd prime. Let ζ be a primitive p-th root of unity and put ω := ζ + ζ−1.
In Section 1, we give a sufficient condition for an imaginary cyclic field of degree p − 1
containing Q(ω) to have class number divisible by p (Theorem 1.1). We can easily verify
whether our condition holds for given imaginary cyclic fields of degree p − 1 or not (see
Proposition 3.2). The condition which was given in our previous paper [6] is included in the
present one, as we will see in (2) of Remark 1.2. In Section 2, there are two goals. The
first is to prove Theorem 1.1. The second is to give infinitely many imaginary quadratic
fields of degree p − 1 containing Q(ω) whose class numbers are divisible by p. This gives
another proof of [6, Theorem 2]. In Section 3, we construct imaginary cyclic fields of degree
p −1 which have ideal class groups of p-ranks greater than one in the case of p ≡ 1 (mod 4).
Moreover we give a parametric family of such fields (Example 3.5). Unfortunately, the author
has not yet determined whether this family is infinite.
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1. The main theorem

Let p be a fixed odd prime. Let ζ be a primitive p-th root of unity and put ω := ζ + ζ−1.
Let M( �= Q(ζ )) be an imaginary cyclic field of degree p − 1 which contains Q(ω). Assume
that p satisfies p ≡ 1 (mod 4). Then M(ζ) has exactly two real quadratic subfields which are
not contained in M . We denote them by k1 and k2. Assume, on the contrary, that p satisfies
p ≡ 3 (mod 4). Then there is only one real quadratic subfield of M(ζ) which is not contained
in M . We denote it by k3. (See Figure 1.)

Conversely, for a real quadratic field k with Q(ζ )∩ k = Q, the imaginary cyclic subfield

M of degree p−1 in k(ζ ) is uniquely determined; then we can express M = Q(
√

d(ζ −ζ−1)),
where d is the discriminant of k.

For a number field K , let denote the norm map and the trace map of K/Q by NK and TrK ,
respectively. For an element γ of k = kl (l = 1, 2, or 3) ⊂ M(ζ), we define a polynomial
f (X; γ ) by

f (X; γ ) :=
(p−1)/2∑

i=0

(−Nk(γ ))i
p

p − 2i

(
p − i − 1

i

)
Xp−2i − Nk(γ )(p−1)/2Trk(γ ) .

We denote the minimal splitting field of f (X; γ ) over Q by Kγ . Then Kγ contains M if
f (X; γ ) is irreducible over Q (cf. [4, Corollary 2.6]).

THEOREM 1.1. Let the notation be as above. Assume that there exists a unit ε of
k = kl (l = 1, 2, or 3) which satisfies the condition


Nk(ε) = 1 ,

Trk(ε) ≡ ±2 (mod p3) ,

ε �∈ kp .

(1.1)

Then Kε is an unramified cyclic extension of M of degree p. Hence the class number of M is
divisible by p.

FIGURE 1
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REMARK 1.2. (1) We may replace the condition (1.1) by{
Trk(ε)2 ≡ 4Nk(ε) (mod p3) ,

ε �∈ kp
(1.2)

in the statement of Theorem 1.1. Indeed, a unit satisfying (1.1) also satisfies (1.2), and the
square of a unit satisfying (1.2) satisfies (1.1).

(2) In [6], we gave another sufficient condition{
Trk(ε) ≡ 0 (mod p2) ,

ε �∈ kp
(1.3)

for p to divide the class number of M . This result is included in Theorem 1.1; indeed, if a
unit ε satisfies (1.3), then the square ε2 satisfies (1.1).

2. Proof of Theorem 1.1

Before proving Theorem 1.1, we prepare some propositions. First we extract a result
from Sase [9, Proposition 2]. For a prime number p and an integer m, we denote the greatest
exponent µ of p such that pµ | m by vp(m).

PROPOSITION 2.1 (Sase). Let p be an odd prime number. Let θ be a root of the poly-
nomial

g(X) = Xp +
p−2∑
j=0

ajX
j , aj ∈ Z .

Suppose that g(X) is irreducible over Q and the condition vp(aj ) < p − j holds for some
j, 0 ≤ j ≤ p − 2. Then p is totally ramified in Q(θ)/Q if and only if one of the following
conditions (S-i), (S-ii) holds:

(S-i) 0 <
vp(a0)

p
≤ vp(aj )

p − j
for every j , 1 ≤ j ≤ p − 2 ;

(S-ii) (S-ii-1) vp(a0) = 0 ,

(S-ii-2) vp(aj ) > 0 for every j, 1 ≤ j ≤ p − 2 ,

(S-ii-3)
vp(g(−a0))

p
≤ vp(g(j)(−a0))

p − j
for every j, 1 ≤ j ≤ p − 2,

(S-ii-4) vp(g(j)(−a0)) < p − j for some j , 0 ≤ j ≤ p − 1 ,

where g(j)(X) is the j -th differential of g(X).

REMARK 2.2. In [9], Sase also determined the conditions for a general prime q with
q �= deg(g) to be totally ramified in Q(θ)/Q.
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For an integer n ≥ 0, we define two functions Tn(x) and Un(x) by

Tn(x) := cos nθ , Un(x) := sin(n + 1)θ

sin θ
,

respectively, where x = cos θ . (The former is called the Chebyshev polynomial while the
latter is called the Chebyshev polynomial of second kind.) Then we have

Tn(x) = (x + √
x2 − 1)n + (x − √

x2 − 1)n

2
,

Un−1(x) = (x + √
x2 − 1)n − (x − √

x2 − 1)n

2
√

x2 − 1

(cf. [8, Chapter 1, pp. 5 and 10]). Then we have

Tp

(
ε + ε̄

2

)
= εp + ε̄p

2
, Up−1

(
ε + ε̄

2

)
= εp − ε̄p

ε − ε̄
.

Moreover, each function has another expression:

2Tn

(x

2

)
=

[n/2]∑
i=0

(−1)i
n

n − 2i

(
n − i − 1

i

)
xn−2i ,

Un

(x

2

)
=

[n/2]∑
i=0

(−1)i
(

n − i

i

)
xn−2i

(cf. [8, Chapter 1, p. 60]). By putting x = (ε + ε̄)/2, therefore, we obtain

LEMMA 2.3. For a unit ε of k with Nk(ε) = 1 and for an odd integer p, the following
equations holds:

εp + ε̄p

ε + ε̄
=

(p−1)/2∑
i=0

(−1)i
p

p − 2i

(
p − i − 1

i

)
Trk(ε)

p−2i−1 ,(2.1)

εp − ε̄p

ε − ε̄
=

(p−1)/2∑
i=0

(−1)i
(

p − i − 1

i

)
Trk(ε)p−2i−1 ,(2.2)

where ε̄ is the conjugate of ε in k.

PROOF OF THEOREM 1.1. Assume that a real quadratic field k has a unit ε satisfying
the condition (1.1). Then f (X; ε) is irreducible over Q and Kε is a cyclic extension of M

of degree p (see [2, Chapter 5], [4, Proposition 1.10]). Moreover, Kε is normal over Q and
its Galois group Gal(Kε/Q) is isomorphic to the Frobenius group of order p(p − 1) (see [4,
Theorem 2.1]). Furthermore, Kε/M is unramified outside p (see [6, Proof of Theorem 1]). By
class field theory, therefore, it is sufficient to show that prime divisors of p in M is unramified
in Kε .
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Let θ be a root of f (X; ε). Let q be a prime number in general. A prime divisor of q in
M is ramified in Kε if and only if q is totally ramified in Q(θ) because [Kε : M] and [M : Q]
are relatively prime. Hence we have only to verify whether the prime p is totally ramified in
Q(θ) or not.

Express ε = (a + b
√

d)/2 (a, b ∈ Z). Since ε satisfies (1.1), we have p | b and p � a.
Then by

εp = 1

2p
(ap + pap−1b

√
d + · · · + pabp−1d

p−1
2 + bpd

p−1
2

√
d) ,

ε̄p = 1

2p
(ap − pap−1b

√
d + · · · + pabp−1d

p−1
2 − bpd

p−1
2

√
d) ,

we have

εp + ε̄p ≡ 1

2p−1 ap (mod p3) .

Thus we get

εp + ε̄p

ε + ε̄
− 1 ≡

(a

2

)p−1 − 1 ≡
(±2

2

)p−1

− 1 = 0 (mod p3)(2.3)

by using ε + ε̄ = a. On the other hand, we have

εp − ε̄p = 1

2p−1
(pap−1b

√
d + p2bt

√
d)

for some t ∈ Z and

ε − ε̄ = b
√

d.

Then we have

εp − ε̄p

ε − ε̄
= 1

2p−1 (pap−1 + p2t) ,

and hence

vp

(
εp − ε̄p

ε − ε̄

)
= 1 .(2.4)

Moreover we have

f (Trk(ε); ε) =
(p−1)/2∑

i=0

(−Nk(ε))
i p

p − 2i

(
p − i − 1

i

)
Trk(ε)p−2i − Nk(ε)

(p−1)/2Trk(ε)

(2.5)

= Trk(ε)

( (p−1)/2∑
i=0

(−1)i
p

p − 2i

(
p − i − 1

i

)
Trk(ε)

p−2i−1 − 1

)
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and

f ′(Trk(ε); ε) = p

( (p−1)/2∑
i=0

(−1)i
(

p − i − 1

i

)
Trk(ε)p−2i−1

)
.(2.6)

Therefore, by (2.1), (2.3), (2.5) we have

vp(f (Trk(ε); ε)) ≥ 3 ,(2.7)

and by (2.2), (2.4), (2.6) we have

vp(f ′(Trk(ε); ε)) = 2 .(2.8)

Now let us apply Proposition 2.1 to f (X; ε). Since the constant term of f (X; ε) is not divisi-
ble by p, the condition (S-i) does not hold. Moreover by (2.7) and (2.8), the condition (S-ii-3)
does not hold for j = 1 when p ≥ 5. In the case p = 3, the equation (2.8) assures that
(S-ii-4) does not hold for j = 1. Therefore p is not totally ramified in Q(θ). This completes
the proof of Theorem 1.1. �

In the following example, we shall give an infinite family of quadratic fields which have
units satisfying the condition (1.1).

EXAMPLE 2.4. Take a prime q so that we have{
q ≡ 4 (mod p5) ,

q �≡ 4 (mod p6) .
(2.9)

Express

q = ap5 + 4 , a = bc2 (b, c ∈ Z, b : square-free)

and put D := bpq . Then it is clear that D is square-free. Since

D = bp(ap5 + 4) = abp6 + 4bp = (bcp3)2 + 4bp ,

Q(
√

D) is a real quadratic field of Richaud-Degert type. It is well-known that

ε0 := bc2p5 + 2 + cp2
√

D

2

is the fundamental unit of Q(
√

D) (cf. [3], [11, Lemma 2]). Since

NQ(
√

D)(ε0) = (bc2p5 + 2)2 − c2p4{(bcp3)2 + 4bp}
4

= 1

and

TrQ(
√

D)(ε0)
2 = (bc2p5 + 2)2 ≡ 4 (mod p3) ,

the unit ε0 satisfies (1.1).
For each prime p, the existence of infinitely many primes q satisfying the above condi-

tion (2.9) is assured by Dirichlet’s Theorem on primes in arithmetic progressions.
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3. Imaginary cyclic fields of degree p − 1 with p-ranks ≥ 2

In this section, we study a way to construct imaginary cyclic fields of degree p−1 which
have ideal class groups of p-ranks greater than one in the case of p ≡ 1 (mod 4).

From now on, we assume that p ≡ 1 (mod 4). As we have seen in Section 1, for an
imaginary cyclic field M( �= Q(ζ )) of degree p − 1 which contains Q(ω), there are two real
quadratic subfields k1 and k2 of M(ζ) which are not contained in M . Then, as is observed in
[4, Remarks 2.4 (2)], we have

PROPOSITION 3.1. For γ1 ∈ k1 \ k
p

1 and γ2 ∈ k2 \ k
p

2 , we have Kγ1 �= Kγ2 .

By this Proposition, if k1 and k2 have units ε1 and ε2, respectively, both of which satisfy
the condition (1.1), then there exist two unramified cyclic extensions Kε1 and Kε2 of M of
degree p; hence the p-rank of M is greater than one.

Now we give a criterion for a real quadratic field to have a unit satisfying (1.1).

PROPOSITION 3.2. Let d be a square-free positive integer and put k = Q(
√

d). Let ε0

be the fundamental unit of k.
(1) When p | d , there exists a unit of k which satisfies the condition (1.1) if and only if

ε0 satisfies the condition (1.2).
(2) When p � d , there exists a unit of k which satisfies the condition (1.1) if and only if

εm
0 satisfies the condition (1.2) for some integer m with m | ϕk(p) and p � m, where ϕk is the

Euler function in k.

To prove this proposition, we need the following lemma.

LEMMA 3.3. Let ε be a fixed unit of Q(
√

d). For a positive integer m, we put

εm = am + bm

√
d , am, bm ∈ 1

2
Z .

For an integer i, moreover, we defined an integer ni by

ni := min{ m(> 0) ∈ Z | bm ≡ 0 (mod pi) } .

Then we have

bn ≡ 0 (mod pi) ⇔ n ≡ 0 (mod ni) .

PROOF. The “⇐” part is easily verified.
Let us prove the “⇒” part. Assume that bn ≡ 0 (mod pi) and put n = nis + t (s, t ∈

Z, 0 ≤ t < ni). By the definition of ni , we have

εni ≡ ani (mod pi) .

Then we have

εn = (εni )sεt ≡ as
ni

(at + bt

√
d) (mod pi) ,
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and hence

bt ≡ 0 (mod pi) .

By the minimality of ni , therefore, we have t = 0. �

PROOF OF PROPOSITION 3.2. For a positive integer m, we put

εm
0 = am + bm

√
d , am, bm ∈ 1

2
Z .

For an integer i, we defined an integer ni by

ni := min{ m(> 0) ∈ Z | bm ≡ 0 (mod pi) } .

(1) Assume that p | d . We note that

εm
0 satisfies (1.1) ⇒ εm

0 satisfies (1.2) ⇔ bm ≡ 0 (mod p) .(3.1)

We see that bp ≡ 0 (mod p). Then by applying Lemma 3.3 to i = 1, we have p ≡ 0 (mod n1),
hence n1 = 1 or p. Assume now that there exists a unit εm

0 (p � m) satisfying (1.1). Then by
(3.1), we have bm ≡ 0 (mod p). By Lemma 3.3, therefore, we have m ≡ 0 (mod n1). From
this, together with p � m, we have p � n1. Therefore, n1 must be equal to 1. Then we have
b1 ≡ 0 (mod p), and hence by (3.1) ε0 satisfies the condition (1.2).

Conversely, if ε0 satisfies (1.2), as we have stated in Remark 1.2 (1), ε2
0 satisfies (1.1).

(2) Assume that p � d . Then we have

εm
0 satisfies (1.1) ⇒ εm

0 satisfies (1.2) ⇔ bm ≡ 0 (mod p2) .(3.2)

We see that bpn1 ≡ 0 (mod p2). Then by applying Lemma 3.3 to i = 2, we have

pn1 ≡ 0 (mod n2) .(3.3)

Now assume that there exists a unit satisfying (1.1). By a similar argument as in (1), we
get p � n2. From this, together with (3.3) and the fact that n1 ≤ n2, we have n2 = n1.

Furthermore, we have n1 | ϕk(p) because of εϕk(p) ≡ 1 (mod p). Therefore, we see that n2

satisfies n2 | ϕk(p), p � n2, and ε
n2
0 satisfies (1.2) by (3.2).

Conversely, if εm
0 satisfies (1.2) for some m ∈ Z, then ε2m

0 satisfies (1.2). �

In the following Tables 1 and 2, for p = 5, 13, we list all of d’s with

0 < d ≤ 2000 , 5 � d , d : square-free if p = 5 ,

0 < d ≤ 4000 , 13 � d , d : square-free if p = 13

for which both k1 = Q(
√

d) and k2 = Q(
√

pd) have units satisfying (1.1). Moreover, for
each d , we list the minimal exponent m of the unit εm

0 which satisfies the condition (1.2) and
the structure of the ideal class group of M , where ε0 is the fundamental unit of k1. The cases

where Nk1(ε0) = −1 are marked with an asterisk in these tables; then ε2m
0 satisfies (1.1) in

these cases. We denote an abelian group Z/n1Z×Z/n2Z×· · ·×Z/nrZ by [n1, n2, · · · , nr ].



ON THE SYLOW p-SUBGROUPS OF THE IDEAL CLASS GROUPS 489

TABLE 1 p = 5 (0 < d ≤ 2000)

d
exponent

of ε (m)

structure of the ideal

class group of M
d

exponent

of ε (m)

structure of the ideal

class group of M

127

191
∗257
∗298

426

427
∗457

501

502

509

574

581

587

626

629

734

753
∗881
∗922

1113

1137

1

2

3

1

1

3

3

2

3

2

2

2

3

2

2

2

3

1

1

3

3

[ 10, 10]
[ 10, 10, 2]
[ 10, 5]
[ 20, 10, 2]
[ 10, 10, 2, 2]
[ 10, 10, 2, 2]
[ 10, 5]
[ 10, 10]
[ 20, 10, 2]
[ 10, 10]
[ 10, 10, 2, 2]
[ 10, 10]
[ 50, 10]
[ 50, 10]
[ 10, 10]
[ 50, 10]
[ 10, 10, 2]
[ 20, 10]
[ 50, 10, 2]
[ 10, 10, 2]
[ 10, 10, 2]

1231

1238

1366

1389

1434
∗1493

1518

1531
∗1597

1631

1738

1758

1829

1834
∗1853

1907
∗1913

1914

1938

1999

2

1

2

2

1

3

3

2

1

1

3

3

1

2

3

3

3

2

3

2

[ 50, 10, 2]
[ 50, 10, 2]
[ 30, 30]
[ 50, 10]
[ 20, 20, 2, 2]
[ 50, 5]
[ 20, 10, 2, 2, 2]
[ 50, 10, 2]
[ 50, 5]
[ 30, 30, 2]
[ 20, 10, 2, 2, 2]
[ 130, 10, 2]
[ 10, 10, 2, 2]
[ 20, 20, 2, 2]
[ 20, 10, 2]
[ 170, 10]
[ 50, 5]
[ 10, 10, 2, 2, 2, 2]
[ 20, 10, 2, 2, 2]
[ 40, 20, 2]

REMARK 3.4. We use computer manipulations with GP/PARI (Version 2.1.0) and
KASH (Version 2.0). In the case p = 13, the author cannot compute the structure of the
ideal class group of M except for d = 489 because of the computational complexity.

Finally, we give an example of a family of positive integers d for which both k1 =
Q(

√
d) and k2 = Q(

√
pd) have units satisfying the condition (1.1).

EXAMPLE 3.5. For a pair (α, β) ∈ Z × Z with

{
α2 − p3β2 = 4 ,

α + β ≡ 0 (mod p2) ,

we define an integer d by

d := (α + β)2 − 4 .

Moreover, we put

ε1 := α + β + √
d

2
∈ Q(

√
d) ,
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TABLE 2 p = 13 (0 < d ≤ 4000)

d
exponent

of ε (m)

structure of the ideal

class group of M
d

exponent

of ε (m)

structure of the ideal

class group of M

489

1381

1615

1639

2003

2038

7

6

6

3

6

6

[ 117650, 26, 2]
————

————

————

————

————

∗3074

3739

3766

3847

3910

7

7

1

6

6

————

————

————

————

————

ε2 := α + p3β + p
√

pd

2
∈ Q(

√
pd) .

Then we can easily verify that

NQ(
√

d)(ε
2
1) = 1 = NQ(

√
pd)(ε2) ,

TrQ(
√

d)(ε
2
1) ≡ ±2 ≡ TrQ(

√
pd)(ε2) (mod p3) .

Hence the p-rank of Q(
√

d(ζ − ζ−1)) is greater than one, if

ε2
1 �∈ Q(

√
d)p and ε2 �∈ Q(

√
pd)p .(3.4)

REMARK 3.6. If d is square-free, then the condition (3.4) holds. However, the au-
thor has not yet verified when d is square-free, nor whether the condition (3.4) holds more
generally.
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