Токуо J. Матн. Vol. 28, No. 1, 2005

A Comparison Theorem on Crescents for Kähler Magnetic Fields

Toshiaki ADACHI

Nagoya Institute of Technology

(Communicated by Y. Ohnita)

Abstract. For a non-trivial Kähler magnetic field on a Kähler manifold, we consider bow-shapes as substitutions for triangles on a Riemannian manifold. We give a comparison theorem for bow-shapes on a manifold whose sectional curvature is bounded from above.

1. Introduction

In papers [1, 2, 3] the author studied Kähler manifolds from Riemannian geometric point of view by using Kähler magnetic fields. On a Kähler manifold $(M, J, \langle , \rangle)$ a closed 2-form $\mathbf{B}_{\kappa} = \kappa \mathbf{B}_J$ which is a constant multiple of the Kähler form \mathbf{B}_J on M is said to be a Kähler magnetic field. A smooth curve γ parameterized by its arc-length is called a trajectory for \mathbf{B}_{κ} if it satisfies the equation $\nabla_{\dot{\gamma}} \dot{\gamma} = \kappa J \dot{\gamma}$. As it is a geodesic when $\kappa = 0$, the author would like to investigate Kähler manifolds by use of some properties of trajectories for Kähler magnetic fields.

In Riemannian geometry it is a basic idea to compare the geometry of an arbitrary Riemannian manifold with geometry of a space of constant curvature. Powerful results were first obtained by Rauch, Alexandrov, Toponogov and Bishop, and active development was done by many geometers. In [2] the author studied a comparison theorem on Kähler magnetic Jacobi fields, which was generalized by N. Gouda[8] for general magnetic fields. He gave interesting results on geometry of general manifolds with uniform magnetic fields in [8, 9]. In this paper, in order to give another light on the study of non-trivial Kähler magnetic fields on general Kähler manifolds, we consider "bow-shapes" which are consisted of trajectories and a kind of geodesics and study a theorem of comparison type. Through out of this paper we suppose $\kappa \neq 0$.

The author is grateful to the referee who read this paper carefully and gave him significant comments.

Received December 18, 2003; revised December 25, 2004

²⁰⁰⁰ Mathematics subject classification: Primary 53C20, 53C22, 53C55.

The author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 14540075), Ministry of Education, Science, Sports, Culture and Technology.

2. Jacobi fields associated with a trajectory

Let γ be a trajectory for a non-trivial Kähler magnetic field \mathbf{B}_{κ} on a complete Kähler manifold M. We shall call a map $\alpha : \mathbf{R}^2 \to M$ a variation of geodesics associated with γ if it satisfies the following conditions;

- i) $\gamma(s) = \alpha(s, 0)$,
- ii) for each *s* the map $\sigma_s(\cdot) = \alpha(s, \cdot)$ is a geodesic,
- iii) $\frac{\partial \alpha}{\partial t}(s, 0)$ is parallel to $J\dot{\gamma}(s)$ and satisfies $\kappa \left(\frac{\partial \alpha}{\partial t}(s, 0), J\dot{\gamma}(s)\right) > 0$.

LEMMA 1. For a variation α of geodesics associated with a trajectory γ for \mathbf{B}_{κ} , we consider a Jacobi field $Y = \frac{\partial \alpha}{\partial s}(s_0, \cdot)$ along a geodesic $\sigma = \alpha(s_0, \cdot)$. Then it satisfies

- 1) $Y(0) = \dot{\gamma}(s_0),$
- 2) $\frac{1}{2} \frac{d}{dt} \|Y(t)\|^2|_{t=0} = \langle \nabla_{\sigma'} Y(0), \dot{\gamma}(s_0) \rangle = -\kappa \langle \sigma'(0), J \dot{\gamma}(s_0) \rangle < 0,$
- 3) $\nabla_{\sigma'} Y(0)$ is contained in the complex vector subspace spanned by $\dot{\gamma}(s_0)$.

If α is a variation of normal geodesics, that is $\left\|\frac{\partial \alpha}{\partial t}(s,t)\right\| = 1$ for every s, then Y also satisfies $\langle \nabla_{\sigma'} Y(0), J\dot{\gamma}(s_0) \rangle = 0.$

PROOF. Since $\frac{\partial \alpha}{\partial t}(s, 0)$ is parallel to $J\dot{\gamma}(s)$, we see

$$0 = \frac{d}{ds} \left\langle \frac{\partial \alpha}{\partial t}(s,0), \dot{\gamma}(s) \right\rangle = \left\langle \frac{\partial}{\partial s} \left(\frac{\partial \alpha}{\partial t} \right)(s,0), \dot{\gamma}(s) \right\rangle + \left\langle \frac{\partial \alpha}{\partial t}(s,0), \kappa J \dot{\gamma}(s) \right\rangle,$$

which shows the second assertion.

If a (local) vector field V along γ is orthogonal to both $\dot{\gamma}(s)$ and $J\dot{\gamma}(s)$ at each s, we find $\nabla_{\dot{\gamma}} V$ is also orthogonal to both $\dot{\gamma}(s)$ and $J\dot{\gamma}(s)$ by differentiating both sides of the equalities $\langle V(s), \dot{\gamma}(s) \rangle = 0$ and $\langle V(s), J\dot{\gamma}(s) \rangle = 0$. Differentiating both sides of $\langle \frac{\partial \alpha}{\partial t}(s, 0), V(s) \rangle = 0$, we see

$$\left(\nabla_{\dot{\gamma}}\frac{\partial\alpha}{\partial t}(s,0), V(s)\right) = -\left(\frac{\partial\alpha}{\partial t}(s,0), \nabla_{\dot{\gamma}}V(s)\right) = 0,$$

and obtain the third assertion.

We find the last assertion by differentiating both sides of $\left\|\frac{\partial \alpha}{\partial t}(s,t)\right\|^2 = 1$ by s.

Following Lemma 1, we shall say that a Jacobi field Y along a geodesic σ is associated with a trajectory for \mathbf{B}_{κ} if it satisfies

- i) $Y(0) = -\text{sgn}(\kappa) J \sigma'(0) / \|\sigma'(0)\|,$
- ii) $\nabla_{\sigma'} Y(0)$ is contained in the complex vector subspace spanned by $\sigma'(0)$ and satisfies $\langle \nabla_{\sigma'} Y(0), J\sigma'(0) \rangle = \kappa \|\sigma'(0)\|^2$.

Here sgn(*a*) is the signature of a real number *a*. It is clear that every Jacobi field associated with a trajectory for \mathbf{B}_{κ} can be obtained by some variation of geodesics associated with this trajectory. When σ is a normal geodesic, that is a geodesic of unit speed, we find a Jacobi field *Y* associated with a trajectory for \mathbf{B}_{κ} is of the form $Y = at\dot{\sigma}(t) - \text{sgn}(\kappa)g(t)J\dot{\sigma}(t) + Y^{\perp}$ with a constant *a*, a function *g* and a vector field Y^{\perp} along σ which is orthogonal to both

 $\dot{\sigma}(t)$ and $J\dot{\sigma}(t)$ at every t. The function g and the vector field Y^{\perp} satisfy g(0) = 1, $g'(0) = -|\kappa|$, $Y^{\perp}(0) = 0$, $\nabla_{\dot{\sigma}} Y^{\perp}(0) = 0$.

LEMMA 2. We consider a surface formed by a variation α of geodesics associated with a trajectory for \mathbf{B}_{κ} , which may have singularities. This surface is a complex line if and only if the vector $R(J\frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t})\frac{\partial \alpha}{\partial t}$ is parallel to $J\frac{\partial \alpha}{\partial t}$ at each point. In this case it is totally geodesic.

PROOF. The variation α forms a complex line if and only if the corresponding Jacobi field *Y* satisfies $Y^{\perp} \equiv 0$. Such case occurs if and only if $R\left(J\frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t}\right)\frac{\partial \alpha}{\partial t}$ is parallel to $J\frac{\partial \alpha}{\partial t}$. We show α forms a totally geodesic surface in this case. For the sake of simplicity, we may only treat the case that α is a variation of normal geodesics. In this case we have $\frac{\partial \alpha}{\partial s}(s, t) = -\text{sgn}(\kappa)g(s, t)J\frac{\partial \alpha}{\partial t}(s, t)$ with a function *g* satisfying

$$\frac{\partial^2 g}{\partial t^2}(s,t) + g(s,t) \mathrm{HR}\left(\frac{\partial \alpha}{\partial t}(s,t)\right) \equiv 0, \quad g(s,0) = 1, \quad \frac{\partial g}{\partial t}(s,0) = -|\kappa|,$$

where HR(v) denotes the holomorphic sectional curvature of the line spanned by a unit vector v. Thus we have

$$\begin{aligned} \nabla_{\frac{\partial \alpha}{\partial t}} \frac{\partial \alpha}{\partial t} &= 0 \,, \\ \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial t} &= \nabla_{\frac{\partial \alpha}{\partial t}} \frac{\partial \alpha}{\partial s} = -\mathrm{sgn}(\kappa) \nabla_{\frac{\partial \alpha}{\partial t}} \left(gJ \frac{\partial \alpha}{\partial t} \right) = -\mathrm{sgn}(\kappa) \frac{\partial g}{\partial t} J \frac{\partial \alpha}{\partial t} \,, \\ \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial s} &= -\mathrm{sgn}(\kappa) \nabla_{\frac{\partial \alpha}{\partial s}} \left(gJ \frac{\partial \alpha}{\partial t} \right) = -\mathrm{sgn}(\kappa) \left(\frac{\partial g}{\partial s} J \frac{\partial \alpha}{\partial t} + gJ \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial t} \right) \,. \end{aligned}$$

Hence these vectors $\nabla_{\frac{\partial \alpha}{\partial t}} \frac{\partial \alpha}{\partial t}$, $\nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial t}$, $\nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial s}$ are contained in the tangent space of a surface formed by α , and the surface is totally geodesic.

We call a point $\sigma(t_0)$ a \mathbf{B}_{κ} -trajectory focal point of $\sigma(0)$ if there is a Jacobi field along σ associated with a \mathbf{B}_{κ} -trajectory which vanishes at t_0 , and call the value $t_0/||\sigma'||$ a \mathbf{B}_{κ} -trajectory focal value of $\sigma(0)$. The minimum positive \mathbf{B}_{κ} -trajectory focal value is said to be the first \mathbf{B}_{κ} trajectory focal value of $\sigma(0)$, and is denoted by $t_f(\sigma(0); \sigma, \kappa)$ or $t_f(\sigma(0); \kappa)$. In case every point $\sigma(t)$, t > 0 is not a \mathbf{B}_{κ} -trajectory focal point of $\sigma(0)$ we put $t_f(\sigma(0); \sigma, \kappa) = \infty$. We denote the maximum negative \mathbf{B}_{κ} -trajectory focal value by $-t_n(\sigma(0); \sigma, \kappa)$. We also put $t_n(\sigma(0); \sigma, \kappa) = \infty$ if there are no negative \mathbf{B}_{κ} -trajectory focal values.

We here study \mathbf{B}_{κ} -trajectory focal values for a complex space form $\mathbf{C}M^{n}(c)$, which is a complex projective space $\mathbf{C}P^{n}(c)$ of constant holomorphic sectional curvature c, a complex Euclidean space \mathbf{C}^{n} or a complex hyperbolic space $\mathbf{C}H^{n}(c)$ of constant holomorphic sectional curvature c according c is positive, null or negative. On a complex Euclidean space \mathbf{C}^{n} , a trajectory for \mathbf{B}_{κ} is a circle of radius $1/|\kappa|$ in the sense of Euclidean geometry. Thus geodesics associated with a trajectory meet at its center, hence the first \mathbf{B}_{κ} -trajectory focal value is $1/|\kappa|$ and has no negative \mathbf{B}_{κ} -trajectory focal values.

On a complex projective space $\mathbb{C}P^n(c)$, every trajectory lies on some totally geodesic sphere $\mathbb{C}P^1(c)$ and is a small circle. If we regard this as a latitude line, geodesics associated with this trajectory meet at poles of $\mathbb{C}P^1(c)$ which are the center of this small circle and its anti-podal point. Hence the first \mathbb{B}_{κ} -trajectory focal value is $(1/\sqrt{c}) \tan^{-1}(\sqrt{c}/|\kappa|)$ and the maximum negative \mathbb{B}_{κ} -trajectory focal value is $-(1/\sqrt{c})\{\pi - \tan^{-1}(\sqrt{c}/|\kappa|)\}$. A Jacobi field along a normal geodesic σ associated with a trajectory for \mathbb{B}_{κ} on $\mathbb{C}P^n(c)$ is of the form

$$Y_c(t) = at\dot{\sigma}(t) + \left\{ -\operatorname{sgn}(\kappa)\cos\sqrt{c}t + \frac{\kappa}{\sqrt{c}}\sin\sqrt{c}t \right\} J\dot{\sigma}(t)$$

with a constant a.

On a complex hyperbolic space $CH^n(c)$, every trajectory lies on some totally geodesic real hyperbolic plane $CH^1(c)$. A Jacobi field along a normal geodesic σ associated with a trajectory for \mathbf{B}_{κ} on $CH^n(c)$ is of the form

$$Y_c(t) = at\dot{\sigma}(t) + \left\{ -\operatorname{sgn}(\kappa)\cosh\sqrt{|c|t} + \frac{\kappa}{\sqrt{|c|}}\sinh\sqrt{|c|t} \right\} J\dot{\sigma}(t)$$

with a constant *a*. Therefore, if $|\kappa| \leq \sqrt{|c|}$, there are no \mathbf{B}_{κ} -trajectory focal points, and if $|\kappa| > \sqrt{|c|}$, the first \mathbf{B}_{κ} -trajectory focal value is $(1/2\sqrt{|c|}) \log(\sqrt{|c|} + |\kappa|)/(|\kappa| - \sqrt{|c|})$ and there is no negative \mathbf{B}_{κ} -trajectory focal values.

We denote by $t_f(c; \kappa)$ and $-t_n(c; \kappa)$ the first **B**_{κ}-trajectory focal value and the maximum negative **B**_{κ}-trajectory focal value on a complex space form of constant holomorphic sectional curvature *c*. Then we see

$$t_{f}(c;\kappa) = \begin{cases} \frac{1}{\sqrt{c}} \tan^{-1} \frac{\sqrt{c}}{|\kappa|}, & \text{if } c > 0, \\ \frac{1}{|\kappa|}, & \text{if } c = 0, \\ \frac{1}{2\sqrt{|c|}} \log \frac{\sqrt{|c|+|\kappa|}}{|\kappa|-\sqrt{|c|}}, & \text{if } c < 0 \text{ and } |\kappa| > \sqrt{|c|}, \\ \infty, & \text{if } c < 0 \text{ and } |\kappa| \le \sqrt{|c|}, \end{cases}$$
$$t_{n}(c;\kappa) = \begin{cases} \frac{1}{\sqrt{c}} \left(\pi - \tan^{-1} \frac{\sqrt{c}}{|\kappa|}\right), & \text{if } c > 0, \\ \infty, & \text{if } c \le 0. \end{cases}$$

We here give comparison results on first \mathbf{B}_{κ} -focal values.

PROPOSITION 1. Let *M* be a Kähler manifold and σ be a normal geodesic on *M*. If the sectional curvatures of 2-planes spanned by $\dot{\sigma}(t)$ and a vector orthogonal to $\dot{\sigma}(t)$ are not greater than *c* for $0 \le t \le t_f(\sigma(0); \sigma, \kappa)$, then we have the following:

(1) $t_f(\sigma(0); \sigma, \kappa) \ge t_f(c; \kappa).$

(2) Let Y be a Jacobi field along a geodesic σ which is associated with a trajectory for \mathbf{B}_{κ} , and \hat{Y} be a Jacobi field along a normal geodesic $\hat{\sigma}$ which is associated with a trajectory for \mathbf{B}_{κ} on a simply connected surface $\hat{M} = \mathbf{C}M^{1}(c)$ of constant sectional curvature c.

If Y is orthogonal to $\dot{\sigma}$ and \hat{Y} is orthogonal to $\dot{\hat{\sigma}}$, then $||Y(t)|| \ge ||\hat{Y}(t)||$ for every t with $0 \le t \le t_f(c; \kappa)$. The equality $||Y(t_0)|| = ||\hat{Y}(t_0)|| (0 < t_0 \le t_f(c; \kappa))$ holds if and only if Y(t) is parallel to $J\dot{\sigma}(t)$ and the holomorphic sectional curvature of the line spanned by $\dot{\sigma}(t)$ is equal to c for $0 \le t \le t_0$.

PROOF. For the sake of simplicity, we suppose $\kappa > 0$. We denote Y and \hat{Y} by Y = hEand $\hat{Y} = -gJ\dot{\sigma}$ with functions g, h and a vector field E along σ satisfying h(0) = g(0) =1, ||E|| = 1 and $\langle E, \dot{\sigma} \rangle = 0$. As $\langle \nabla_{\dot{\sigma}} E, E \rangle = 0$ and $\langle \nabla_{\dot{\sigma}} \nabla_{\dot{\sigma}} E, E \rangle = -||\nabla_{\dot{\sigma}} E||^2$, we see

$$h'' + h(\langle R(E, \dot{\sigma})\dot{\sigma}, E \rangle - \|\nabla_{\dot{\sigma}} E\|^2) = 0.$$

Therefore, for $0 \le t < \min\{t_f(\sigma(0); \sigma, \kappa), t_f(c; \kappa)\}$ we have

$$(h'g - hg')' = hg(\|\nabla_{\dot{\sigma}} E\|^2 - \langle R(E, \dot{\sigma})\dot{\sigma}, E \rangle + c)$$

$$\geq hg(c - \langle R(E, \dot{\sigma})\dot{\sigma}, E \rangle) \geq 0.$$

By the definition of Jacobi fields associated with trajectories for \mathbf{B}_{κ} , we see $h'(0) = g'(0) = -\kappa$ and (h'g - hg')(0) = 0. Therefore we find $(h/g)' \ge 0$, hence $h \ge g$.

The equality $h(t_0) = g(t_0)$ at some point $0 < t_0 < t_f(c; \kappa)$ holds if and only if $\nabla_{\dot{\sigma}} E \equiv 0$ and $\langle R(E, \dot{\sigma})\dot{\sigma}, E \rangle \equiv c$ for $0 \leq t \leq t_0$. This is the case that $E = -J\dot{\sigma}$ and the holomorphic sectional curvature of the complex line spanned by $\dot{\sigma}(t)$ is c for $0 \leq t \leq t_0$.

The proof of Proposition 1 also guarantees the following.

PROPOSITION 2. Let *M* be a Kähler manifold and σ be a normal geodesic on *M*. If the sectional curvatures of 2-planes spanned by $\dot{\sigma}(t)$ and a vector orthogonal to $\dot{\sigma}(t)$ are not greater than *c* for t < 0, then $t_n(\sigma(0); \sigma, \kappa) \ge t_n(c; \kappa)$.

For two unit tangent vectors $v, w \in UM$ ($v \neq \pm w$), we denote by Riem(v, w) the sectional curvature of the plane spanned by v, w. In view of the values $t_f(c; \kappa)$ of the first \mathbf{B}_{κ} -focal value on a complex space form and $t_n(c; \kappa)$, these propositions guarantee the following.

COROLLARY 1. On a Kähler manifold M whose sectional curvature satisfies Riem $\leq c$ with some nonpositive constant c, every variation of geodesics associated with a trajectory for \mathbf{B}_{κ} forms an immersed surface without singularities if $|\kappa| \leq \sqrt{|c|}$.

3. Crescents and Bow-shapes

In Riemannian geometry, a comparison theorem for triangles plays quite an important role. This Toponogov theorem says that triangles on a manifold of large sectional curvature are fatter than triangles on a manifold of small sectional curvature. We here prepare a corresponding result for trajectories. As a substitute for a triangle we consider a bow-shape, which is consisted of a trajectory segment and a kind of geodesic segment.

A crescent for \mathbf{B}_{κ} on a Kähler manifold M is a pair $\mathcal{C} = (\gamma, \tau)$ of a trajectory segment $\gamma : [0, L] \to M$ for \mathbf{B}_{κ} and a nonnegative function $\tau : [0, L] \to [0, \infty)$ satisfying $\tau(0) =$

 $\tau(L) = 0$ and $0 \le \tau(s) < t_f(\gamma(s); \kappa)$ for every *s*. For a crescent $\mathcal{C} = (\gamma, \tau)$ we call γ the arc of \mathcal{C} . If $\alpha : [0, L] \times \mathbf{R} \to M$ is the variation of normal geodesics associated with γ , we call the set $\operatorname{Rep}(\mathcal{C}) = \{\alpha(s,t) \mid 0 \le s \le L, 0 \le t \le \tau(s)\}$ the represented shape of \mathcal{C} . We denote by $\rho_{\mathcal{C}}$ the curve $[0, L] \ni s \mapsto \alpha(s, \tau(s)) \in M$. If a crescent \mathcal{B} with arc γ has the minimum length of periphery among crescents \mathcal{C} with arc γ , that is, $\operatorname{length}(\rho_{\mathcal{C}}) \ge \operatorname{length}(\rho_{\mathcal{B}})$, we shall call it a *bow-shape* with arc γ , and call the curve $\rho_{\mathcal{B}}$ the bow-string of \mathcal{B} . As a matter of course, a bow-shape does not necessarily exists for every trajectory segment. Roughly speaking, if a bow-string $\rho_{\mathcal{B}}$ exists for a trajectory segment γ its image is an image of minimal geodesics associated with γ . We here make mention of bow-shapes on a complex space form $\mathbb{C}M^n(c)$ of constant holomorphic sectional curvature c. For bow-strings we sometimes call their images also bow-strings.

EXAMPLE 1. On a complex Euclidean space \mathbb{C}^n , for a trajectory segment γ for \mathbb{B}_{κ} with length(γ) < $\pi/|\kappa|$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$\operatorname{length}(\rho_{\mathcal{B}}) = \frac{2}{|\kappa|} \sin\left(\frac{1}{2}|\kappa|\operatorname{length}(\gamma)\right).$$

The image of this bow-shape lies on a totally geodesic C¹. But if length(γ) $\geq \pi/|\kappa|$, there does not exist bow-shapes with arc γ .

EXAMPLE 2. On a complex projective space $\mathbb{C}P^n(c)$, for a trajectory segment γ for \mathbf{B}_{κ} with length $(\gamma) < \pi/\sqrt{\kappa^2 + c}$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$\sqrt{c}\sin\left(\frac{1}{2}\sqrt{\kappa^2+c}\operatorname{length}(\gamma)\right) = \sqrt{\kappa^2+c}\sin\left(\frac{1}{2}\sqrt{c}\operatorname{length}(\rho_{\mathcal{B}})\right).$$

In particular, we see length($\rho_{\mathcal{B}}$) $\leq (2/\sqrt{c}) \sin^{-1} \sqrt{c/(\kappa^2 + c)}$. The image of this bow-shape lies on some totally geodesic standard sphere $\mathbb{C}P^1(c)$, and its periphery consists of a part of a small circle and a part of a great circle.

For a trajectory segment γ with length $(\gamma) \geq \pi/\sqrt{\kappa^2 + c}$, there does not exist bow-shapes with arc γ .

EXAMPLE 3. Let γ be a trajectory segment for \mathbf{B}_{κ} on a complex hyperbolic space $\mathbf{C}H^{n}(c)$.

(1) When $|\kappa| \le \sqrt{|c|}$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$\begin{cases} \sqrt{|c|} \sinh\left(\sqrt{|c| - \kappa^2 \operatorname{length}(\gamma)/2}\right) & \text{if } |\kappa| < \sqrt{|c|}, \\ = \sqrt{|c| - \kappa^2 \sinh(\sqrt{|c|} \operatorname{length}(\rho_{\mathcal{B}})/2)}, & \text{if } \kappa = \pm \sqrt{|c|}. \end{cases}$$

(2) When $|\kappa| > \sqrt{|c|}$, if length $(\gamma) < \pi/\sqrt{\kappa^2 + c}$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$\sqrt{|c|}\sin\left(\frac{1}{2}\sqrt{\kappa^2+c}\operatorname{length}(\gamma)\right) = \sqrt{\kappa^2+c}\sinh\left(\frac{1}{2}\sqrt{|c|}\operatorname{length}(\rho_{\mathcal{B}})\right).$$

In particular, we see length($\rho_{\mathcal{B}}$) $\leq (2/\sqrt{|c|}) \log(|\kappa| + \sqrt{|c|})/\sqrt{\kappa^2 + c})$. But if length(γ) $\geq \pi/\sqrt{\kappa^2 + c}$, there does not exist bow-shapes with arc γ .

(3) Every image of above bow-shapes is contained in some totally geodesic real hyperbolic plane $CH^{1}(c)$.

Needless to say that on $\mathbb{C}M^n(c)$ the represented shape of each bow-shape is simply connected. As a matter of fact, it is an image of a simply connected subset of the tangent space through the exponential map. For example, when \mathcal{B} is a bow-shape on \mathbb{C}^n whose arc $\gamma : [0, \ell] \to \mathbb{C}^n$ is a trajectory for \mathbf{B}_{κ} , then we see

$$\operatorname{Rep}(\mathcal{B}) = \exp_{\gamma(0)} \left(\left\{ v(u,\theta) \in T_{\gamma(0)} \mathbf{C}^n \middle| \begin{array}{l} 0 \leq \theta \leq |\kappa|\ell/2, \\ 0 \leq u \leq (2/|\kappa|) \sin \theta \end{array} \right\} \right)$$

where $v(u, \theta) = u \cos \theta \dot{\gamma}(0) + \operatorname{sgn}(\kappa) u \sin \theta J \dot{\gamma}(0)$.

We now give a comparison theorem on bow-shapes.

THEOREM 1. Let *M* be a Kähler manifold satisfying Riem $\leq c$ with a constant *c*. If a **B**_{κ}-crescent $C = (\gamma, \tau)$ satisfies

- i) length(γ) < $\pi/\sqrt{\kappa^2 + c}$ when $\kappa^2 + c > 0$,
- ii) $\tau(s) < t_f(c; \kappa)$ for every s,

then length($\rho_{\mathcal{C}}$) is not smaller than the length length($\rho_{\mathcal{B}}$) of a bow-string of a \mathbf{B}_{κ} -bow-shape \mathcal{B} on a complex space form $\mathbf{C}M^{n}(c)$ whose length of arc is length(γ).

The equality length($\rho_{\mathcal{C}}$) = length($\rho_{\mathcal{B}}$) holds if and only if the represented shape of \mathcal{C} is complex analytically isometrically immersed image of the represented shape of \mathcal{B} and is totally geodesic. In this case, it is a bow-shape with arc γ .

PROOF. Put $L = \text{length}(\gamma)$. We take a trajectory segment $\hat{\gamma}$ on $\hat{M} = \mathbb{C}M^n(c)$ satisfying $\text{length}(\hat{\gamma}) = L$, and consider a crescent $\hat{C} = (\hat{\gamma}, \tau)$. Let $\alpha : [0, L] \times \mathbb{R} \to M$ and $\hat{\alpha} : [0, L] \times \mathbb{R} \to \hat{M}$ be variations of normal geodesics associated with γ and $\hat{\gamma}$ respectively. As we have $\left(\frac{\partial \alpha}{\partial s}, \frac{\partial \alpha}{\partial t}\right) = \left(\frac{\partial \hat{\alpha}}{\partial s}, \frac{\partial \hat{\alpha}}{\partial t}\right) = 0$, we find by Proposition 1 that

$$\operatorname{length}(\rho_{\mathcal{C}}) = \int_{0}^{L} \|\rho_{\mathcal{C}}'(s)\| ds = \int_{0}^{L} \sqrt{\left\|\frac{\partial \alpha}{\partial s}(s,\tau(s))\right\|^{2} + \tau'(s)^{2}} ds$$
$$\geq \int_{0}^{L} \sqrt{\left\|\frac{\partial \hat{\alpha}}{\partial s}(s,\tau(s))\right\|^{2} + \tau'(s)^{2}} ds = \operatorname{length}(\rho_{\hat{\mathcal{C}}})$$
$$\geq \operatorname{length}(\rho_{\mathcal{B}}).$$

The equality holds if and only if $\left\|\frac{\partial \alpha}{\partial s}(s, \tau(s))\right\| = \left\|\frac{\partial \hat{\alpha}}{\partial s}(s, \tau(s))\right\|$ holds for every *s* and $\hat{C} = \mathcal{B}$. Again by Proposition 1, we see it is the case that the holomorphic sectional curvature of the line spanned by $\frac{\partial \alpha}{\partial s}(s, t)$ is *c* for every (s, t) with $0 \le t \le \tau(s)$.

REMARK. The above proof also shows that the length of smooth curve on a surface $A = \{\alpha(s, t) \mid 0 \le s \le L, 0 \le t \le t_f(c; \kappa)\}$ joining $\gamma(0)$ and $\gamma(L)$ is not smaller than the length of bow-string length(ρ_B) of a bow-shape \mathcal{B} on $\mathbb{C}M^n(c)$.

If a crescent $\tilde{C} = (\gamma, \tilde{\tau})$ on M does not lie on A, as we have s_0 with $\tau(s_0) > t_f(c; \kappa)$, we find length $(\rho_{\tilde{C}}) \ge 2t_f(c; \kappa) > \text{length}(\rho_{\mathcal{B}})$. In particular, if there is a crescent \tilde{C} on M with length $(\rho_{\tilde{C}}) = \text{length}(\rho_{\mathcal{B}})$, then it should lie on A.

When $\kappa^2 + c \le 0$, or when $\kappa^2 + c > 0$ and $L < \pi/\sqrt{\kappa^2 + c}$, we denote by $\ell(\kappa, L; c)$ the length of a bow-string of a bow-shape for \mathbf{B}_{κ} on a complex space form $\mathbf{C}M^n(c)$ whose length of arc is L. We set $\delta(\kappa, c) = \pi/\sqrt{\kappa^2 + c}$ when $\kappa^2 + c > 0$ and $\delta(\kappa, c) = \infty$ when $\kappa^2 + c \le 0$. By standing another point of view, we can conclude the following.

PROPOSITION 3. Let *M* be a Kähler manifold satisfying Riem $\leq c$ with a constant *c*. If a bow-shape *C* for \mathbf{B}_{κ} on *M* satisfies length(ρ_{C}) = $\ell(\kappa, L; c)$ for some positive *L* satisfying $L < \delta(\kappa, c)$, then the length of the arc of *C* is not longer than *L*.

If a trajectory segment γ for \mathbf{B}_{κ} on a Kähler manifold satisfying Riem $\leq c$ has a bowshape \mathcal{B} with arc γ and length($\rho_{\mathcal{B}}$) = $\ell(\kappa, \text{length}(\gamma); c)$, then the holomorphic sectional curvature of the complex line spaned by $\dot{\gamma}$ is *c*. Taking account of this we shall say that a trajectory γ for \mathbf{B}_{κ} ($\kappa \neq 0$) on a Kähler manifold is of *c*-space type if there exists a sequence $\{s_j\}_{j=-\infty}^{\infty}$ satisfying the following conditions:

i) $\lim_{j\to\infty} s_j = \delta(\kappa, c)$ and $\lim_{j\to-\infty} s_j = -\delta(\kappa, c)$,

ii) for each s_j ($s_j \neq 0$), the trajectory segment $\gamma|_{I_j}$, which is a restriction of γ on the interval I_j , has a bow-shape $\mathcal{B}_j = (\gamma|_{I_j}, \tau_j)$ with length($\rho_{\mathcal{B}_j}$) = $\ell(\kappa, |s_j|; c)$, where $I_j = [0, s_j]$ for $s_j > 0$ and $I_j = [s_j, 0]$ for $s_j < 0$.

It is needless to say that every trajectory on a complex space form $\mathbb{C}M^n(c)$ is of *c*-space type. A trajectory γ for \mathbf{B}_{κ} on $\mathbb{C}M^n(c)$ is closed if and only if $\kappa^2 + c > 0$. In this case its minimal period length(γ) is $2\pi/\sqrt{\kappa^2 + c} = 2\delta(\kappa, c)$ and the geodesic with initial vector $\mathrm{sgn}(\kappa)J\dot{\gamma}(0)$ goes through the point $\gamma(\delta(\kappa, c))$ (see [1]).

As a direct consequence of Theorem 1 we have

COROLLARY 2. Let M be a Kähler manifold satisfying Riem $\leq c$.

(1) If b > c, there does not exist a trajectory of b-space type.

(2) If $\kappa^2 + c > 0$, every trajectory γ of *c*-space type for \mathbf{B}_{κ} is closed and length(γ) = $2\pi/\sqrt{\kappa^2 + c}$. For a variation α of normal geodesics associated with γ , the interior

 $\mathcal{F}_{\alpha} = \{ \alpha(s, t) \mid |s| \le \delta(\kappa; c), \ 0 \le t \le t_f(c; \kappa) \}$

is totally geodesic, complex and of constant curvature c.

PROOF. (1) Since $\ell(\kappa, L; b) < \ell(\kappa, L; c)$ when b > c, the first assertion is trivial by Theorem 1.

(2) If there is a crescent $C = (\beta, \tau)$ on M with length $(\beta) < \delta(\kappa, c)$ and length $(\rho_C) = \ell(\kappa, \text{length}(\beta); c)$, then by Theorem 1 and Remark we see the represented shape of C is totally geodesic and of holomorphic sectional curvature c. We put $v_j = \dot{\rho}_{C_j}(0)/||\dot{\rho}_{C_j}(0)|| \in U_{\gamma(s_j)}M$. Since the represented shape of \mathcal{B}_j is complex analytically isometrically immersed image of the represented shape of a bow-shape on $\mathbb{C}M^n(c)$ whose length of arc is $|s_j|$, we find that $\lim_{j\to\infty} v_j = \lim_{j\to-\infty} v_j = \operatorname{sgn}(\kappa) J\dot{\gamma}(0)$. This shows $\gamma(\delta(\kappa, c)) = \gamma(-\delta(\kappa, c))$, hence γ is closed and length $(\gamma) = 2\delta(\kappa, c)$.

In the last stage we make mention of bow-shapes on a product of complex space forms. On a product $M = M_1 \times M_2$ of Kähler manifolds M_i , every trajectory γ is of the form $\gamma(t) = (\gamma_1(\lambda_1 t), \gamma_2(\lambda_2 t))$. Here, λ_1, λ_2 are nonnegative constants with $\lambda_1^2 + \lambda_2^2 = 1$, and γ_i is a trajectory for $\mathbf{B}_{\kappa/\lambda_i}$ on M_i when $\lambda_i > 0$ and is a point curve on M_i when $\lambda_i = 0$ (see [3, 4]). One can easily compute the length of bow-string on a product of complex space forms. For example, on a product $\mathbf{C}P^{n_1}(c_1) \times \cdots \times \mathbf{C}P^{n_p}(c_p)$ of complex projective spaces, a trajectory segment γ of the form $\gamma(t) = (\gamma_1(\lambda_1 t), \cdots, \gamma_p(\lambda_p t))$ for \mathbf{B}_{κ} with nonnegative constants $\lambda_1, \dots, \lambda_p$ satisfying $\sum_{i=1}^p \lambda_i^2 = 1$ has a bow-shape if

$$\operatorname{length}(\gamma) < \min\left\{\pi \middle/ \sqrt{\kappa^2 + c_i \lambda_i^2} \, \middle| \, \lambda_i \neq 0, \ 1 \le i \le p \right\}.$$

The length of its bow-string is given by $\sqrt{\sum_{i=1}^{p} d_i^2}$ with d_i satisfying

$$\lambda_i \sqrt{c_i} \sin\left(\sqrt{\kappa^2 + c_i \lambda_i^2} \operatorname{length}(\gamma) / 2\right) = \sqrt{\kappa^2 + c_i \lambda_i^2} \sin(\sqrt{c_i} d_i / 2)).$$

We here consider a subset $S_x(c)$ of the unit tangent space $U_x M$ given by

$$S_{x}(c) = \left\{ v \in U_{x}M \middle| \begin{array}{c} \text{there is a positive } \varepsilon \text{ such that for every} \\ \kappa \text{ with } 0 < |\kappa| \le \varepsilon \text{ the trajectory for } \mathbf{B}_{\kappa} \\ \text{with initial vector } v \text{ is of } c\text{-space type} \end{array} \right\}$$

For a complex space form $\mathbb{C}M^n(c)$ we see $U_x \mathbb{C}M^n(c) = S_x(c)$ at each point, and for a product of complex space forms $M = \mathbb{C}M^{n_1}(c_1) \times \cdots \times \mathbb{C}M^{n_p}(c_p)$, we see that $S_x(c)$ is either an empty set or a disjoint sum of spheres; $S_x(c) = S^{2n_1-1} + \cdots + S^{2n_{i_q}-1}$, where $c = c_{i_j}$ for $1 \le j \le q$, $c_i \ne c$ for $i \ne i_j$. Here, if we denote $x \in M$ by (x_1, \cdots, x_p) , the set $S^{2n_{i_j}}$ corresponds to $U_{x_{i_j}}\mathbb{C}M^{n_{i_j}}(c)$. For a Hermitian symmetric space M of rank r, it was pointed out by Ikawa[10] that every trajectory lies on a totally geodesic r-product $\mathbb{C}M^1(c) \times \cdots \times \mathbb{C}M^1(c)$, where c is the maximum sectional curvature when M is of compact type and is the minimum sectional curvature when M is of noncompact type. We hence see that for this c the set $S_x(c)$ contains a r-sum $S^1 + \cdots + S^1$ of circles S^1 .

COROLLARY 3. Let M be a simply connected Kähler manifold of Riem $\leq c$ for some nonnegative c. If $S_x(c) \neq \emptyset$ at some point x, then M contains a totally geodesic $\mathbb{C}M^1(c)$.

PROOF. For $v \in S_x(c)$ we denote by γ_{κ} $(0 < |\kappa| < \varepsilon)$ a trajectory of *c*-space type for \mathbf{B}_{κ} with $\dot{\gamma}_{\kappa}(0) = v$, and by α_{κ} the variation of normal geodesics associated with γ_{κ} . Since *M* satisfies Riem $\leq c$, we see $\mathcal{F}_{\alpha_{\kappa}}$ is totally geodesic and of constant curvature *c*. Moreover, as *M* is simply connected, the condition that γ_{κ} is of *c*-space type guarantees that $\mathcal{F}_{\alpha_{\kappa}}$ is contained in the inside of the geodesic ball centered at $\gamma(0)$ whose radius is the injectivity radius at $\gamma(0)$. Thus $\mathcal{F}_{\alpha_{\kappa}}$ is an image of a simply connected subset of $\{a\dot{\gamma}(0) + bJ\dot{\gamma}(0) \mid a \in \mathbf{R}, b > 0\}$ through the exponential map $\exp_{\gamma(0)}$ when $\kappa > 0$ and is an image of a simply connected subset of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through the system of $\{a\dot{\gamma}(0)+bJ\dot{\gamma}(0)\mid a \in \mathbf{R}, b<0\}$ through this exponential map when $\kappa < 0$. We hence find that $\mathcal{F}_{\alpha_{\kappa}}$ is simply connected and that $\mathcal{F}_{\alpha_{\kappa_1}} \supset \mathcal{F}_{\alpha_{\kappa_2}}$ if $0 < \kappa_1 < \kappa_2 < \varepsilon$ or $0 > \kappa_1 > \kappa_2 > -\varepsilon$. Therefore we see $\mathcal{F} = \bigcup_{0 < |\kappa| < \varepsilon} \mathcal{F}_{\alpha_{\kappa}}$ is totally geodesic and is complex analytically isometric to $\mathbf{C}M^1(c) \setminus \{\text{image of a geodesic on } \mathbf{C}M^1(c)\}$. Since the topological closure

$$\overline{\mathcal{F}} = \mathcal{F} \cup \{\text{the image of the geodesic with initial vector } v\}$$

of \mathcal{F} is of constant curvature c, we see it is complex analytically isometric to $\mathbb{C}M^1(c)$. \Box

If we restrict ourselves on Hermitian symmetric spaces, as every trajectory lies on a totally geodesic *r*-product of $\mathbb{C}M^{1}$'s, the following is trivial.

COROLLARY 4. If a Hermitian symmetric space M satisfies $S_x(c) = U_x M$ for some c, then M is $\mathbb{C}M^n(c)$.

References

- T. ADACHI, Kähler magnetic flows on a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (1995), 473–483.
- [2] T. ADACHI, A comparison theorem on magnetic Jacobi fields, Proc. Edinburgh Math. Soc. 40 (1997), 293–308.
- [3] T. ADACHI, Kähler magnetic flows for a product of complex space forms, Topology and its application 146–147 (2005), 329–338.
- [4] T. ADACHI, Rank of a Hermitian symmetric space of noncompact type and Kähler magnetic fields, preprint.
- [5] T. ADACHI, S. MAEDA and S. UDAGAWA, Simpleness and closedness of circles in compact Hermitian symmetric spaces, Tsukuba J. Math. 24 (2000), 1–13.
- [6] M. L. BIALY, Rigidity for periodic magnetic fields, Ergod. Th. Dynam. Sys. 20 (2000), 1619–1626.
- [7] J. CHEEGER and D. EBIN, *Comparison theorems in Riemannian geometry*, North-Holland, 1975.
- [8] N. GOUDA, Magnetic flows of Anosov type, Tôhoku Math. J. 49 (1997), 165-183.
- [9] N. GOUDA, The theorem of E. Hopf under uniform magnetic fields, J. Math. Soc. Japan 50 (1998), 767–779.
- [10] O. IKAWA, Motion of charged particles in homogeneous Kähler and homogeneous Sasakian manifolds, preprint.

Present Address: DEPARTMENT OF MATHEMATICS, NAGOYA INSTITUTE OF TECHNOLOGY, NAGOYA 466–8555, JAPAN. *e-mail*: adachi@nitech.ac.jp