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Abstract. We study the λ-invariant of the cyclotomic Z2-extension of Q(
√

pq) with p ≡ 3 (mod 8), q ≡ 1

(mod 8) and
( q
p

) = −1. With further conditions on q, we show that λ-invariant is zero.

1. Introduction

The Iwasawa λ-invariant of the cyclotomic Z2-extension of a real quadratic field was
studied by Ozaki and Taya [3]. They obtained the following result:

THEOREM 1.1. Let k = Q(
√

m) or Q(
√

2m). Suppose that m is one of the following:
(1) m = p, p ≡ 1 (mod 8) and

( 2
p

)
4

(p
2

)
4 = −1,

(2) m = pq, p ≡ q ≡ 3 (mod 8),
(3) m = pq, p ≡ 3, q ≡ 5 (mod 8),
(4) m = pq, p ≡ 5, q ≡ 7 (mod 8),
(5) m = pq, p ≡ q ≡ 5 (mod 8),
where p and q are distinct prime numbers, and

(∗
∗
)

4 denotes the biquadratic residue sym-

bol defined by
( 2

p

)
4 ≡ 2(p−1)/4 (mod p) and

(p
2

)
4 = 1 or −1 according as p ≡ 1 or 9

(mod 16). Then the Iwasawa λ-invariant λk of the cyclotomic Z2-extension of k is zero.

In this paper, we study the λ-invariant of the cyclotomic Z2-extension of k = Q(
√

pq)

with p ≡ 3 (mod 8), q ≡ 1 (mod 8) and
( q

p

) = −1, where
( q

p

)
is the Legendre symbol.

The first result of this paper is Theorem 2.1 which follows from Kida’s formula (cf. [2]) and
claims that the λ-invariant λk of the cyclotomic Z2-extension k∞ of k is zero or 2m, where 2m

shall be defined in Theorem 2.1. The second result is Theorem 2.2 which shows that λk = 0
if 2(q−1)/4 �≡ 1 (mod q).
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2. Notations and Theorems

We begin by explaining the notations. We denote by Z and Q the ring of rational integers
and the field of rational numbers, respectively. For elements g1, g2, · · · , gr of a group G,
we denote by 〈g1, g2, · · · , gr〉 the subgroup of G generated by g1, g2, · · · , gr . For a finite
algebraic extension K of k, (K : k) means the degree of K over k, NK/k means the norm
mapping of K over k, and if K is a Galois extension over k, G(K/k) means the Galois group
of K over k. If k is an algebraic number field, we denote by Ok and Ek the integer ring of k

and the unit group of k, respectively.

Let n be a non-negative integer, an = 2 cos(2π/2n+2) and Qn = Q(an). Then Qn ⊂
Qn+1 by an+1 = √

2 + an. It is well known that Qn is a cyclic extension of Q of degree 2n.
This means that Q∞ = ⋃∞

n=0 Qn is the unique Z2-extension of Q. For prime numbers p and
q with p ≡ 3 (mod 8) and q ≡ 1 (mod 8), we put k = Q(

√
pq), kn = kQn and k∞ = kQ∞.

Our main purpose is to prove the following theorems:

THEOREM 2.1. Let k and k∞ be as above. We assume q ≡ 1 (mod 2m+2) and q �≡ 1
(mod 2m+3). If the Legendre symbol

( q
p

)
is −1, then the Iwasawa λ-invariant λk of k∞ over

k is zero or 2m.

THEOREM 2.2. Let k and k∞ be as above. If
( q

p

) = −1 and if 2
q−1

4 �≡ 1 (mod q),

than the Iwasawa λ- invariant λk is zero.

3. Proof of Theorems 2.1 and 2.2

We first consider the norms of 2 − an and −1 − an.

LEMMA 3.1. We have Nkn/k(2 − an) = 2 and Nkn/k(−1 − an) = −1.

PROOF. Since kn = k(an) = kn−1(
√

2 + an−1), we have Nkn/kn−1(2 − an) = (2 −
an)(2+an) = 2−an−1 and Nkn/kn−1(−1−an) = −1−an−1. Hence we have Nkn/k(2−an) =
Nkn−1/k(2 − an−1) = 2 − a0 = 2 and Nkn/k(−1 − an) = −1 − a0 = −1. �

Since an is an algebraic integer of kn, the above lemma implies 2OQn = (2−an)
2n

OQn =
(2 + an)

2n
OQn . Hence the ideal (2 − an)OQn = (2 + an)OQn is the unique prime ideal of Qn

lying above 2. Therefore the square of the prime ideal Ln of kn lying above 2 is (2 − an)Okn .

Now, let Ln be the 2-Hilbert class field of kn. Since
( q

p

) = −1, and since k(
√

q) is the

genus field of k, we have L0 = k(
√

q). This shows that there exists an element α0 of k such
that L0 = α0Ok because q ≡ 1 (mod 8).

The following proposition plays an important role in this paper:

PROPOSITION 3.2. The norm mapping Nkn/k0 of the unit group Ekn to Ek0 is surjec-
tive, namely Nkn/k0(Ekn) = Ek0 .
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PROOF. Let An be the 2-Sylow subgroup of the ideal class group of kn, Bn the subgroup
of An consisting of ideal classes invariant under the action of Gal(kn/k) and B ′

n the subgroup
of Bn consisting of ideal classes containing ideals invariant under the action of Gal(kn/k).
Since the prime ideal Ln of kn is the unique prime ideal of kn ramifying in kn over k, the
cardinality of B ′

n is

2

(Ek : Nkn/k(Ekn))
,

where (Ek : Nkn/k(Ekn)) is the index of Nkn/k(Ekn) in Ek. Hence, if Ln is not principal in kn,
then Nkn/k(Ekn) = Ek. We assume that Ln is principal in kn. Then there exists an element αn

of kn with Ln = αnOkn , which means α2
n/(2 − an) ∈ Ekn . Since

Nkn/k

(
α2

n

2 − αn

)
= Nkn/k(αn)

2

2

by Lemma 3.1, Nkn/k(
α2

n

2−αn
) is an odd power of the fundamental unit of k because

√
2 �∈ k.

Hence we have Nkn/k(Ekn) = Ek by Lemma 3.1. �

REMARK. We should note that the order of Bn and B ′
n are 2 by Proposition 3.2.

COROLLARY 3.3. let q be the prime ideal of k lying above q . If Ln is principal in kn,
then qOkn is not principal in kn.

PROOF. For an ideal a of kn, we denote by cl(a) the ideal class of kn containing the
ideal a. We note B ′

n = 〈cl(Ln), cl(qOkn)〉 by
( q

p

) = −1. Proposition 3.2 shows that the order

of B ′
n is 2. This implies that if Ln is principal in kn, then qOkn is not principal in kn. �

PROPOSITION 3.4. If there exists a positive integer n0 such that Ln0 is not principal in
kn0 , then λk = 0

PROOF. We note Bn = B ′
n = 〈cl(Ln)〉 for any integer n ≥ n0 by proposition 3.2. Since

Nkn/kn0
(Ln) = Ln0 , the norm mapping Nkn/kn0

induces the isomorphism Bn onto Bn0 , which

shows that the intersection of Bn and the kernel Cn of the norm mapping of An to An0 is
trivial. This implies that Cn is trivial. Hence, since Nkn/kn0

(An) = An0 , An is isomorphic to

An0 , which shows λk = 0. �

COROLLARY 3.5. If there exists a positive integer n0 such that qOkn0
is principal, then

λk = 0.

PROOF. If qOkn0
is principal, then Ln0 is not principal in kn0 by Proposition 3.2. Hence

we have λk = 0 by Proposition 3.4. �

In order to prove Theorem 2.1, we use the following lemma:
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LEMMA 3.6. Let p be a prime number, G a p-group of order pn, M a Z/pZ[G]-
module generated by an element m0 of M and e the order of M . If e < ppn

, then∑
g∈G gm0 = 0.

PROOF. We define a G-homomorphism ϕ of Z/pZ[G] onto M by ϕ(
∑

g∈G igg) =∑
g∈G iggm0. The kernel Ker ϕ of ϕ is non-trivial by e < ppn

. Hence Ker ϕ contains a

non-trivial G-invariant element, which implies
∑

g∈G g ∈ Ker ϕ.

For an algebraic extension F of Q, we denote by PF the group of principal ideals of F .
We put

P
G(k∞/Q∞)
k∞ = { (α) ∈ Pk∞ | (ασ ) = (α) for all σ ∈ G(k∞/Q∞) } .

We note that the factor group P
G(k∞/Q∞)
k∞ /PQ∞ is a vector space over the finite field Z/2Z.

Let d be the dimension of the vector space P
G(k∞/Q∞)
k∞ /PQ∞ over Z/2Z. Then we have

λk =
∑
w � | 2

(e(w) − 1) − d(1)

by Kida’s formula for plus part given by Iwasawa (cf. [2, P. 287] and [1, Corollary 3.4]),
where w ranges over all finite primes of k∞ which are prime to 2 and e(w) is the ramification
index of w with respect to k∞ over Q∞.

PROOF OF THEOREM 2.1. It is suffcient to prove that if λk �= 0 then λk = 2m. Assume
that λk �= 0. Then cl(qOkn) is non-trivial for any n > 0 by Corollary 3.5, especially for any
n ≥ m. Let h be the class number of Qm. We note that h is odd. Let q1, · · · , q2m be the prime

ideals of kn lying above q. Then the order of the G(km/k)-module 〈cl(qh
1), · · · , cl(qh

2m)〉
generated by cl(qh

1), · · · , cl(qh
2m) is 22m

by Lemma 3.6, which shows P
G(k∞/Q∞)
k∞ /PQ∞ =

〈(√pqOk∞)PQ∞ 〉 because the 2-part of the ideal class group of Q∞ is trivial. This means
d = 1. Hence we have λk = 2m by (1). �

From now on, we assume 2(q−1)/4 �≡ 1 (mod q). Since q ≡ 1 (mod 8), there exist

positive integers r, s with q = (r + s
√

2)(r − s
√

2). We put q1 = r + s
√

2 and q2 = r − s
√

2.

Then there exist integers a, b, c, d with q1 = a + b
√

2 + 4
√

2(c + d
√

2), which shows

q = q1q2 ≡ a2 − 2b2 (mod 16). Hence if q ≡ 1 (mod 16), then we have

qi ≡ ± 1 , ± (1 + √
2)2 (mod 4

√
2)(2)

and if q ≡ 9 (mod 16), then we have

qi ≡ ± 3 , ± (1 + 2
√

2) (mod 4
√

2) .(3)

Using class field theory, we can prove the following:
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LEMMA 3.7. If q ≡ 1 (mod 16), then the ray class field Q1(mod qi) of Q1 mod qi

does not contain any quadratic extension of Q1. If q ≡ 9 (mod 16), then Q1(mod qi) con-
tains a quadratic extension of Q1.

PROOF. We first note

(2 + √
2)

q−1
2 = (

√
2(1 + √

2))
q−1

2 = 2
q−1

4 (1 + √
2)

q−1
2 .

We assume q ≡ 1 (mod 16). Then q splits completely in Q(a2) which means (2+√
2)

q−1
2 ≡

1 (mod q). This shows (1+√
2)

q−1
2 ≡ −1 (mod q) from 2

q−1
4 �≡ 1 (mod q). Hence the ray

class field Q1(mod qi) does not contain any quadratic extension of Q1 by class field theory.

Now, we assume q ≡ 9 (mod 16). Then we have (2 + √
2)

q−1
2 ≡ −1 (mod q), which

implies (1 + √
2)

q−1
2 ≡ 1 (mod q). Hence we obtain our assertion again by class field

theory. �

We refer to the following well known fact for our proof of Theorem 2.2:

LEMMA 3.8. (cf. [4, Exercise 9.3 in P. 183]) Let a be an element of Q1 which is prime
to 2. Then there exists an element α of Q1 with α2 ≡ a (mod 4) if and only if Q1(

√
a)/Q1 is

unramified at all primes of Q1 above 2. Moreover there exists an element α of Q1 with α2 ≡ a

(mod 4
√

2) if and only if all primes of Q1 above 2 split in Q1(
√

a) over Q1.

PROOF OF THEOREM 2.2. We note that

α2 ≡ 1 or 3 + 2
√

2 (mod 4
√

2)(4)

for any element α in OQ1 which is prime to 2. We assume q ≡ 9 (mod 16). The quadratic
extension Q1(

√
qi) of Q1 is contained in the ray class field of Q1 mod qi by Lemma 3.7,

which means that all primes of Q1 above 2 are unramified in Q1(
√

qi) over Q1. This implies

qi ≡ 1 , 3 + 2
√

2 (mod 4) by Lemma 3.8, which shows qi ≡ −3 ,−(1 + 2
√

2) (mod 4
√

2)

by (3). Moreover, k1(
√

qi) is an unramified quadratic extension of k1. Since L1 does not split
in k1(

√
qi) by Lemma 3.8 and (3), L1 is not principal in k1. This shows λk = 0 by Proposition

3.4.
Now, we assume q ≡ 1 (mod 16). We have qi ≡ −1 ,−(3 + 2

√
2) (mod 4

√
2) by

Lemma 3.7, Lemma 3.8 and (2). This implies pqi ≡ −3 ,−(1 + 2
√

2) (mod 4
√

2). Hence
L1 does not split in the unramified extension k1(

√
pqi) over k1, which shows that L1 is not

principal in k1. Hence we have λk = 0 by Proposition 3.4. �

References

[ 1 ] T. FUKUDA, K. KOMATSU, M. OZAKI and H. TAYA, On Iwasawa λp-invariants of relative real cyclic exten-

sions of degree p, Tokyo J. Math. 20-2 (1997), 475–480.
[ 2 ] K. IWASAWA , Riemann-Hurwitz formula and p-adic Galois representation for number fields, Tohoku Math.

J. 33 (1981), 263–288.



264 TAKASHI FUKUDA AND KEIICHI KOMATSU

[ 3 ] M. OZAKI and H. TAYA, On the Iwasawa λ2-invariants of certain family of real quadratic fields, Manuscripta
Math. 94 (1997), 437–444.

[ 4 ] L. C. WASHINGTON, Introduction to Cyclotomic Fields, 2nd edition, Graduate Texts in Math., 83, Springer-
Verlag, New York, Heidelberg, Berlin (1997).

Present Address:
DEPARTMENT OF MATHEMATICS, COLLEGE OF INDUSTRIAL TECHNOLOGY,
NIHON UNIVERSITY,
2–11–1 SHIN-EI, NARASHINO, CHIBA, JAPAN.
e-mail: fukuda@math.cit.nihon-u.ac.jp

DEPARTMENT OF MATHEMATICAL SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING,
WASEDA UNIVERSITY,
3–4–1 OKUBO, SHINJUKU, TOKYO 169–8555, JAPAN.
e-mail: kkomatsu@mse.waseda.ac.jp


