On the Iwasawa λ-Invariant of the Cyclotomic \mathbf{Z}_{2}-Extension of a Real Quadratic Field

Takashi FUKUDA and Keiichi KOMATSU

Nihon University and Waseda University

Abstract

We study the λ-invariant of the cyclotomic \mathbf{Z}_{2}-extension of $\mathbf{Q}(\sqrt{p q})$ with $p \equiv 3(\bmod 8), q \equiv 1$ $(\bmod 8)$ and $\left(\frac{q}{p}\right)=-1$. With further conditions on q, we show that λ-invariant is zero.

1. Introduction

The Iwasawa λ-invariant of the cyclotomic \mathbf{Z}_{2}-extension of a real quadratic field was studied by Ozaki and Taya [3]. They obtained the following result:

THEOREM 1.1. Let $k=\mathbf{Q}(\sqrt{m})$ or $\mathbf{Q}(\sqrt{2 m})$. Suppose that m is one of the following:
(1) $m=p, p \equiv 1(\bmod 8)$ and $\left(\frac{2}{p}\right)_{4}\left(\frac{p}{2}\right)_{4}=-1$,
(2) $m=p q, p \equiv q \equiv 3(\bmod 8)$,
(3) $m=p q, p \equiv 3, q \equiv 5(\bmod 8)$,
(4) $m=p q, p \equiv 5, q \equiv 7(\bmod 8)$,
(5) $m=p q, p \equiv q \equiv 5(\bmod 8)$,
where p and q are distinct prime numbers, and $\left(\frac{*}{*}\right)_{4}$ denotes the biquadratic residue symbol defined by $\left(\frac{2}{p}\right)_{4} \equiv 2^{(p-1) / 4}(\bmod p)$ and $\left(\frac{p}{2}\right)_{4}=1$ or -1 according as $p \equiv 1$ or 9 $(\bmod 16)$. Then the Iwasawa λ-invariant λ_{k} of the cyclotomic \mathbf{Z}_{2}-extension of k is zero.

In this paper, we study the λ-invariant of the cyclotomic \mathbf{Z}_{2}-extension of $k=\mathbf{Q}(\sqrt{p q})$ with $p \equiv 3(\bmod 8), q \equiv 1(\bmod 8)$ and $\left(\frac{q}{p}\right)=-1$, where $\left(\frac{q}{p}\right)$ is the Legendre symbol. The first result of this paper is Theorem 2.1 which follows from Kida's formula (cf. [2]) and claims that the λ-invariant λ_{k} of the cyclotomic \mathbf{Z}_{2}-extension k_{∞} of k is zero or 2^{m}, where 2^{m} shall be defined in Theorem 2.1. The second result is Theorem 2.2 which shows that $\lambda_{k}=0$ if $2^{(q-1) / 4} \not \equiv 1(\bmod q)$.

Received November 27, 2003; revised July 29, 2004
2000 Mathematics Subject Classification. Primary 11R23.
Key words and phrases. Iwasawa invariants.

2. Notations and Theorems

We begin by explaining the notations. We denote by \mathbf{Z} and \mathbf{Q} the ring of rational integers and the field of rational numbers, respectively. For elements $g_{1}, g_{2}, \cdots, g_{r}$ of a group G, we denote by $\left\langle g_{1}, g_{2}, \cdots, g_{r}\right\rangle$ the subgroup of G generated by $g_{1}, g_{2}, \cdots, g_{r}$. For a finite algebraic extension K of k, ($K: k$) means the degree of K over $k, N_{K / k}$ means the norm mapping of K over k, and if K is a Galois extension over $k, G(K / k)$ means the Galois group of K over k. If k is an algebraic number field, we denote by \mathfrak{O}_{k} and E_{k} the integer ring of k and the unit group of k, respectively.

Let n be a non-negative integer, $a_{n}=2 \cos \left(2 \pi / 2^{n+2}\right)$ and $\mathbf{Q}_{n}=\mathbf{Q}\left(a_{n}\right)$. Then $\mathbf{Q}_{n} \subset$ \mathbf{Q}_{n+1} by $a_{n+1}=\sqrt{2+a_{n}}$. It is well known that \mathbf{Q}_{n} is a cyclic extension of \mathbf{Q} of degree 2^{n}. This means that $\mathbf{Q}_{\infty}=\bigcup_{n=0}^{\infty} \mathbf{Q}_{n}$ is the unique \mathbf{Z}_{2}-extension of \mathbf{Q}. For prime numbers p and q with $p \equiv 3(\bmod 8)$ and $q \equiv 1(\bmod 8)$, we put $k=\mathbf{Q}(\sqrt{p q}), k_{n}=k \mathbf{Q}_{n}$ and $k_{\infty}=k \mathbf{Q}_{\infty}$. Our main purpose is to prove the following theorems:

THEOREM 2.1. Let k and k_{∞} be as above. We assume $q \equiv 1\left(\bmod 2^{m+2}\right)$ and $q \not \equiv 1$ $\left(\bmod 2^{m+3}\right)$. If the Legendre symbol $\left(\frac{q}{p}\right)$ is -1 , then the Iwasawa λ-invariant λ_{k} of k_{∞} over k is zero or 2^{m}.

THEOREM 2.2. Let k and k_{∞} be as above. If $\left(\frac{q}{p}\right)=-1$ and if $2^{\frac{q-1}{4}} \not \equiv 1(\bmod q)$, than the Iwasawa λ - invariant λ_{k} is zero.

3. Proof of Theorems 2.1 and 2.2

We first consider the norms of $2-a_{n}$ and $-1-a_{n}$.
LEmma 3.1. We have $N_{k_{n} / k}\left(2-a_{n}\right)=2$ and $N_{k_{n} / k}\left(-1-a_{n}\right)=-1$.
PRoof. Since $k_{n}=k\left(a_{n}\right)=k_{n-1}\left(\sqrt{2+a_{n-1}}\right)$, we have $N_{k_{n} / k_{n-1}}\left(2-a_{n}\right)=(2-$ $\left.a_{n}\right)\left(2+a_{n}\right)=2-a_{n-1}$ and $N_{k_{n} / k_{n-1}}\left(-1-a_{n}\right)=-1-a_{n-1}$. Hence we have $N_{k_{n} / k}\left(2-a_{n}\right)=$ $N_{k_{n-1} / k}\left(2-a_{n-1}\right)=2-a_{0}=2$ and $N_{k_{n} / k}\left(-1-a_{n}\right)=-1-a_{0}=-1$.

Since a_{n} is an algebraic integer of k_{n}, the above lemma implies $2 \mathfrak{O}_{\mathbf{Q}_{n}}=\left(2-a_{n}\right)^{2^{n}} \mathfrak{O}_{\mathbf{Q}_{n}}=$ $\left(2+a_{n}\right)^{2^{n}} \mathfrak{O}_{\mathbf{Q}_{n}}$. Hence the ideal $\left(2-a_{n}\right) \mathfrak{O}_{\mathbf{Q}_{n}}=\left(2+a_{n}\right) \mathfrak{O}_{\mathbf{Q}_{n}}$ is the unique prime ideal of \mathbf{Q}_{n} lying above 2 . Therefore the square of the prime ideal \mathfrak{L}_{n} of k_{n} lying above 2 is $\left(2-a_{n}\right) \mathfrak{O}_{k_{n}}$.

Now, let L_{n} be the 2-Hilbert class field of k_{n}. Since $\left(\frac{q}{p}\right)=-1$, and since $k(\sqrt{q})$ is the genus field of k, we have $L_{0}=k(\sqrt{q})$. This shows that there exists an element α_{0} of k such that $\mathfrak{L}_{0}=\alpha_{0} \mathfrak{O}_{k}$ because $q \equiv 1(\bmod 8)$.

The following proposition plays an important role in this paper:
Proposition 3.2. The norm mapping $N_{k_{n} / k_{0}}$ of the unit group $E_{k_{n}}$ to $E_{k_{0}}$ is surjective, namely $N_{k_{n} / k_{0}}\left(E_{k_{n}}\right)=E_{k_{0}}$.

PROOF. Let A_{n} be the 2-Sylow subgroup of the ideal class group of k_{n}, B_{n} the subgroup of A_{n} consisting of ideal classes invariant under the action of $\operatorname{Gal}\left(k_{n} / k\right)$ and B_{n}^{\prime} the subgroup of B_{n} consisting of ideal classes containing ideals invariant under the action of $\operatorname{Gal}\left(k_{n} / k\right)$. Since the prime ideal \mathfrak{L}_{n} of k_{n} is the unique prime ideal of k_{n} ramifying in k_{n} over k, the cardinality of B_{n}^{\prime} is

$$
\frac{2}{\left(E_{k}: N_{k_{n} / k}\left(E_{k_{n}}\right)\right)},
$$

where $\left(E_{k}: N_{k_{n} / k}\left(E_{k_{n}}\right)\right)$ is the index of $N_{k_{n} / k}\left(E_{k_{n}}\right)$ in E_{k}. Hence, if \mathfrak{L}_{n} is not principal in k_{n}, then $N_{k_{n} / k}\left(E_{k_{n}}\right)=E_{k}$. We assume that \mathfrak{L}_{n} is principal in k_{n}. Then there exists an element α_{n} of k_{n} with $\mathfrak{L}_{n}=\alpha_{n} \mathfrak{O}_{k_{n}}$, which means $\alpha_{n}^{2} /\left(2-a_{n}\right) \in E_{k_{n}}$. Since

$$
N_{k_{n} / k}\left(\frac{\alpha_{n}^{2}}{2-\alpha_{n}}\right)=\frac{N_{k_{n} / k}\left(\alpha_{n}\right)^{2}}{2}
$$

by Lemma 3.1, $N_{k_{n} / k}\left(\frac{\alpha_{n}^{2}}{2-\alpha_{n}}\right)$ is an odd power of the fundamental unit of k because $\sqrt{2} \notin k$. Hence we have $N_{k_{n} / k}\left(E_{k_{n}}\right)=E_{k}$ by Lemma 3.1.

REmARK. We should note that the order of B_{n} and B_{n}^{\prime} are 2 by Proposition 3.2.
COROLLARY 3.3. let \mathfrak{q} be the prime ideal of k lying above q. If \mathfrak{L}_{n} is principal in k_{n}, then $\mathfrak{q} \mathfrak{O}_{k_{n}}$ is not principal in k_{n}.

Proof. For an ideal \mathfrak{a} of k_{n}, we denote by $\operatorname{cl}(\mathfrak{a})$ the ideal class of k_{n} containing the ideal \mathfrak{a}. We note $B_{n}^{\prime}=\left\langle\operatorname{cl}\left(\mathfrak{L}_{n}\right), \operatorname{cl}\left(\mathfrak{q} \mathfrak{O}_{k_{n}}\right)\right\rangle$ by $\left(\frac{q}{p}\right)=-1$. Proposition 3.2 shows that the order of B_{n}^{\prime} is 2 . This implies that if \mathfrak{L}_{n} is principal in k_{n}, then $\mathfrak{q} \mathfrak{D}_{k_{n}}$ is not principal in k_{n}.

PROPOSITION 3.4. If there exists a positive integer n_{0} such that $\mathfrak{L}_{n_{0}}$ is not principal in $k_{n_{0}}$, then $\lambda_{k}=0$

Proof. We note $B_{n}=B_{n}^{\prime}=\left\langle\mathrm{cl}\left(\mathfrak{L}_{n}\right)\right\rangle$ for any integer $n \geq n_{0}$ by proposition 3.2. Since $N_{k_{n} / k_{n_{0}}}\left(\mathfrak{L}_{n}\right)=\mathfrak{L}_{n_{0}}$, the norm mapping $N_{k_{n} / k_{n_{0}}}$ induces the isomorphism B_{n} onto $B_{n_{0}}$, which shows that the intersection of B_{n} and the kernel C_{n} of the norm mapping of A_{n} to $A_{n_{0}}$ is trivial. This implies that C_{n} is trivial. Hence, since $N_{k_{n} / k_{n_{0}}}\left(A_{n}\right)=A_{n_{0}}, A_{n}$ is isomorphic to $A_{n_{0}}$, which shows $\lambda_{k}=0$.

Corollary 3.5. If there exists a positive integer n_{0} such that $\mathfrak{q} \mathfrak{O}_{k_{n_{0}}}$ is principal, then $\lambda_{k}=0$.

Proof. If $\mathfrak{q} \mathfrak{D}_{k_{n_{0}}}$ is principal, then $\mathfrak{L}_{n_{0}}$ is not principal in $k_{n_{0}}$ by Proposition 3.2. Hence we have $\lambda_{k}=0$ by Proposition 3.4.

In order to prove Theorem 2.1, we use the following lemma:

Lemma 3.6. Let p be a prime number, G a p-group of order p^{n}, M a $\mathbf{Z} / p \mathbf{Z}[G]$ module generated by an element m_{0} of M and e the order of M. If $e<p^{p^{n}}$, then $\sum_{g \in G} g m_{0}=0$.

Proof. We define a G-homomorphism φ of $\mathbf{Z} / p \mathbf{Z}[G]$ onto M by $\varphi\left(\sum_{g \in G} i_{g} g\right)=$ $\sum_{g \in G} i_{g} g m_{0}$. The kernel $\operatorname{Ker} \varphi$ of φ is non-trivial by $e<p^{p^{n}}$. Hence $\operatorname{Ker} \varphi$ contains a non-trivial G-invariant element, which implies $\sum_{g \in G} g \in \operatorname{Ker} \varphi$.

For an algebraic extension F of \mathbf{Q}, we denote by P_{F} the group of principal ideals of F. We put

$$
P_{k_{\infty}}^{G\left(k_{\infty} / \mathbf{Q}_{\infty}\right)}=\left\{(\alpha) \in P_{k_{\infty}} \mid\left(\alpha^{\sigma}\right)=(\alpha) \text { for all } \sigma \in G\left(k_{\infty} / \mathbf{Q}_{\infty}\right)\right\}
$$

We note that the factor group $P_{k_{\infty}}^{G\left(k_{\infty} / \mathbf{Q}_{\infty}\right)} / P_{\mathbf{Q}_{\infty}}$ is a vector space over the finite field $\mathbf{Z} / 2 \mathbf{Z}$. Let d be the dimension of the vector space $P_{k_{\infty}}^{G\left(k_{\infty} / \mathbf{Q}_{\infty}\right)} / P_{\mathbf{Q}_{\infty}}$ over $\mathbf{Z} / 2 \mathbf{Z}$. Then we have

$$
\begin{equation*}
\lambda_{k}=\sum_{w \nmid 2}(e(w)-1)-d \tag{1}
\end{equation*}
$$

by Kida's formula for plus part given by Iwasawa (cf. [2, P. 287] and [1, Corollary 3.4]), where w ranges over all finite primes of k_{∞} which are prime to 2 and $e(w)$ is the ramification index of w with respect to k_{∞} over \mathbf{Q}_{∞}.

Proof of Theorem 2.1. It is suffcient to prove that if $\lambda_{k} \neq 0$ then $\lambda_{k}=2^{m}$. Assume that $\lambda_{k} \neq 0$. Then $\operatorname{cl}\left(\mathfrak{q} \mathfrak{O}_{k_{n}}\right)$ is non-trivial for any $n>0$ by Corollary 3.5 , especially for any $n \geq m$. Let h be the class number of \mathbf{Q}_{m}. We note that h is odd. Let $\mathfrak{q}_{1}, \cdots, \mathfrak{q}_{2^{m}}$ be the prime ideals of k_{n} lying above \mathfrak{q}. Then the order of the $G\left(k_{m} / k\right)$-module $\left\langle\operatorname{cl}\left(\mathfrak{q}_{1}^{h}\right), \cdots, \operatorname{cl}\left(\mathfrak{q}_{2^{m}}^{h}\right)\right\rangle$ generated by $\operatorname{cl}\left(\mathfrak{q}_{1}^{h}\right), \cdots, \operatorname{cl}\left(\mathfrak{q}_{2^{m}}^{h}\right)$ is $2^{2^{m}}$ by Lemma 3.6, which shows $P_{k_{\infty}}^{G\left(k_{\infty} / \mathbf{Q}_{\infty}\right)} / P_{\mathbf{Q}_{\infty}}=$ $\left\langle\left(\sqrt{p q} \mathfrak{O}_{k_{\infty}}\right) P_{\mathbf{Q}_{\infty}}\right\rangle$ because the 2-part of the ideal class group of \mathbf{Q}_{∞} is trivial. This means $d=1$. Hence we have $\lambda_{k}=2^{m}$ by (1).

From now on, we assume $2^{(q-1) / 4} \not \equiv 1(\bmod q)$. Since $q \equiv 1(\bmod 8)$, there exist positive integers r, s with $q=(r+s \sqrt{2})(r-s \sqrt{2})$. We put $q_{1}=r+s \sqrt{2}$ and $q_{2}=r-s \sqrt{2}$. Then there exist integers a, b, c, d with $q_{1}=a+b \sqrt{2}+4 \sqrt{2}(c+d \sqrt{2})$, which shows $q=q_{1} q_{2} \equiv a^{2}-2 b^{2}(\bmod 16)$. Hence if $q \equiv 1(\bmod 16)$, then we have

$$
\begin{equation*}
q_{i} \equiv \pm 1, \pm(1+\sqrt{2})^{2} \quad(\bmod 4 \sqrt{2}) \tag{2}
\end{equation*}
$$

and if $q \equiv 9(\bmod 16)$, then we have

$$
\begin{equation*}
q_{i} \equiv \pm 3, \pm(1+2 \sqrt{2}) \quad(\bmod 4 \sqrt{2}) . \tag{3}
\end{equation*}
$$

Using class field theory, we can prove the following:

Lemma 3.7. If $q \equiv 1(\bmod 16)$, then the ray class field $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ of $\mathbf{Q}_{1} \bmod q_{i}$ does not contain any quadratic extension of \mathbf{Q}_{1}. If $q \equiv 9(\bmod 16)$, then $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ contains a quadratic extension of \mathbf{Q}_{1}.

Proof. We first note

$$
(2+\sqrt{2})^{\frac{q-1}{2}}=(\sqrt{2}(1+\sqrt{2}))^{\frac{q-1}{2}}=2^{\frac{q-1}{4}}(1+\sqrt{2})^{\frac{q-1}{2}} .
$$

We assume $q \equiv 1(\bmod 16)$. Then q splits completely in $\mathbf{Q}\left(a_{2}\right)$ which means $(2+\sqrt{2})^{\frac{q-1}{2}} \equiv$ $1(\bmod q)$. This shows $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv-1(\bmod q)$ from $2^{\frac{q-1}{4}} \not \equiv 1(\bmod q)$. Hence the ray class field $\mathbf{Q}_{1}\left(\bmod q_{i}\right)$ does not contain any quadratic extension of \mathbf{Q}_{1} by class field theory.

Now, we assume $q \equiv 9(\bmod 16)$. Then we have $(2+\sqrt{2})^{\frac{q-1}{2}} \equiv-1(\bmod q)$, which implies $(1+\sqrt{2})^{\frac{q-1}{2}} \equiv 1(\bmod q)$. Hence we obtain our assertion again by class field theory.

We refer to the following well known fact for our proof of Theorem 2.2:
Lemma 3.8. (cf. [4, Exercise 9.3 in P. 183]) Let a be an element of \mathbf{Q}_{1} which is prime to 2. Then there exists an element α of \mathbf{Q}_{1} with $\alpha^{2} \equiv a(\bmod 4)$ if and only if $\mathbf{Q}_{1}(\sqrt{a}) / \mathbf{Q}_{1}$ is unramified at all primes of \mathbf{Q}_{1} above 2. Moreover there exists an element α of \mathbf{Q}_{1} with $\alpha^{2} \equiv a$ $(\bmod 4 \sqrt{2})$ if and only if all primes of \mathbf{Q}_{1} above $2 \operatorname{split}$ in $\mathbf{Q}_{1}(\sqrt{a})$ over \mathbf{Q}_{1}.

Proof of Theorem 2.2. We note that

$$
\begin{equation*}
\alpha^{2} \equiv 1 \text { or } 3+2 \sqrt{2} \quad(\bmod 4 \sqrt{2}) \tag{4}
\end{equation*}
$$

for any element α in $\mathfrak{O}_{\mathbf{Q}_{1}}$ which is prime to 2 . We assume $q \equiv 9(\bmod 16)$. The quadratic extension $\mathbf{Q}_{1}\left(\sqrt{q_{i}}\right)$ of \mathbf{Q}_{1} is contained in the ray class field of $\mathbf{Q}_{1} \bmod q_{i}$ by Lemma 3.7, which means that all primes of \mathbf{Q}_{1} above 2 are unramified in $\mathbf{Q}_{1}\left(\sqrt{q_{i}}\right)$ over \mathbf{Q}_{1}. This implies $q_{i} \equiv 1,3+2 \sqrt{2}(\bmod 4)$ by Lemma 3.8, which shows $q_{i} \equiv-3,-(1+2 \sqrt{2})(\bmod 4 \sqrt{2})$ by (3). Moreover, $k_{1}\left(\sqrt{q_{i}}\right)$ is an unramified quadratic extension of k_{1}. Since \mathfrak{L}_{1} does not split in $k_{1}\left(\sqrt{q_{i}}\right)$ by Lemma 3.8 and (3), \mathfrak{L}_{1} is not principal in k_{1}. This shows $\lambda_{k}=0$ by Proposition 3.4.

Now, we assume $q \equiv 1(\bmod 16)$. We have $q_{i} \equiv-1,-(3+2 \sqrt{2})(\bmod 4 \sqrt{2})$ by Lemma 3.7, Lemma 3.8 and (2). This implies $p q_{i} \equiv-3,-(1+2 \sqrt{2})(\bmod 4 \sqrt{2})$. Hence \mathfrak{L}_{1} does not split in the unramified extension $k_{1}\left(\sqrt{p q_{i}}\right)$ over k_{1}, which shows that \mathfrak{L}_{1} is not principal in k_{1}. Hence we have $\lambda_{k}=0$ by Proposition 3.4.

References

[1] T. Fukuda, K. Komatsu, M. Ozaki and H. Taya, On Iwasawa λ_{p}-invariants of relative real cyclic extensions of degree p, Tokyo J. Math. 20-2 (1997), 475-480.
[2] K. IWASAWA, Riemann-Hurwitz formula and p-adic Galois representation for number fields, Tohoku Math. J. 33 (1981), 263-288.
[3] M. OZAKI and H. TAYA, On the Iwasawa λ_{2}-invariants of certain family of real quadratic fields, Manuscripta Math. 94 (1997), 437-444.
[4] L. C. Washington, Introduction to Cyclotomic Fields, 2nd edition, Graduate Texts in Math., 83, SpringerVerlag, New York, Heidelberg, Berlin (1997).

Present Address:
Department of Mathematics, College of Industrial Technology, Nihon University,
2-11-1 Shin-Ei, Narashino, Chiba, Japan.
e-mail: fukuda@math.cit.nihon-u.ac.jp
Department of Mathematical Science, School of Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan.
e-mail: kkomatsu@mse.waseda.ac.jp

