A Comparison Theorem on Crescents for Kähler Magnetic Fields

Toshiaki ADACHI

Nagoya Institute of Technology
(Communicated by Y. Ohnita)

Abstract

For a non-trivial Kähler magnetic field on a Kähler manifold, we consider bow-shapes as substitutions for triangles on a Riemannian manifold. We give a comparison theorem for bow-shapes on a manifold whose sectional curvature is bounded from above.

1. Introduction

In papers $[1,2,3]$ the author studied Kähler manifolds from Riemannian geometric point of view by using Kähler magnetic fields. On a Kähler manifold (M, J,\langle,$\rangle) a closed 2-form$ $\mathbf{B}_{\kappa}=\kappa \mathbf{B}_{J}$ which is a constant multiple of the Kähler form \mathbf{B}_{J} on M is said to be a Kähler magnetic field. A smooth curve γ parameterized by its arc-length is called a trajectory for \mathbf{B}_{κ} if it satisfies the equation $\nabla_{\dot{\gamma}} \dot{\gamma}=\kappa J \dot{\gamma}$. As it is a geodesic when $\kappa=0$, the author would like to investigate Kähler manifolds by use of some properties of trajectories for Kähler magnetic fields.

In Riemannian geometry it is a basic idea to compare the geometry of an arbitrary Riemannian manifold with geometry of a space of constant curvature. Powerful results were first obtained by Rauch, Alexandrov, Toponogov and Bishop, and active development was done by many geometers. In [2] the author studied a comparison theorem on Kähler magnetic Jacobi fields, which was generalized by N. Gouda[8] for general magnetic fields. He gave interesting results on geometry of general manifolds with uniform magnetic fields in [8, 9]. In this paper, in order to give another light on the study of non-trivial Kähler magnetic fields on general Kähler manifolds, we consider "bow-shapes" which are consisted of trajectories and a kind of geodesics and study a theorem of comparison type. Through out of this paper we suppose $\kappa \neq 0$.

The author is grateful to the referee who read this paper carefully and gave him significant comments.

[^0]
2. Jacobi fields associated with a trajectory

Let γ be a trajectory for a non-trivial Kähler magnetic field \mathbf{B}_{κ} on a complete Kähler manifold M. We shall call a map $\alpha: \mathbf{R}^{2} \rightarrow M$ a variation of geodesics associated with γ if it satisfies the following conditions;
i) $\gamma(s)=\alpha(s, 0)$,
ii) for each s the map $\sigma_{s}(\cdot)=\alpha(s, \cdot)$ is a geodesic,
iii) $\frac{\partial \alpha}{\partial t}(s, 0)$ is parallel to $J \dot{\gamma}(s)$ and satisfies $\kappa\left\langle\frac{\partial \alpha}{\partial t}(s, 0), J \dot{\gamma}(s)\right\rangle>0$.

LEMMA 1. For a variation α of geodesics associated with a trajectory γ for \mathbf{B}_{κ}, we consider a Jacobi field $Y=\frac{\partial \alpha}{\partial s}\left(s_{0}, \cdot\right)$ along a geodesic $\sigma=\alpha\left(s_{0}, \cdot\right)$. Then it satisfies

1) $Y(0)=\dot{\gamma}\left(s_{0}\right)$,
2) $\left.\frac{1}{2} \frac{d}{d t}\|Y(t)\|^{2}\right|_{t=0}=\left\langle\nabla_{\sigma^{\prime}} Y(0), \dot{\gamma}\left(s_{0}\right)\right\rangle=-\kappa\left\langle\sigma^{\prime}(0), J \dot{\gamma}\left(s_{0}\right)\right\rangle<0$,
3) $\nabla_{\sigma^{\prime}} Y(0)$ is contained in the complex vector subspace spanned by $\dot{\gamma}\left(s_{0}\right)$.

If α is a variation of normal geodesics, that is $\left\|\frac{\partial \alpha}{\partial t}(s, t)\right\|=1$ for every s, then Y also satisfies $\left\langle\nabla_{\sigma^{\prime}} Y(0), J \dot{\gamma}\left(s_{0}\right)\right\rangle=0$.

Proof. Since $\frac{\partial \alpha}{\partial t}(s, 0)$ is parallel to $J \dot{\gamma}(s)$, we see

$$
0=\frac{d}{d s}\left\langle\frac{\partial \alpha}{\partial t}(s, 0), \dot{\gamma}(s)\right\rangle=\left\langle\frac{\partial}{\partial s}\left(\frac{\partial \alpha}{\partial t}\right)(s, 0), \dot{\gamma}(s)\right\rangle+\left\langle\frac{\partial \alpha}{\partial t}(s, 0), \kappa J \dot{\gamma}(s)\right\rangle,
$$

which shows the second assertion.
If a (local) vector field V along γ is orthogonal to both $\dot{\gamma}(s)$ and $J \dot{\gamma}(s)$ at each s, we find $\nabla_{\dot{\gamma}} V$ is also orthogonal to both $\dot{\gamma}(s)$ and $J \dot{\gamma}(s)$ by differentiating both sides of the equalities $\langle V(s), \dot{\gamma}(s)\rangle=0$ and $\langle V(s), J \dot{\gamma}(s)\rangle=0$. Differentiating both sides of $\left\langle\frac{\partial \alpha}{\partial t}(s, 0), V(s)\right\rangle=0$, we see

$$
\left\langle\nabla_{\dot{\gamma}} \frac{\partial \alpha}{\partial t}(s, 0), V(s)\right\rangle=-\left\langle\frac{\partial \alpha}{\partial t}(s, 0), \nabla_{\dot{\gamma}} V(s)\right\rangle=0
$$

and obtain the third assertion.
We find the last assertion by differentiating both sides of $\left\|\frac{\partial \alpha}{\partial t}(s, t)\right\|^{2}=1$ by s.
Following Lemma 1, we shall say that a Jacobi field Y along a geodesic σ is associated with a trajectory for \mathbf{B}_{κ} if it satisfies
i) $\quad Y(0)=-\operatorname{sgn}(\kappa) J \sigma^{\prime}(0) /\left\|\sigma^{\prime}(0)\right\|$,
ii) $\quad \nabla_{\sigma^{\prime}} Y(0)$ is contained in the complex vector subspace spanned by $\sigma^{\prime}(0)$ and satisfies $\left\langle\nabla_{\sigma^{\prime}} Y(0), J \sigma^{\prime}(0)\right\rangle=\kappa\left\|\sigma^{\prime}(0)\right\|^{2}$.
Here $\operatorname{sgn}(a)$ is the signature of a real number a. It is clear that every Jacobi field associated with a trajectory for \mathbf{B}_{κ} can be obtained by some variation of geodesics associated with this trajectory. When σ is a normal geodesic, that is a geodesic of unit speed, we find a Jacobi field Y associated with a trajectory for \mathbf{B}_{κ} is of the form $Y=a t \dot{\sigma}(t)-\operatorname{sgn}(\kappa) g(t) J \dot{\sigma}(t)+Y^{\perp}$ with a constant a, a function g and a vector field Y^{\perp} along σ which is orthogonal to both
$\dot{\sigma}(t)$ and $J \dot{\sigma}(t)$ at every t. The function g and the vector field Y^{\perp} satisfy $g(0)=1, g^{\prime}(0)=$ $-|\kappa|, Y^{\perp}(0)=0, \nabla_{\dot{\sigma}} Y^{\perp}(0)=0$.

LEMMA 2. We consider a surface formed by a variation α of geodesics associated with a trajectory for \mathbf{B}_{κ}, which may have singularities. This surface is a complex line if and only if the vector $R\left(J \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t}\right) \frac{\partial \alpha}{\partial t}$ is parallel to $J \frac{\partial \alpha}{\partial t}$ at each point. In this case it is totally geodesic.

Proof. The variation α forms a complex line if and only if the corresponding Jacobi field Y satisfies $Y^{\perp} \equiv 0$. Such case occurs if and only if $R\left(J \frac{\partial \alpha}{\partial t}, \frac{\partial \alpha}{\partial t}\right) \frac{\partial \alpha}{\partial t}$ is parallel to $J \frac{\partial \alpha}{\partial t}$. We show α forms a totally geodesic surface in this case. For the sake of simplicity, we may only treat the case that α is a variation of normal geodesics. In this case we have $\frac{\partial \alpha}{\partial s}(s, t)=$ $-\operatorname{sgn}(\kappa) g(s, t) J \frac{\partial \alpha}{\partial t}(s, t)$ with a function g satisfying

$$
\frac{\partial^{2} g}{\partial t^{2}}(s, t)+g(s, t) \operatorname{HR}\left(\frac{\partial \alpha}{\partial t}(s, t)\right) \equiv 0, \quad g(s, 0)=1, \quad \frac{\partial g}{\partial t}(s, 0)=-|\kappa|
$$

where $\operatorname{HR}(v)$ denotes the holomorphic sectional curvature of the line spanned by a unit vector v. Thus we have

$$
\begin{aligned}
& \nabla_{\frac{\partial \alpha}{\partial t}} \frac{\partial \alpha}{\partial t}=0 \\
& \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial t}=\nabla_{\frac{\partial \alpha}{\partial t}} \frac{\partial \alpha}{\partial s}=-\operatorname{sgn}(\kappa) \nabla_{\frac{\partial \alpha}{\partial t}}\left(g J \frac{\partial \alpha}{\partial t}\right)=-\operatorname{sgn}(\kappa) \frac{\partial g}{\partial t} J \frac{\partial \alpha}{\partial t}, \\
& \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial s}=-\operatorname{sgn}(\kappa) \nabla_{\frac{\partial \alpha}{\partial s}}\left(g J \frac{\partial \alpha}{\partial t}\right)=-\operatorname{sgn}(\kappa)\left(\frac{\partial g}{\partial s} J \frac{\partial \alpha}{\partial t}+g J \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial t}\right) .
\end{aligned}
$$

Hence these vectors $\nabla_{\frac{\partial \alpha}{\partial t}} \frac{\partial \alpha}{\partial t}, \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial t}, \nabla_{\frac{\partial \alpha}{\partial s}} \frac{\partial \alpha}{\partial s}$ are contained in the tangent space of a surface formed by α, and the surface is totally geodesic.

We call a point $\sigma\left(t_{0}\right)$ a \mathbf{B}_{κ}-trajectory focal point of $\sigma(0)$ if there is a Jacobi field along σ associated with a \mathbf{B}_{κ}-trajectory which vanishes at t_{0}, and call the value $t_{0} /\left\|\sigma^{\prime}\right\|$ a \mathbf{B}_{κ}-trajectory focal value of $\sigma(0)$. The minimum positive \mathbf{B}_{κ}-trajectory focal value is said to be the first $\mathbf{B}_{\kappa^{-}}$trajectory focal value of $\sigma(0)$, and is denoted by $t_{f}(\sigma(0) ; \sigma, \kappa)$ or $t_{f}(\sigma(0) ; \kappa)$. In case every point $\sigma(t), t>0$ is not a \mathbf{B}_{κ}-trajectory focal point of $\sigma(0)$ we put $t_{f}(\sigma(0) ; \sigma, \kappa)=\infty$. We denote the maximum negative \mathbf{B}_{κ}-trajectory focal value by $-t_{n}(\sigma(0) ; \sigma, \kappa)$. We also put $t_{n}(\sigma(0) ; \sigma, \kappa)=\infty$ if there are no negative \mathbf{B}_{κ}-trajectory focal values.

We here study \mathbf{B}_{κ}-trajectory focal values for a complex space form $\mathbf{C} M^{n}(c)$, which is a complex projective space $\mathbf{C} P^{n}(c)$ of constant holomorphic sectional curvature c, a complex Euclidean space \mathbf{C}^{n} or a complex hyperbolic space $\mathbf{C} H^{n}(c)$ of constant holomorphic sectional curvature c according c is positive, null or negative. On a complex Euclidean space \mathbf{C}^{n}, a trajectory for \mathbf{B}_{κ} is a circle of radius $1 /|\kappa|$ in the sense of Euclidean geometry. Thus geodesics associated with a trajectory meet at its center, hence the first \mathbf{B}_{κ}-trajectory focal value is $1 /|\kappa|$ and has no negative \mathbf{B}_{κ}-trajectory focal values.

On a complex projective space $\mathbf{C} P^{n}(c)$, every trajectory lies on some totally geodesic sphere $\mathbf{C} P^{1}(c)$ and is a small circle. If we regard this as a latitude line, geodesics associated with this trajectory meet at poles of $\mathbf{C} P^{1}(c)$ which are the center of this small circle and its anti-podal point. Hence the first \mathbf{B}_{κ}-trajectory focal value is $(1 / \sqrt{c}) \tan ^{-1}(\sqrt{c} /|\kappa|)$ and the maximum negative \mathbf{B}_{κ}-trajectory focal value is $-(1 / \sqrt{c})\left\{\pi-\tan ^{-1}(\sqrt{c} /|\kappa|)\right\}$. A Jacobi field along a normal geodesic σ associated with a trajectory for \mathbf{B}_{κ} on $\mathbf{C} P^{n}(c)$ is of the form

$$
Y_{c}(t)=a t \dot{\sigma}(t)+\left\{-\operatorname{sgn}(\kappa) \cos \sqrt{c} t+\frac{\kappa}{\sqrt{c}} \sin \sqrt{c} t\right\} J \dot{\sigma}(t)
$$

with a constant a.
On a complex hyperbolic space $\mathbf{C} H^{n}(c)$, every trajectory lies on some totally geodesic real hyperbolic plane $\mathbf{C} H^{1}(c)$. A Jacobi field along a normal geodesic σ associated with a trajectory for \mathbf{B}_{κ} on $\mathbf{C} H^{n}(c)$ is of the form

$$
Y_{c}(t)=a t \dot{\sigma}(t)+\left\{-\operatorname{sgn}(\kappa) \cosh \sqrt{|c|} t+\frac{\kappa}{\sqrt{|c|}} \sinh \sqrt{|c|} t\right\} J \dot{\sigma}(t)
$$

with a constant a. Therefore, if $|\kappa| \leq \sqrt{|c|}$, there are no \mathbf{B}_{κ}-trajectory focal points, and if $|\kappa|>\sqrt{|c|}$, the first \mathbf{B}_{κ}-trajectory focal value is $(1 / 2 \sqrt{|c|}) \log (\sqrt{|c|}+|\kappa|) /(|\kappa|-\sqrt{|c|})$ and there is no negative \mathbf{B}_{κ}-trajectory focal values.

We denote by $t_{f}(c ; \kappa)$ and $-t_{n}(c ; \kappa)$ the first \mathbf{B}_{κ}-trajectory focal value and the maximum negative \mathbf{B}_{κ}-trajectory focal value on a complex space form of constant holomorphic sectional curvature c. Then we see

$$
\begin{aligned}
& t_{f}(c ; \kappa)= \begin{cases}\frac{1}{\sqrt{c}} \tan ^{-1} \frac{\sqrt{c}}{|\kappa|}, & \text { if } c>0, \\
\frac{1}{|\kappa|}, & \text { if } c=0, \\
\frac{1}{2 \sqrt{|c|}} \log \frac{\sqrt{|c|}+|\kappa|}{|\kappa|-\sqrt{|c|},} & \text { if } c<0 \text { and }|\kappa|>\sqrt{|c|}, \\
\infty, & \text { if } c<0 \text { and }|\kappa| \leq \sqrt{|c|},\end{cases} \\
& t_{n}(c ; \kappa)= \begin{cases}\frac{1}{\sqrt{c}}\left(\pi-\tan ^{-1} \frac{\sqrt{c}}{|\kappa|}\right), & \text { if } c>0, \\
\infty, & \text { if } c \leq 0 .\end{cases}
\end{aligned}
$$

We here give comparison results on first \mathbf{B}_{κ}-focal values.
Proposition 1. Let M be a Kähler manifold and σ be a normal geodesic on M. If the sectional curvatures of 2-planes spanned by $\dot{\sigma}(t)$ and a vector orthogonal to $\dot{\sigma}(t)$ are not greater than c for $0 \leq t \leq t_{f}(\sigma(0) ; \sigma, \kappa)$, then we have the following:
(1) $t_{f}(\sigma(0) ; \sigma, \kappa) \geq t_{f}(c ; \kappa)$.
(2) Let Y be a Jacobi field along a geodesic σ which is associated with a trajectory for \mathbf{B}_{κ}, and \hat{Y} be a Jacobi field along a normal geodesic $\hat{\sigma}$ which is associated with a trajectory for \mathbf{B}_{κ} on a simply connected surface $\hat{M}=\mathbf{C} M^{1}(c)$ of constant sectional curvature c.

If Y is orthogonal to $\dot{\sigma}$ and \hat{Y} is orthogonal to $\dot{\hat{\sigma}}$, then $\|Y(t)\| \geq\|\hat{Y}(t)\|$ for every t with $0 \leq t \leq t_{f}(c ; \kappa)$. The equality $\left\|Y\left(t_{0}\right)\right\|=\left\|\hat{Y}\left(t_{0}\right)\right\|\left(0<t_{0} \leq t_{f}(c ; \kappa)\right)$ holds if and only if $Y(t)$ is parallel to $J \dot{\sigma}(t)$ and the holomorphic sectional curvature of the line spanned by $\dot{\sigma}(t)$ is equal to c for $0 \leq t \leq t_{0}$.

Proof. For the sake of simplicity, we suppose $\kappa>0$. We denote Y and \hat{Y} by $Y=h E$ and $\hat{Y}=-g J \dot{\hat{\sigma}}$ with functions g, h and a vector field E along σ satisfying $h(0)=g(0)=$ $1,\|E\|=1$ and $\langle E, \dot{\sigma}\rangle=0$. As $\left\langle\nabla_{\dot{\sigma}} E, E\right\rangle=0$ and $\left\langle\nabla_{\dot{\sigma}} \nabla_{\dot{\sigma}} E, E\right\rangle=-\left\|\nabla_{\dot{\sigma}} E\right\|^{2}$, we see

$$
h^{\prime \prime}+h\left(\langle R(E, \dot{\sigma}) \dot{\sigma}, E\rangle-\left\|\nabla_{\dot{\sigma}} E\right\|^{2}\right)=0 .
$$

Therefore, for $0 \leq t<\min \left\{t_{f}(\sigma(0) ; \sigma, \kappa), t_{f}(c ; \kappa)\right\}$ we have

$$
\begin{aligned}
\left(h^{\prime} g-h g^{\prime}\right)^{\prime} & =h g\left(\left\|\nabla_{\dot{\sigma}} E\right\|^{2}-\langle R(E, \dot{\sigma}) \dot{\sigma}, E\rangle+c\right) \\
& \geq h g(c-\langle R(E, \dot{\sigma}) \dot{\sigma}, E\rangle) \geq 0
\end{aligned}
$$

By the definition of Jacobi fields associated with trajectories for \mathbf{B}_{κ}, we see $h^{\prime}(0)=g^{\prime}(0)=$ $-\kappa$ and $\left(h^{\prime} g-h g^{\prime}\right)(0)=0$. Therefore we find $(h / g)^{\prime} \geq 0$, hence $h \geq g$.

The equality $h\left(t_{0}\right)=g\left(t_{0}\right)$ at some point $0<t_{0}<t_{f}(c ; \kappa)$ holds if and only if $\nabla_{\dot{\sigma}} E \equiv 0$ and $\langle R(E, \dot{\sigma}) \dot{\sigma}, E\rangle \equiv c$ for $0 \leq t \leq t_{0}$. This is the case that $E=-J \dot{\sigma}$ and the holomorphic sectional curvature of the complex line spanned by $\dot{\sigma}(t)$ is c for $0 \leq t \leq t_{0}$.

The proof of Proposition 1 also guarantees the following.
Proposition 2. Let M be a Kähler manifold and σ be a normal geodesic on M. If the sectional curvatures of 2-planes spanned by $\dot{\sigma}(t)$ and a vector orthogonal to $\dot{\sigma}(t)$ are not greater than c for $t<0$, then $t_{n}(\sigma(0) ; \sigma, \kappa) \geq t_{n}(c ; \kappa)$.

For two unit tangent vectors $v, w \in U M(v \neq \pm w)$, we denote by $\operatorname{Riem}(v, w)$ the sectional curvature of the plane spanned by v, w. In view of the values $t_{f}(c ; \kappa)$ of the first $\mathbf{B}_{\kappa}{ }^{-}$ focal value on a complex space form and $t_{n}(c ; \kappa)$, these propositions guarantee the following.

Corollary 1. On a Kähler manifold M whose sectional curvature satisfies Riem \leq c with some nonpositive constant c, every variation of geodesics associated with a trajectory for \mathbf{B}_{κ} forms an immersed surface without singularities if $|\kappa| \leq \sqrt{|c|}$.

3. Crescents and Bow-shapes

In Riemannian geometry, a comparison theorem for triangles plays quite an important role. This Toponogov theorem says that triangles on a manifold of large sectional curvature are fatter than triangles on a manifold of small sectional curvature. We here prepare a corresponding result for trajectories. As a substitute for a triangle we consider a bow-shape, which is consisted of a trajectory segment and a kind of geodesic segment.

A crescent for \mathbf{B}_{κ} on a Kähler manifold M is a pair $\mathcal{C}=(\gamma, \tau)$ of a trajectory segment $\gamma:[0, L] \rightarrow M$ for \mathbf{B}_{κ} and a nonnegative function $\tau:[0, L] \rightarrow[0, \infty)$ satisfying $\tau(0)=$
$\tau(L)=0$ and $0 \leq \tau(s)<t_{f}(\gamma(s) ; \kappa)$ for every s. For a crescent $\mathcal{C}=(\gamma, \tau)$ we call γ the arc of \mathcal{C}. If $\alpha:[0, L] \times \mathbf{R} \rightarrow M$ is the variation of normal geodesics associated with γ, we call the set $\operatorname{Rep}(\mathcal{C})=\{\alpha(s, t) \mid 0 \leq s \leq L, 0 \leq t \leq \tau(s)\}$ the represented shape of \mathcal{C}. We denote by $\rho_{\mathcal{C}}$ the curve $[0, L] \ni s \mapsto \alpha(s, \tau(s)) \in M$. If a crescent \mathcal{B} with arc γ has the minimum length of periphery among crescents \mathcal{C} with $\operatorname{arc} \gamma$, that is, length $\left(\rho_{\mathcal{C}}\right) \geq$ length $\left(\rho_{\mathcal{B}}\right)$, we shall call it a bow-shape with $\operatorname{arc} \gamma$, and call the curve $\rho_{\mathcal{B}}$ the bow-string of \mathcal{B}. As a matter of course, a bow-shape does not necessarily exists for every trajectory segment. Roughly speaking, if a bow-string $\rho_{\mathcal{B}}$ exists for a trajectory segment γ its image is an image of minimal geodesic joining the origin and terminus of γ on a part of a surface formed by a variation of geodesics associated with γ. We here make mention of bow-shapes on a complex space form $\mathbf{C} M^{n}(c)$ of constant holomorphic sectional curvature c. For bow-strings we sometimes call their images also bow-strings.

Example 1. On a complex Euclidean space \mathbf{C}^{n}, for a trajectory segment γ for \mathbf{B}_{κ} with length $(\gamma)<\pi /|\kappa|$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$
\text { length }\left(\rho_{\mathcal{B}}\right)=\frac{2}{|\kappa|} \sin \left(\frac{1}{2}|\kappa| \text { length }(\gamma)\right)
$$

The image of this bow-shape lies on a totally geodesic \mathbf{C}^{1}. But if length $(\gamma) \geq \pi /|\kappa|$, there does not exist bow-shapes with arc γ.

EXAMPLE 2. On a complex projective space $\mathbf{C} P^{n}(c)$, for a trajectory segment γ for \mathbf{B}_{κ} with length $(\gamma)<\pi / \sqrt{\kappa^{2}+c}$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$
\sqrt{c} \sin \left(\frac{1}{2} \sqrt{\kappa^{2}+c} \text { length }(\gamma)\right)=\sqrt{\kappa^{2}+c} \sin \left(\frac{1}{2} \sqrt{c} \text { length }\left(\rho_{\mathcal{B}}\right)\right) .
$$

In particular, we see length $\left(\rho_{\mathcal{B}}\right) \leq(2 / \sqrt{c}) \sin ^{-1} \sqrt{c /\left(\kappa^{2}+c\right)}$. The image of this bow-shape lies on some totally geodesic standard sphere $\mathbf{C} P^{1}(c)$, and its periphery consists of a part of a small circle and a part of a great circle.

For a trajectory segment γ with length $(\gamma) \geq \pi / \sqrt{\kappa^{2}+c}$, there does not exist bowshapes with arc γ.

EXAMPLE 3. Let γ be a trajectory segment for \mathbf{B}_{κ} on a complex hyperbolic space $\mathbf{C} H^{n}(c)$.
(1) When $|\kappa| \leq \sqrt{|c|}$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$
\left\{\begin{array}{cl}
\sqrt{|c|} \sinh \left(\sqrt{|c|-\kappa^{2}} \operatorname{length}(\gamma) / 2\right) & \text { if }|\kappa|<\sqrt{|c|} \\
=\sqrt{|c|-\kappa^{2}} \sinh \left(\sqrt{|c|} \text { length }\left(\rho_{\mathcal{B}}\right) / 2\right), & \\
\sqrt{|c|} \operatorname{length}(\gamma)=2 \sinh \left(\sqrt{|c|} \operatorname{length}\left(\rho_{\mathcal{B}}\right) / 2\right), & \text { if } \kappa= \pm \sqrt{|c|}
\end{array}\right.
$$

(2) When $|\kappa|>\sqrt{|c|}$, if length $(\gamma)<\pi / \sqrt{\kappa^{2}+c}$, we have a unique bow-shape \mathcal{B} whose bow-string $\rho_{\mathcal{B}}$ is an image of a geodesic segment and satisfies

$$
\sqrt{|c|} \sin \left(\frac{1}{2} \sqrt{\kappa^{2}+c} \text { length }(\gamma)\right)=\sqrt{\kappa^{2}+c} \sinh \left(\frac{1}{2} \sqrt{|c|} \text { length }\left(\rho_{\mathcal{B}}\right)\right)
$$

In particular, we see length $\left.\left(\rho_{\mathcal{B}}\right) \leq(2 / \sqrt{|c|}) \log (|\kappa|+\sqrt{|c|}) / \sqrt{\kappa^{2}+c}\right)$. But if length $(\gamma) \geq$ $\pi / \sqrt{\kappa^{2}+c}$, there does not exist bow-shapes with arc γ.
(3) Every image of above bow-shapes is contained in some totally geodesic real hyperbolic plane $\mathbf{C} H^{1}(c)$.

Needless to say that on $\mathbf{C} M^{n}(c)$ the represented shape of each bow-shape is simply connected. As a matter of fact, it is an image of a simply connected subset of the tangent space through the exponential map. For example, when \mathcal{B} is a bow-shape on \mathbf{C}^{n} whose arc $\gamma:[0, \ell] \rightarrow \mathbf{C}^{n}$ is a trajectory for \mathbf{B}_{κ}, then we see

$$
\operatorname{Rep}(\mathcal{B})=\exp _{\gamma(0)}\left(\left\{\begin{array}{l|l}
v(u, \theta) \in T_{\gamma(0)} \mathbf{C}^{n} & \begin{array}{l}
0 \leqq \theta \leqq|\kappa| \ell / 2 \\
0 \leqq u \leqq(2 /|\kappa|) \sin \theta
\end{array}
\end{array}\right\}\right),
$$

where $v(u, \theta)=u \cos \theta \dot{\gamma}(0)+\operatorname{sgn}(\kappa) u \sin \theta J \dot{\gamma}(0)$.
We now give a comparison theorem on bow-shapes.
Theorem 1. Let M be a Kähler manifold satisfying Riem $\leq c$ with a constant c. If a \mathbf{B}_{κ}-crescent $\mathcal{C}=(\gamma, \tau)$ satisfies
i) length $(\gamma)<\pi / \sqrt{\kappa^{2}+c}$ when $\kappa^{2}+c>0$,
ii) $\tau(s)<t_{f}(c ; \kappa)$ for every s,
then length $\left(\rho_{\mathcal{C}}\right)$ is not smaller than the length length $\left(\rho_{\mathcal{B}}\right)$ of a bow-string of a \mathbf{B}_{κ}-bow-shape \mathcal{B} on a complex space form $\mathbf{C} M^{n}(c)$ whose length of arc is length (γ).

The equality length $\left(\rho_{\mathcal{C}}\right)=$ length $\left(\rho_{\mathcal{B}}\right)$ holds if and only if the represented shape of \mathcal{C} is complex analytically isometrically immersed image of the represented shape of \mathcal{B} and is totally geodesic. In this case, it is a bow-shape with arc γ.

Proof. Put $L=$ length (γ). We take a trajectory segment $\hat{\gamma}$ on $\hat{M}=\mathbf{C} M^{n}(c)$ satisfying length $(\hat{\gamma})=L$, and consider a crescent $\hat{\mathcal{C}}=(\hat{\gamma}, \tau)$. Let $\alpha:[0, L] \times \mathbf{R} \rightarrow M$ and $\hat{\alpha}:[0, L] \times \mathbf{R} \rightarrow \hat{M}$ be variations of normal geodesics associated with γ and $\hat{\gamma}$ respectively. As we have $\left\langle\frac{\partial \alpha}{\partial s}, \frac{\partial \alpha}{\partial t}\right\rangle=\left\langle\frac{\partial \hat{\alpha}}{\partial s}, \frac{\partial \hat{\alpha}}{\partial t}\right\rangle=0$, we find by Proposition 1 that

$$
\begin{aligned}
\text { length }\left(\rho_{\mathcal{C}}\right) & =\int_{0}^{L}\left\|\rho_{\mathcal{C}}^{\prime}(s)\right\| d s=\int_{0}^{L} \sqrt{\left\|\frac{\partial \alpha}{\partial s}(s, \tau(s))\right\|^{2}+\tau^{\prime}(s)^{2}} d s \\
& \geq \int_{0}^{L} \sqrt{\left\|\frac{\partial \hat{\alpha}}{\partial s}(s, \tau(s))\right\|^{2}+\tau^{\prime}(s)^{2}} d s=\operatorname{length}\left(\rho_{\hat{\mathcal{C}}}\right) \\
& \geq \text { length }\left(\rho_{\mathcal{B}}\right) .
\end{aligned}
$$

The equality holds if and only if $\left\|\frac{\partial \alpha}{\partial s}(s, \tau(s))\right\|=\left\|\frac{\partial \hat{\alpha}}{\partial s}(s, \tau(s))\right\|$ holds for every s and $\hat{\mathcal{C}}=\mathcal{B}$. Again by Proposition 1, we see it is the case that the holomorphic sectional curvature of the line spanned by $\frac{\partial \alpha}{\partial s}(s, t)$ is c for every (s, t) with $0 \leq t \leq \tau(s)$.

REMARK. The above proof also shows that the length of smooth curve on a surface $A=\left\{\alpha(s, t) \mid 0 \leq s \leq L, 0 \leq t \leq t_{f}(c ; \kappa)\right\}$ joining $\gamma(0)$ and $\gamma(L)$ is not smaller than the length of bow-string length $\left(\rho_{\mathcal{B}}\right)$ of a bow-shape \mathcal{B} on $\mathbf{C} M^{n}(c)$.

If a crescent $\widetilde{\mathcal{C}}=(\gamma, \tilde{\tau})$ on M does not lie on A, as we have s_{0} with $\tau\left(s_{0}\right)>t_{f}(c ; \kappa)$, we find length $\left(\rho_{\widetilde{\mathcal{C}}}\right) \geq 2 t_{f}(c ; \kappa)>\operatorname{length}\left(\rho_{\mathcal{B}}\right)$. In particular, if there is a crescent $\widetilde{\mathcal{C}}$ on M with length $\left(\rho_{\mathcal{C}}\right)=$ length $\left(\rho_{\mathcal{B}}\right)$, then it should lie on A.

When $\kappa^{2}+c \leq 0$, or when $\kappa^{2}+c>0$ and $L<\pi / \sqrt{\kappa^{2}+c}$, we denote by $\ell(\kappa, L ; c)$ the length of a bow-string of a bow-shape for \mathbf{B}_{κ} on a complex space form $\mathbf{C} M^{n}(c)$ whose length of arc is L. We set $\delta(\kappa, c)=\pi / \sqrt{\kappa^{2}+c}$ when $\kappa^{2}+c>0$ and $\delta(\kappa, c)=\infty$ when $\kappa^{2}+c \leq 0$. By standing another point of view, we can conclude the following.

Proposition 3. Let M be a Kähler manifold satisfying Riem $\leq c$ with a constant c. If a bow-shape \mathcal{C} for \mathbf{B}_{κ} on M satisfies length $\left(\rho_{\mathcal{C}}\right)=\ell(\kappa, L ; c)$ for some positive L satisfying $L<\delta(\kappa, c)$, then the length of the arc of \mathcal{C} is not longer than L.

If a trajectory segment γ for \mathbf{B}_{κ} on a Kähler manifold satisfying Riem $\leq c$ has a bowshape \mathcal{B} with arc γ and length $\left(\rho_{\mathcal{B}}\right)=\ell(\kappa$, length $(\gamma) ; c)$, then the holomorphic sectional curvature of the complex line spaned by $\dot{\gamma}$ is c. Taking account of this we shall say that a trajectory γ for $\mathbf{B}_{\kappa}(\kappa \neq 0)$ on a Kähler manifold is of c-space type if there exists a sequence $\left\{s_{j}\right\}_{j=-\infty}^{\infty}$ satisfying the following conditions:
i) $\lim _{j \rightarrow \infty} s_{j}=\delta(\kappa, c)$ and $\lim _{j \rightarrow-\infty} s_{j}=-\delta(\kappa, c)$,
ii) for each $s_{j}\left(s_{j} \neq 0\right)$, the trajectory segment $\left.\gamma\right|_{I_{j}}$, which is a restriction of γ on the interval I_{j}, has a bow-shape $\mathcal{B}_{j}=\left(\left.\gamma\right|_{I_{j}}, \tau_{j}\right)$ with length $\left(\rho_{\mathcal{B}_{j}}\right)=\ell\left(\kappa,\left|s_{j}\right| ; c\right)$, where $I_{j}=\left[0, s_{j}\right]$ for $s_{j}>0$ and $I_{j}=\left[s_{j}, 0\right]$ for $s_{j}<0$.
It is needless to say that every trajectory on a complex space form $\mathbf{C} M^{n}(c)$ is of c-space type. A trajectory γ for \mathbf{B}_{κ} on $\mathbf{C} M^{n}(c)$ is closed if and only if $\kappa^{2}+c>0$. In this case its minimal period length (γ) is $2 \pi / \sqrt{\kappa^{2}+c}=2 \delta(\kappa, c)$ and the geodesic with initial vector $\operatorname{sgn}(\kappa) J \dot{\gamma}(0)$ goes through the point $\gamma(\delta(\kappa, c))$ (see [1]).

As a direct consequence of Theorem 1 we have
Corollary 2. Let M be a Kähler manifold satisfying Riem $\leq c$.
(1) If $b>c$, there does not exist a trajectory of b-space type.
(2) If $\kappa^{2}+c>0$, every trajectory γ of c-space type for \mathbf{B}_{κ} is closed and length $(\gamma)=$ $2 \pi / \sqrt{\kappa^{2}+c}$. For a variation α of normal geodesics associated with γ, the interior

$$
\mathcal{F}_{\alpha}=\left\{\alpha(s, t)| | s \mid \leq \delta(\kappa ; c), 0 \leq t \leq t_{f}(c ; \kappa)\right\}
$$

is totally geodesic, complex and of constant curvature c.

Proof. (1) Since $\ell(\kappa, L ; b)<\ell(\kappa, L ; c)$ when $b>c$, the first assertion is trivial by Theorem 1.
(2) If there is a crescent $\mathcal{C}=(\beta, \tau)$ on M with length $(\beta)<\delta(\kappa, c)$ and length $\left(\rho_{\mathcal{C}}\right)$ $=\ell(\kappa$, length $(\beta) ; c)$, then by Theorem 1 and Remark we see the represented shape of \mathcal{C} is totally geodesic and of holomorphic sectional curvature c. We put $v_{j}=\dot{\rho}_{\mathcal{C}_{j}}(0) /\left\|\dot{\rho}_{\mathcal{C}_{j}}(0)\right\| \in$ $U_{\gamma\left(s_{j}\right)} M$. Since the represented shape of \mathcal{B}_{j} is complex analytically isometrically immersed image of the represented shape of a bow-shape on $\mathbf{C} M^{n}(c)$ whose length of arc is $\left|s_{j}\right|$, we find that $\lim _{j \rightarrow \infty} v_{j}=\lim _{j \rightarrow-\infty} v_{j}=\operatorname{sgn}(\kappa) J \dot{\gamma}(0)$. This shows $\gamma(\delta(\kappa, c))=\gamma(-\delta(\kappa, c))$, hence γ is closed and length $(\gamma)=2 \delta(\kappa, c)$.

In the last stage we make mention of bow-shapes on a product of complex space forms. On a product $M=M_{1} \times M_{2}$ of Kähler manifolds M_{i}, every trajectory γ is of the form $\gamma(t)=\left(\gamma_{1}\left(\lambda_{1} t\right), \gamma_{2}\left(\lambda_{2} t\right)\right)$. Here, λ_{1}, λ_{2} are nonnegative constants with $\lambda_{1}^{2}+\lambda_{2}^{2}=1$, and γ_{i} is a trajectory for $\mathbf{B}_{K / \lambda_{i}}$ on M_{i} when $\lambda_{i}>0$ and is a point curve on M_{i} when $\lambda_{i}=0$ (see [3, 4]). One can easily compute the length of bow-string on a product of complex space forms. For example, on a product $\mathbf{C} P^{n_{1}}\left(c_{1}\right) \times \cdots \times \mathbf{C} P^{n_{p}}\left(c_{p}\right)$ of complex projective spaces, a trajectory segment γ of the form $\gamma(t)=\left(\gamma_{1}\left(\lambda_{1} t\right), \cdots, \gamma_{p}\left(\lambda_{p} t\right)\right)$ for \mathbf{B}_{κ} with nonnegative constants $\lambda_{1}, \cdots, \lambda_{p}$ satisfying $\sum_{i=1}^{p} \lambda_{i}^{2}=1$ has a bow-shape if

$$
\text { length }(\gamma)<\min \left\{\pi / \sqrt{\kappa^{2}+c_{i} \lambda_{i}^{2}} \mid \lambda_{i} \neq 0,1 \leq i \leq p\right\}
$$

The length of its bow-string is given by $\sqrt{\sum_{i=1}^{p} d_{i}^{2}}$ with d_{i} satisfying

$$
\left.\lambda_{i} \sqrt{c_{i}} \sin \left(\sqrt{\kappa^{2}+c_{i} \lambda_{i}^{2}} \text { length }(\gamma) / 2\right)=\sqrt{\kappa^{2}+c_{i} \lambda_{i}^{2}} \sin \left(\sqrt{c_{i}} d_{i} / 2\right)\right)
$$

We here consider a subset $\mathcal{S}_{x}(c)$ of the unit tangent space $U_{x} M$ given by

$$
\mathcal{S}_{x}(c)=\left\{\begin{array}{l|l}
v \in U_{x} M & \begin{array}{c}
\text { there is a positive } \varepsilon \text { such that for every } \\
\kappa \text { with } 0<|\kappa| \leq \varepsilon \text { the trajectory for } \mathbf{B}_{\kappa} \\
\text { with initial vector } v \text { is of } c \text {-space type }
\end{array}
\end{array}\right\}
$$

For a complex space form $\mathbf{C} M^{n}(c)$ we see $U_{x} \mathbf{C} M^{n}(c)=\mathcal{S}_{x}(c)$ at each point, and for a product of complex space forms $M=\mathbf{C} M^{n_{1}}\left(c_{1}\right) \times \cdots \times \mathbf{C} M^{n_{p}}\left(c_{p}\right)$, we see that $\mathcal{S}_{x}(c)$ is either an empty set or a disjoint sum of spheres; $\mathcal{S}_{x}(c)=S^{2 n_{i_{1}}-1}+\cdots+S^{2 n_{i_{q}-1}}$, where $c=c_{i_{j}}$ for $1 \leq j \leq q, c_{i} \neq c$ for $i \neq i_{j}$. Here, if we denote $x \in M$ by $\left(x_{1}, \cdots, x_{p}\right)$, the set $S^{2 n_{i}}$ corresponds to $U_{x_{i_{j}}} \mathbf{C} M^{n_{i j}}(c)$. For a Hermitian symmetric space M of rank r, it was pointed out by Ikawa[10] that every trajectory lies on a totally geodesic r-product $\mathbf{C} M^{1}(c) \times \cdots \times \mathbf{C} M^{1}(c)$, where c is the maximum sectional curvature when M is of compact type and is the minimum sectional curvature when M is of noncompact type. We hence see that for this c the set $S_{x}(c)$ contains a r-sum $S^{1}+\cdots+S^{1}$ of circles S^{1}.

Corollary 3. Let M be a simply connected Kähler manifold of Riem $\leq c$ for some nonnegative c. If $\mathcal{S}_{x}(c) \neq \emptyset$ at some point x, then M contains a totally geodesic $\mathbf{C} M^{1}(c)$.

Proof. For $v \in \mathcal{S}_{x}(c)$ we denote by $\gamma_{\kappa}(0<|\kappa|<\varepsilon)$ a trajectory of c-space type for \mathbf{B}_{κ} with $\dot{\gamma}_{\kappa}(0)=v$, and by α_{κ} the variation of normal geodesics associated with γ_{κ}. Since M satisfies Riem $\leq c$, we see $\mathcal{F}_{\alpha_{\kappa}}$ is totally geodesic and of constant curvature c. Moreover, as M is simply connected, the condition that γ_{κ} is of c-space type guarantees that $\mathcal{F}_{\alpha_{\kappa}}$ is contained in the inside of the geodesic ball centered at $\gamma(0)$ whose radius is the injectivity radius at $\gamma(0)$. Thus $\mathcal{F}_{\alpha_{\kappa}}$ is an image of a simply connected subset of $\{a \dot{\gamma}(0)+b J \dot{\gamma}(0) \mid a \in \mathbf{R}, b>0\}$ through the exponential map $\exp _{\gamma(0)}$ when $\kappa>0$ and is an image of a simply connected subset of $\{a \dot{\gamma}(0)+b J \dot{\gamma}(0) \mid a \in \mathbf{R}, b<0\}$ through this exponential map when $\kappa<0$. We hence find that $\mathcal{F}_{\alpha_{\kappa}}$ is simply connected and that $\mathcal{F}_{\alpha_{\kappa_{1}}} \supset \mathcal{F}_{\alpha_{\kappa_{2}}}$ if $0<\kappa_{1}<\kappa_{2}<\varepsilon$ or $0>\kappa_{1}>\kappa_{2}>-\varepsilon$. Therefore we see $\mathcal{F}=\bigcup_{0<|\kappa|<\varepsilon} \mathcal{F}_{\alpha_{\kappa}}$ is totally geodesic and is complex analytically isometric to $\mathbf{C} M^{1}(c) \backslash$ image of a geodesic on $\left.\mathbf{C} M^{1}(c)\right\}$. Since the topological closure

$$
\overline{\mathcal{F}}=\mathcal{F} \cup\{\text { the image of the geodesic with initial vector } v\}
$$

of \mathcal{F} is of constant curvature c, we see it is complex analytically isometric to $\mathbf{C} M^{1}(c)$.
If we restrict ourselves on Hermitian symmetric spaces, as every trajectory lies on a totally geodesic r-product of $\mathbf{C} M^{1}$,s, the following is trivial.

Corollary 4. If a Hermitian symmetric space M satisfies $\mathcal{S}_{x}(c)=U_{x} M$ for some c, then M is $\mathbf{C} M^{n}(c)$.

References

[1] T. ADACHI, Kähler magnetic flows on a manifold of constant holomorphic sectional curvature, Tokyo J. Math. 18 (1995), 473-483.
[2] T. ADACHI, A comparison theorem on magnetic Jacobi fields, Proc. Edinburgh Math. Soc. 40 (1997), 293-308.
[3] T. ADACHI, Kähler magnetic flows for a product of complex space forms, Topology and its application 146147 (2005), 329-338.
[4] T. ADACHI, Rank of a Hermitian symmetric space of noncompact type and Kähler magnetic fields, preprint.
[5] T. Adachi, S. Maeda and S. Udagawa, Simpleness and closedness of circles in compact Hermitian symmetric spaces, Tsukuba J. Math. 24 (2000), 1-13.
[6] M. L. Bialy, Rigidity for periodic magnetic fields, Ergod. Th. Dynam. Sys. 20 (2000), 1619-1626.
[7] J. CheEger and D. Ebin, Comparison theorems in Riemannian geometry, North-Holland, 1975.
[8] N. Gouda, Magnetic flows of Anosov type, Tôhoku Math. J. 49 (1997), 165-183.
[9] N. Gouda, The theorem of E. Hopf under uniform magnetic fields, J. Math. Soc. Japan 50 (1998), 767-779.
[10] O. IKAWA, Motion of charged particles in homogeneous Kähler and homogeneous Sasakian manifolds, preprint.

Present Address:
DEPARTMENT OF MATHEMATICS, NAGOYA INSTITUTE OF TECHNOLOGY, NAGOYA 466-8555, JAPAN.
e-mail: adachi@nitech.ac.jp

[^0]: Received December 18, 2003; revised December 25, 2004
 2000 Mathematics subject classification: Primary 53C20, 53C22, 53C55.
 The author is partially supported by Grant-in-Aid for Scientific Research (C) (No. 14540075), Ministry of Education, Science, Sports, Culture and Technology.

