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Abstract. We introduce a multiple analogue of the gamma function which differs from the one defined by
Barnes [B]. Using this function, we give expressions of the multiple sine and cosine functions in terms of zeta
regularized products. The expression of the multiple sine function can be interpreted as a reflection formula of this
new multiple analogue of the gamma function.

1. Introduction

The initial study of multiple trigonometric functions is due to Hölder [H] who treated
the double sine function S2(x) in 1886. It is observed that the multiple sine functions Sr (x)

describe the values ζ(2m + 1) of the Reimann zeta function at odd integer points as their
special values (see [KW1, KOW]). Recently we found that these special values appear also
as the extremal values of multiple trigonometric functions [KW3]. On the other hand, due
to the work by Lerch [L], we have a zeta regularized product expression of the classical sine
function. Furthermore, quite recently in [KW4], we discovered similar expressions for the
multiple trigonometric functions of small orders, that is, the double and the triple ones, in
the course of the study of certain finite companions of such multiple trigonometric functions.
Instead of the classical sine function, however, in order to obtain such expressions for the
multiple ones it is necessary to introduce a new zeta regularization method. Namely, we
need to give an extended interpretation to the original zeta regularized product, e.g. developed
in [D, V]. With the help of this interpretation of the regularized product we can arrive at
introducing a multiple analogue Gm(x) of the gamma function which differs from the one
defined by Barnes [B]. We call it a basic multiple gamma function. We remark that the
Barnes multiple gamma function Γm(x) can be defined through the multiple Hurwitz zeta
function and consequently, it is expressed as a zeta regularized product. Therefore the so-
called normalized multiple sine function Sm(x) is also defined by the same manner (see e.g.
[KKo, KW3]). Although there is an explicit relation between Sr (x)’s and Sr (x)’s, no such
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simple expression for Sr (x) has been expected so far. To avoid a possible confusion due to
their names, we sometimes call Sr (x) and Cr (x) the basic multiple sine and the basic multiple
cosine functions, respectively.

The main purpose of the present paper is to give expressions of the multiple trigono-
metric functions Sr (x) and Cr (x) of general order r in terms of zeta regularized products. In
particular, we find that the expression of Sr (x) can be regarded as a reflection formula of the
basic multiple gamma function Gm(x).

Recall the basic multiple sine function

Sr (x) = e
xr−1
r−1

∞∏
n=−∞,n�=0

Pr

(
x

n

)nr−1

and the basic multiple cosine function

Cr (x) =
∞∏

n=−∞,n:odd

Pr

(
x
n
2

)( n
2 )r−1

of order r ≥ 2. Here we put

Pr(u) = (1 − u) exp

(
u + u2

2
+ · · · + ur

r

)
.

The zeta regularized product we use here is introduced in [KW4] and given as follows.
Let a = {an}n=1,2,... be a divergent series of non-zero complex numbers and b = {bn}n=1,2,...

a series of complex numbers. Suppose that the Dirichlet series defined by

φa,b(s) :=
∞∑

n=1

bn · a−s
n

can be extended to a holomorphic function around s = 0. (We are assuming that the series
converges absolutely for large enough Re(s).) Then we define the zeta regularized product of

the sequences “{abn
n }n=1,2,...” by

∞∐
n=1

((an))
bn = exp(−φ′

a,b(0)) .

Note that if bn ≡ 1, then it is immediate to see that
∐∞

n=1((an))
1 agrees with the usual zeta

regularized product
∐∞

n=1 an (see [D]), while
∐∞

n=1((an))
bn �= ∐∞

n=1 a
bn
n in general. Actu-

ally, even if we employ any generalized version of the zeta regularized product developed, e.g,

in [I, KW2, KiKSW, KiW], for instance, the product
∐∞

n=1 nnm
does not exist, though we can

show that
∐∞

n=1((n))n
m

exists and indeed equals exp(−ζ ′(−m)). More precisely, we verify
that (in the proof of the main theorems in Section 3) the function defined by the regularized
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product

Gm(x)−1 :=
∞∐

n=1

((n + x))n
m

exists as an entire function of x and plays a role of a gamma function in the present treatment
of the basic multiple trigonometric functions (see also Remark 2 in Section 3). Note that if all
bn are positive integers, then each bn can be considered as a multiplicity of an. Throughout
the paper we assume that −π ≤ arg(an) < π .

The following expressions (and its proof) of the basic multiple sine functions are the
main result of this paper.

THEOREM 1.1. For each positive integer m we have

(1) S2m(x) =
∐∞

n=1((n − x))n
2m−1

∐∞
n=1((n + x))n

2m−1 ,

(2) S2m+1(x) = exp

(
(−1)m

ζ(2m + 1)(2m)!
22mπ2m

) ∞∐
n=1

((n − x))n
2m ·

∞∐
n=1

((n + x))n
2m

,

where ζ(s) denotes the Riemann zeta function.

We have proved (1) and (2) of the theorem when m = 1 in [KW4]. We will find that
the formula in the theorem gives an analogue of the reflection formula of the classical gamma
function: Γ (x)Γ (1 − x) = π/ sin πx (see Corollary 3.3).

Since Cr (x) is a 2r−1-multi-valued function, we treat the function C̃r (x) = Cr (x)2r−1
in

place of Cr (x). Obviously, C̃r (x) defines a single valued function. We also give the expression

of the multiple cosine functions C̃r (x) in terms of the zeta regularized product.

THEOREM 1.2. For each positive integer m we have

(1) C̃2m(x) =
∐∞

n=1

((
n − 1

2 − x
))(2n−1)2m−1

∐∞
n=1

((
n − 1

2 + x
))(2n−1)2m−1 ,

(2) C̃2m+1(x) = exp

(
(1 − 22m)(−1)m

ζ(2m + 1)(2m)!
22mπ2m

)

×
∞∐

n=1

((
n − 1

2
− x

))(2n−1)2m

·
∞∐

n=1

((
n − 1

2
+ x

))(2n−1)2m

.

We prove this theorem from the result in Theorem 1.1 with the help of the duplication
formula of the basic multiple sine function ([KOW, KKo]).
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2. Preparation of the proof

In order to prove the theorems, we recall the fundamental results in [KW4] for functions
defined by the present zeta regularized product.

LEMMA 2.1.

(A)
∞∐

n=1

((an))
wbn =

{ ∞∐
n=1

((an))
bn

}w

for any w ∈ C .

(B)
∞∐

n=1

((an))
bn+cn =

∞∐
n=1

((an))
bn ·

∞∐
n=1

((an))
cn

whenever all of the appearing regularized products exist.

(C)
∞∐

n=1

((λan))
bn = λφa,b(0)

∞∐
n=1

((an))
bn for any λ > 0 . �

Define also the Dirichlet series attached to the data (a, b) by

φa,b(s, x) :=
∞∑

n=1

bn · (an − x)−s .

Denote by µ the exponent of convergence of the series
∑∞

n=1 |bn| · |an|−t , that is, the series
converges for Re(t) = µ + ε and diverges for Re(t) = µ − ε for any ε > 0. Then the
Dirichlet series φa,b(s, x) converges absolutely in the region Re(s) > µ and uniformly for
each compact subset in x-space C which does not meet any an. Thus we see that the function
φa,b(s, x) defines a holomorphic function in the region Re(s) > µ. Let p be the integer part
of µ. We assume that φa,b(s, x) can be extended to a holomorphic function at s = 0. Then
we define

∞∐
n=1

((an − x))bn = exp

(
− ∂

∂s
φa,b(0, x)

)
.

As in the cases [V, I, KiW], we see that this zeta regularized product defines an entire function
with zeros of indicated order as follows.

LEMMA 2.2. Suppose that bn are all positive integers. Then the function
∐∞

n=1((an −
x))bn is analytically extended to the whole complex plane as an entire function whose zeros
are exactly given by x = an with multiplicity bn. More precisely, there exits a polynomial
P(x) of degree at most p such that

∞∐
n=1

((an − x))bn = eP(x)
∞∏

n=1

(
1 − x

an

)bn

exp

(
bn

p∑
�=1

1

�

(
x

an

)�)
. �
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We also recall the periodicity of the multiple sine function. By the fact

S ′
r

Sr

(x) = πxr−1 cot(πx) with Sr (0) = 1

for r ≥ 2, the binomial expansion shows the following results (for details, see [KKo]).

LEMMA 2.3. We have

Sr (x + 1) = S ′
r (1)

2π

r∏
k=1

Sk(x)(
r−1
k−1) , (1)

where S ′
r (1) is given by

S ′
r (1) = −2π exp

(
− 2

∑
1<�<r,�:odd

(
r − 1

k − 1

)
ζ ′(1 − �)

)
(2)

= −2π exp

(
− (r − 1)!

∑
1<�<r,�:odd

(−1)
�−1

2

(r − �)!(2π)�−1
ζ(�)

)
. (3)

Note here that

ζ(m) = 2(2π)m−1(−1)
m−1

2

(m − 1)! ζ ′(1 − m) . � (4)

We put for convenience

S1(x) = 2πx

∞∏
n=−∞,n�=0

P1

(
x

n

)
= 2πx

∞∏
n=1

(
1 − x2

n2

)
= 2 sin(πx)

and

C1(x) = 2
∞∏

n=−∞,n:odd

P1

(
x(
n
2

)
)

= 2
∞∏

n=1,n:odd

(
1 − x2

(
n
2

)2

)
= 2 cos(πx) .

Then, by the formula due to Lerch [L] (see [KW2]), we have

S1(x) = x

∞∐
n=1

(n − x)

∞∐
n=1

(n + x) (5)

and

C1(x) =
∞∐

n=1

(
n − 1

2
− x

) ∞∐
n=1

(
n − 1

2
+ x

)
. (6)

We note here that Euler regarded the divergent series
∑∞

n=1 n2 log n as −ζ ′(2)(=
ζ(3)/4π2) in [E]. In our present notation, this implies

∐∞
n=1((n))n

2 = exp(−ζ ′(2)).
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3. Proof of the main theorems

Define

Gm(x) :=
∞∐

n=1

((n + x))−nm

. (7)

We call Gm(x) a basic multiple gamma function of order m. We first study the behavior of
this Gm(x) under the translation x → x + 1. Since

Gm(x + 1)−1 =
∞∐

n=1

((n + x + 1))n
m =

∞∐
�=1

((� + x))(�−1)m , (8)

by the property (B) of Lemma 2.1, the binomial theorem shows

Gm(x + 1) =
m∏

k=0

Gk(x)(
m
k)(−1)m−k

. (9)

We put temporarily fm(x) = Gm(x)−1 and gm(x) = fm(−x). Then, similarly to the transla-
tion formula (8), we obtain

gm(x + 1) = (−x)

m∏
k=0

gk(x)(
m
k) . (10)

First note that we have proved the expressions of S2(x) and S3(x) in [KW4]. Thus we
show the assertions of Theorem 1.1 by induction. Assume the formulas (1) and (2) in Theorem
1.1 are true for k less than m. Look at the ratio g2m−1(x)/f2m−1(x). Then by (9) and (10), we
see that

g2m−1(x + 1)

f2m−1(x + 1)
= (−x)

2m−1∏
k=0

{
gk(x)fk(x)−(−1)2m−1−k

}(2m−1
k )

= (−x) · g2m−1(x)

f2m−1(x)
·
m−1∏
j=0

{
g2j (x)f2j (x)

}(2m−1
2j ) ·

m−1∏
j=1

{
g2j−1(x)

f2j−1(x)

}(2m−1
2j−1)

.

Hence the induction hypothesis asserts

g2m−1(x + 1)

f2m−1(x + 1)
= − g2m−1(x)

f2m−1(x)
· S1(x)

×
m−1∏
j=1

{
S2j+1(x) exp

(
− (−1)j ζ(2j + 1)(2j)!

22jπ2j

)}(2m−1
2j )

·
m−1∏
j=1

S2j (x)(
2m−1
2j−1)

= − exp

(
−

m−1∑
j=1

(−1)j (2j)!
(2π)2j

(
2m − 1

2j

)
ζ(2j + 1)

)
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× g2m−1(x)

f2m−1(x)
·

2m−1∏
k=1

Sk(x)(
2m−1
k−1 )

= S ′
2m(1)

2π

2m−1∏
k=1

Sk(x)(
2m−1
k−1 ) × g2m−1(x)

f2m−1(x)
.

In the last equality, we used the expression of the value of S ′
2m(1) described in Lemma 2.3.

Therefore, using Lemma 2.3 again, we find that the functions S2m(x) and g2m−1(x)/f2m−1(x)

have exactly the same periodicity as meromorphic functions of order 2m. On the other hand,
since the both meromorphic functions have the same zeros and poles (counting with their
multiplicity) by Lemma 2.2, there exists a polynomial P(x) of degree at most 2m with real
coefficients such that the identity

g2m−1(x)

f2m−1(x)
= eP(x)S2m(x) .

holds. The aforementioned periodicity shows hence that the polynomial P(x) should be of
the form 2kπix + c with an integer k while the real valuedness P(x) on R implies k = 0, that

is, P(x) should be a constant c. Noting g2m−1(0)

f2m−1(0)
= S2m(0) = 1, we obtain eP(x) = 1. Hence

the desired expression S2m(x) in (1) for m follows.
We next derive the expression of S2m+1(x) in (2). The calculation similar to the one we

did shows that

g2m+1(x + 1)f2m+1(x + 1) = S ′
2m+1(1)

2π

2m∏
k=1

Sk(x)(
2m
k−1) × g2m+1(x)f2m+1(x) ,

that is, the meromorphic function g2m+1(x)f2m+1(x) has the same periodicity of S2m+1(x).
Therefore, employing again the same discussion made above, we prove the assertion for
S2m+1(x) by Lemma 2.2. This completes the proof of Theorem 1.1. �

REMARK 1. It follows from Theorem 1.1 that

∞∐
n=1

((n))n
2m = exp

(
(−1)m−1 ζ(2m + 1)(2m)!

22m+1π2m

)
. (11)

In other words, the value of ζ(s) at the odd integer point can be written as

ζ(2m + 1) = (−1)m−122m+1π2m

(2m)! log

( ∞∐
n=1

((n))n
2m

)
. (12)

REMARK 2. We can describe a generalization of the formula given in the remark
above. Let ζ(s, x) := ∑∞

n=0(n + x)−s be the Hurwitz zeta function. Then for m ≥ 1,
we prove the following formula which is also considered as an analogue of the Lerch formula
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[L]: Γ (x)−1 = (2π)− 1
2
∐∞

n=0(n + x) = (2π)− 1
2 e−ζ ′(0, x).

Gm(x)−1 =
∞∐

n=1

((n + x))n
m =

m∏
�=0

e−(m
�)ζ

′(−�, x)xm−�

. (13)

Here the differentiation ζ ′(−�, x) indicates the one with respect to s. In fact, by definition we

obtain Gm(x)−1 = exp
( − ∂

∂s
φ′{n},{nm}(s,−x)|s=0

)
. Here, since

φ{n},{nm}(s, x) =
∞∑

n=1

nm · (n − x)−s =
∞∑

n=0

(n − x + x)m · (n − x)−s

=
∞∑

n=0

m∑
�=0

(
m

�

)
(n − x)�xm−� · (n − x)−s

=
m∑

�=0

(
m

�

)
xm−�ζ(s − �,−x)

we have

φ′{n},{nm}(0,−x) =
m∑

�=0

(
m

�

)
xm−�ζ ′(−�, x) ,

whence we get the formula (13).

The theorem shows that the basic multiple gamma function Gm(x) is a half zeta function
of the corresponding basic multiple sine function Sm+1(x) in the sense of [HKW]. Actually,
the formula (8), that is, the equation

Gm(x + 1) =
{ m−1∏

k=0

Gk(x)(
m
k)(−1)m−k

}
· Gm(x) (14)

is regarded as a generalization of the translation property of the gamma function Γ (x + 1) =
xΓ (x). Moreover the theorem yields the reflection formulas of the basic gamma function as
follows:

COROLLARY 3.1. For m ≥ 1 we have

S2m(x) = G2m−1(x)G2m−1(−x)−1 , (15)

S2m+1(x) = exp

(
(−1)m

ζ(2m + 1)(2m)!
22mπ2m

)
G2m(x)−1G2m(−x)−1 . � (16)

We will show the generalization of the duplication formula of Gm(x) in the end of the
section (see Corollary 3.3).

The proof of Theorem 1.2 can be done in the following two ways. The first one is the
same as the above for S2m(x) by the periodicity of the multiple cosine function obtained from



ZETA REGULARIZED PRODUCT EXPRESSIONS FOR MULTIPLE TRIGONOMETRIC FUNCTION 477

the following characterization of Cr (x):

C ′
r

Cr

(x) = −πxr−1 tan(πx) with Cr (0) = 1 .

The second one, which we take here, is to employ the duplication formula (see [KOW],
[KKo]) of the multiple sine functions given by

C̃r (x) = Sr (2x)Sr (x)−2r−1
. (17)

In fact, using the property (C) in Lemma 2.1, we have the following result.

PROPOSITION 3.2. Let ζ(s, x) be the Hurwitz zeta function. Then the duplication pro-

cedure of the function Gm(x)−1 = ∐∞
n=1((n + x))n

m
is described as

∞∐
n=1

((n + 2x))n
m = 2z(m,2x) ·

{ ∞∐
�=1

((� + x))�
m

}2m

·
∞∐

�=1

((
� − 1

2
+ x

))(2�−1)m

. (18)

Here we put

z(m, x) =
m∑

j=0

(
m

j

)
(−x)m−j ζ(−j, x). (19)

PROOF. Put

ρm(s, x) =
∞∑

n=1

nm · (n + x)−s (20)

and

ρ̃m(s, x) =
∞∑

�=1

(2� − 1)m
(

� − 1

2
+ x

)−s

. (21)

By the property (C) in Lemma 2.1 we have
∞∐

n=1

((n + 2x))n
m =

∞∐
�=1

((2� + 2x))(2�)
m ·

∞∐
�=1

((2� − 1 + 2x))(2�−1)m

=
{

2ρm(0,x)
∞∐

�=1

((� + x))�
m

}2m

· 2ρ̃m(0,x)
∞∐

�=1

((
� − 1

2
+ x

))(2�−1)m

= 22mρm(0,x)+ρ̃m(0,x)

{ ∞∐
�=1

((� + x))�
m

}2m

·
∞∐

�=1

((
� − 1

2
+ x

))(2�−1)m

.

Here we note (as in the calculation in Remark 2) that

ρm(0, x) =
m∑

j=0

(
m

j

)
(−x)m−j ζ(−j, x) = z(m, x) . (22)
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Also, we obtain

ρ̃m(s, x) = 2s
∞∑

�=1

(2� − 1)m(2� − 1 + 2x)−s

= 2s

{ ∞∑
k=1

km(k + 2x)−s −
∞∑

�=1

(2�)m(2� + 2x)−s

}

= 2sρm(s, 2x) − 2mρm(s, x) .

Thus, in particular,

2mρm(0, x) + ρ̃m(0, x) = ρm(0, 2x) .

Hence the result follows immediately from (22). �

EXAMPLE. Since B1(x) = x − 1
2 and B2(x) = x2 − x + 1

6 , we have

z(1,m) = −xζ(0, x) + ζ(−1, x) = 1

2
x2 − 1

12
.

PROOF OF THEOREM 1.2. Now we recall the formula

ζ(−j, x) = −Bj+1(x)

j + 1
,

where Bj+1(x) is the Bernoulli polynomial given by

Bj+1(x) =
j+1∑
k=0

(
j + 1

k

)
Bkx

j+1−k .

Note that the Bernoulli numbers satisfy B2m+1 = 0 for m ≥ 1 while B1 = − 1
2 �= 0. By this

fact, z(m, x) can be calculated as

z(m, x) = −
m∑

j=0

(
m

j

)
(−x)m−j

j + 1

j+1∑
k=0

(
j + 1

k

)
Bkx

j+1−k

= (−1)m+1xm+1
m∑

j=0

j+1∑
k=0

(
m

j

)(
j + 1

k

)
(−1)j

j + 1
Bkx

−k .

Now looking at the coefficient of B1x
m, we have

m∑
j=0

(
m

j

)(
j + 1

1

)
(−1)j

j + 1
=

m∑
j=0

(
m

j

)
(−1)j = (1 − 1)m = 0 .

Hence we see that if m is odd (resp. even), then the polynomial z(m, x) becomes even (resp.
odd). Therefore, by the proposition above together with the duplication formula (17) of Sr (x)
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and Theorem 1.1, the proof of Theorem 1.2 can be accomplished. The detailed calculation is
easy and is left to the reader. �

REMARK 3. Similarly to the formula in Remark 1, by Theorem 1.2 we have

∞∐
n=1

((
n − 1

2

))(2n−1)2m

= exp

(
(−1)m−1(1 − 2m)

ζ(2m + 1)(2m)!
22m+1π2m

)
. (23)

A proof similar to the proposition gives the duplication formula of Gm(x).

COROLLARY 3.3. Put ρm(s, x) = ∑∞
n=1 nm · (n+x)−s . Then the duplication formula

of Gm(x) holds:

Gm(2x) = 2−w(m,x) · Gm(x)2m ·
m∏

j=0

{
Gm

(
x − 1

2

)}(m
j )2j (−1)m−j

. (24)

Here,

w(m, x) = 2mρm(0, x) +
m∑

j=0

(
m

j

)
2j (−1)m−jρj

(
0, x − 1

2

)

and each ρj (0, x) is calculated as

ρm(0, x) =
m∑

�=0

(
m

�

)
(−1)m−�xm−�ζ(−�, x) . �

REMARK 4. An analogue of the Gauss-Legendre multiplication formula of the gamma
function can be established similarly.
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