Hausdorff Dimension of Trees Generated by Piecewise Linear Transformations

Makoto MORI

Nihon University
(Communicated by H. Nakada)

Abstract. Trees are constructed by one-dimensional piecewise linear transformations, and the Hausdorff dimension of trees are calculated.

1. Introduction

Let $I=[0,1]$, and we consider a piecewise linear, expansive and topologically transitive transformation $F: I \rightarrow I$, that is, there exists a finite set \mathcal{A}, an interval $\langle a\rangle$ corresponds for each $a \in \mathcal{A}$ and

1. $\{\langle a\rangle\}_{a \in \mathcal{A}}$ is a partition of I,
2. $\left(\left.F\right|_{\langle a\rangle}\right)^{\prime}$ is constant. We denote

$$
\begin{aligned}
& \eta_{a}=\left|(F \mid\langle a\rangle)^{\prime}\right|^{-1}, \\
& \operatorname{sgn} a= \begin{cases}+ & F^{\prime}(x)>0 \text { for } x \in\langle a\rangle, \\
- & F^{\prime}(x)<0 \text { for } x \in\langle a\rangle\end{cases}
\end{aligned}
$$

3. F is expanding:

$$
\xi=\liminf _{n \rightarrow \infty} \frac{1}{n} \underset{x \in I}{\operatorname{ess} \inf } \log \left|F^{n^{\prime}}(x)\right|>0 .
$$

4. F is topologically transitive.

We call a finite sequence $w=a_{1} \cdots a_{n}$ a word $\left(a_{i} \in \mathcal{A}\right)$. For a word $w=a_{1} \cdots a_{n}$, we define

1. $|w|=n$ (the length of a word w),
2. $\langle w\rangle=\bigcap_{i=0}^{n-1} F^{-i}\left(\left\langle a_{i+1}\right\rangle\right)$,
3. $\operatorname{sgn} w=\prod_{i=1}^{n} \operatorname{sgn} a_{i}$,
4. $\eta_{w}=\prod_{i=1}^{n} \eta_{a_{i}}$.

Figure 1. Tree corresponding to $F(x)=2 x(\bmod 1)$

We call a word w admissible if $\langle w\rangle \neq \emptyset$. For convenience, we consider an empty word \emptyset for which we define $|\emptyset|=0$ and $\langle\emptyset\rangle=I$. We denote by \mathcal{W}_{n} the set of all the admissible words with length n, and $\mathcal{W}=\bigcup_{n=0}^{\infty} \mathcal{W}_{n}$.

We fix $0<r<1$, and put $R=r e^{\xi}$. Now we construct a tree from words in $\mathbb{R}^{d}(d \geq 2)$. We start from a branch (\emptyset) corresponding to the empty word with its one end point at the origin, and the length of this branch equals $|I|$, where $|J|$ stands for the Lebesgue measure of a set J. From the other end point of (() , branches (a) corresponding to words $a \in \mathcal{A}$ connect. Then the other endpoints of each (a) branches $(a b)(b \in \mathcal{A})$ connect and so on. Namely for each $w=a_{1} \cdots a_{n}$,

1. (w) is a segment with length $R^{|w|}|\langle w\rangle|$,
2. one endpoint connects to $\left(a_{1} \cdots a_{n-1}\right)$,
3. the other endpoint connects to $\left(a_{1} \cdots a_{n} b\right)\left(b \in \mathcal{A}\right.$ and $\left.a_{1} \cdots a_{n} b \in \mathcal{W}\right)$.

DEFINITION 1. 1. We call the closure of $T^{o}=\bigcup_{w \in \mathcal{W}}(w)$ a tree and denote it by T.
2. Let $((w))=\bar{\bigcup}_{\langle u\rangle \subset\langle w\rangle}(u)$, and call it a branch starting from w, where \bar{J} stands for the closure of a set J.
3. We call $T \backslash T^{o}$ the flowers of T.

We need an assumption that the branches of a tree is sufficiently spread but do not intersect each other.

ASSUMPTION 1. 1. Words $u, v \in \mathcal{W}(|u|<|v|)$ intersects only when $u=a_{1} \cdots a_{n}$ and $v=u a_{n+1}$ with some $a_{i} \in \mathcal{A}(1 \leq i \leq n+1)$, and they only intersect with their end points.
2. There exists a constant $C_{0}>0$ such that for any word $w \in \mathcal{W}$ the diameter of $((w)) \cap\left(T \backslash T^{o}\right)$ is greater than C_{0} times the length of the branch (w).

Remark that each point x in the flowers corresponds to a point in I, because branches do not intersect from Assumption 1.

Example 1. Let $F(x)=2 x(\bmod 1)$. Then the tree corresponding to this transformation looks as in Figure 1.

The main theorem which we will prove in this paper is:

ThEOREM 1. Let $I=[0,1]$, and F be a piecewise linear, expanding and topologically transitive transformation. Then the Hausdorff dimension of this tree is the maximal solution of $\operatorname{det}\left(I-\Phi\left(R^{\alpha}, \alpha\right)\right)=0$, where the definition of $\Phi(z, \alpha)$ is given afterwards.

2. Notaions and Results on piecewise linear maps

For each $x \in I$, its expansion $s^{x}=a_{1}^{x} a_{2}^{x} \cdots\left(a_{i}^{x} \in \mathcal{A}\right)$ is defined by

$$
F^{i-1}(x) \in\left\langle a_{i}^{x}\right\rangle .
$$

We identify a point $x \in I$ and its expansion s^{x}. For a word $w=a_{1} \cdots a_{n}$ and a point $x \in I$, we express by $w x$ an infinite sequence $a_{1} \cdots a_{n} a_{1}^{x} a_{2}^{x} \cdots$. If there exists a point y which has the same expansion as $w x$, then we call $w x$ exists, and express $\exists w x$. We can consider two dynamical systems. One is I with F, and the other is a space of infinite sequences

$$
\Sigma=\overline{\left\{s^{x}: x \in I\right\}},
$$

with the shift θ. We can identify these by identifying points in I and their expansions.
Lemma 1. Fix any $0<\xi^{\prime}<\xi$. Then there exists a constant $C_{1}=C_{1}\left(\xi^{\prime}\right)$ such that for any $w \in \mathcal{W}$, we get

$$
\eta_{w} \leq C_{1} e^{-\xi^{\prime}|w|}
$$

The proof directly follows from the definition of ξ. From this lemma, we get also

$$
|\langle w\rangle| \leq C_{1} e^{-\xi^{\prime}|w|}
$$

We call a piecewise linear transformation F Markov if there exists a finite set \mathcal{A} such that for any words u, v, if $F(\langle u\rangle) \cap\langle v\rangle^{o} \neq \emptyset$, then $F(\langle u\rangle) \supset\langle v\rangle^{0}$. Here we denote by J^{o} the interior of a set J.

For an infinite sequence $s=a_{1} a_{2} \cdots\left(a_{i} \in \mathcal{A}\right)$, we define

$$
\begin{aligned}
& s[n, m]=a_{n} \cdots a_{m} \quad(n \leq m), \\
& s[n]=a_{n} .
\end{aligned}
$$

Especially, for an expansion of x, we denote

$$
a^{x}[1, n]=a_{1}^{x} a_{2}^{x} \cdots a_{n}^{x}
$$

Moreover, by taking limits from the right and the left, we define

$$
\begin{aligned}
& y^{+}=\lim _{x \uparrow y} a_{1}^{x} a_{2}^{x} \cdots, \\
& y^{-}=\lim _{x \downarrow y} a_{1}^{x} a_{2}^{x} \cdots .
\end{aligned}
$$

We denote by a^{+}and a^{-}the expansions of the right and the left endpoints of an interval $\langle a\rangle$, respectively.

We will prepare a generating function. Let for $g \in L^{\infty}$, we define for $\alpha>0$

$$
s_{g}^{y^{\sigma}}(z, \alpha)=\sum_{n=0}^{\infty} z^{n} \sum_{w \in \mathcal{W}} \eta_{w}^{\alpha} \int_{n} \sigma\left(y^{\sigma}, w x\right) \delta\left[\langle w[1]\rangle \supset\left\langle a_{1}^{y}\right\rangle, \exists \theta w x\right] g(x) d x .
$$

Here

$$
\begin{aligned}
& \delta[L]= \begin{cases}1 & L \text { is true }, \\
0 & \text { otherwise },\end{cases} \\
& \sigma\left(y^{\sigma}, x\right)= \begin{cases}+\frac{1}{2} & \text { if } y \geq_{\sigma} x \\
-\frac{1}{2} & \text { if } y<_{\sigma} x\end{cases} \\
& x<_{\sigma} y= \begin{cases}x<y & \sigma=+, \\
x>y & \sigma=-\end{cases} \\
& \int_{n}=\int_{n, y^{\sigma}}= \begin{cases}\int_{\left\langle a_{1}^{y}\right\rangle} & n=0, \\
\int_{I} & n \geq 1\end{cases}
\end{aligned}
$$

Then we put

$$
\begin{gathered}
\Phi(z, \alpha)_{y^{\sigma}, b^{\tau}}=\sum_{n=1}^{\infty} z^{n} \sigma\left(\theta^{n} y^{\sigma}, b^{\tau}\right)\left(\operatorname{sgn} y^{\sigma}[1, n]\right)\left(\eta_{y^{\sigma}[1, n]}\right)^{\alpha}, \\
\chi_{g}^{y^{\sigma}}(z, \alpha)=\sum_{n=0}^{\infty} z^{n}\left(\operatorname{sgn} y^{\sigma}[1, n]\right)\left(\eta_{y^{\sigma}[1, n]}\right)^{\alpha} \int_{n} g(x) \sigma\left(\theta^{n} y^{\sigma}, x\right) d x .
\end{gathered}
$$

We define vectors $s_{g}(z, \alpha)=\left(s_{g}^{\tilde{a}}(z, \alpha)\right)_{\tilde{a} \in \tilde{\mathcal{A}}}$ and $\chi_{g}(z, \alpha)=\left(\chi_{g}^{\tilde{a}}(z, \alpha)\right)_{\tilde{a} \in \tilde{\mathcal{A}}}$ on $\tilde{\mathcal{A}}=\left\{a^{\sigma}: a \in\right.$ $\mathcal{A}, \sigma= \pm\}$. Let $\Phi(z, \alpha)$ be a matrix on $\tilde{\mathcal{A}}$ whose component equals $\Phi(z, \alpha)_{a^{\sigma}, b^{\tau}}\left(a^{\sigma}, b^{\tau} \in\right.$ $\tilde{\mathcal{A}})$. We call this matrix the Fredholm matrix associated with F. Note that $\Phi(z, \alpha)$ and $\chi_{g}(z, \alpha)$ are analytic in $|z|<e^{\xi \alpha}$.

We have a renewal equation of the form (cf. [3] when $\alpha=1$, and [6] for general α):

$$
s_{g}(z, \alpha)=(I-\Phi(z, \alpha))^{-1} \chi_{g}(z, \alpha)
$$

Set for an interval J

$$
s_{g}^{J}(z, \alpha)=s_{g}^{J^{+}}(z, \alpha)+s_{g}^{J^{-}}(z, \alpha)
$$

where J^{+}and J^{-}is the expansions of points $\sup \{x \in J\}$ and $\inf \{x \in J\}$, respectively. Then from the definition, we get (cf. also [3] and [6])

$$
s_{g}^{\langle a\rangle}(z, \alpha)=\sum_{n=0}^{\infty} z^{n} \sum_{w \in \mathcal{W}_{n}, w[1]=a} \eta_{w}^{\alpha} \int 1_{F^{n}(\langle w\rangle)}(x) g(x) d x .
$$

Then taking $g \equiv 1$, we get for $z>0$ and $\alpha \geq 1$

$$
\begin{align*}
s_{1}^{\langle a\rangle}(z, \alpha)= & \sum_{n=0}^{\infty} z^{n} \sum_{w \in \mathcal{W}_{n}, w[1]=a} \eta_{w}^{\alpha}\left|F^{n}(\langle w\rangle)\right| \\
& \geq \sum_{n=0}^{\infty} z^{n} \sum_{w \in \mathcal{W}_{n}, w[1]=a} \eta_{w}^{\alpha}\left|F^{n}(\langle w\rangle)\right|^{\alpha} \\
& =\sum_{n=0}^{\infty} z^{n} \sum_{w \in \mathcal{W}_{n}, w[1]=a}|\langle w\rangle|^{\alpha} . \tag{2.1}
\end{align*}
$$

We define an α-zeta function:

$$
\zeta(z, \alpha)=\exp \left[\sum_{n=1}^{\infty} \frac{z^{n}}{n} \sum_{p=F^{n}(p)}\left|F^{n^{\prime}}(p)\right|^{-\alpha}\right]
$$

Then we get

$$
\zeta(z, \alpha)=[\operatorname{det}(I-\Phi(z, \alpha))]^{-1}
$$

Moreover, if F is Markov, then a matrix defined by

$$
\tilde{\Phi}(z, \alpha)_{a, b}= \begin{cases}z \eta_{a}^{\alpha} & \text { if } F(\langle a\rangle) \supset\langle b\rangle^{o} \\ 0 & \text { otherwise }\end{cases}
$$

satisfies

$$
\operatorname{det}(I-\Phi(z, \alpha))=\operatorname{det}(I-\tilde{\Phi}(z, \alpha))
$$

We call this matrix $\tilde{\Phi}(z, \alpha)$ Markov expression of Fredholm matrix. See [5] and [6] for detail.

3. Markov Approximation

For each $a \in \mathcal{A}$ and an integer $M>0$, we define two infinite sequences of symbols $\left(a_{M}^{+}\right)^{-}$and $\left(a_{M}^{-}\right)^{+}$, which coincide with a^{+}and a^{-}until M, and $F^{M}\left(\left(a_{M}^{+}\right)^{-}\right)=\left\langle a_{M}^{+}\right\rangle^{-}$and $F^{M}\left(\left(a_{M}^{-}\right)^{+}\right)=\left\langle a_{M}^{-}\right\rangle^{+}$, respectively, that is,

$$
\begin{aligned}
\left(a_{M}^{+}\right)^{-} & =a_{1}^{+} \cdots a_{M-1}^{+}\left\langle a_{M}^{+}\right\rangle^{-} \\
& =a_{1}^{+} \cdots a_{M-1}^{+}\left(a_{M}^{+}\right)_{1}^{-}\left(a_{M}^{+}\right)_{2}^{-} \cdots, \\
\left(a_{M}^{-}\right)^{+} & =a_{1}^{-} \cdots a_{M-1}^{-}\left\langle a_{M}^{-}\right\rangle^{+} \\
& =a_{1}^{-} \cdots a_{M-1}^{-}\left(a_{M}^{-}\right)_{1}^{+}\left(a_{M}^{-}\right)_{2}^{+} \cdots .
\end{aligned}
$$

Then for sufficiently large M and $a \in \mathcal{A}$, taking above sequences as points in [0,1], we get

$$
\left(a_{M}^{+}\right)^{-},\left(a_{M}^{-}\right)^{+} \in\langle a\rangle
$$

From the construction,

$$
\left(a_{M}^{+}\right)^{-} \uparrow a^{+}, \quad\left(a_{M}^{-}\right)^{+} \downarrow a^{-}
$$

Therefore

$$
I_{M}=\bigcup_{a \in \mathcal{A}}\left[\left(a_{M}^{-}\right)^{+},\left(a_{M}^{+}\right)^{-}\right] \uparrow[0,1] .
$$

Now let for sufficiently large M

$$
C_{M}=\left\{x \in I_{M}: F^{n}(x) \in I_{M} \text { for all } n\right\} .
$$

Then $\overline{C_{M}}$ is a Cantor set in $[0,1]$. Take a restriction $F_{M}=\left.F\right|_{C_{M}}$. Then F_{M} is a Markov transformation on C_{M}. Because I_{M} increases to [0, 1], C_{M} also increases. Thus any periodic orbit belongs to C_{M} for sufficiently large M. Periodic orbits are dense in [0, 1], so $\overline{C_{M}} \uparrow$ $[0,1]$. Thus, since zeta functions are determined by periodic orbits, for sufficiently small z, the α-zeta function associated with F_{M} converges to the α-zeta function $\zeta(z, \alpha)$ associated with F.

We call a word w a Markov word if $F^{|w|}(\langle w\rangle)$ is a union of $\langle a\rangle(a \in \mathcal{A})$. Let \mathcal{W}_{n}^{M} be a set of all the words $w=a_{1} \cdots a_{n} \in \mathcal{W}_{n}$ which satisfy one of the followings:

1. $n<M$ and there exists a M-Markov word $b_{1} \cdots b_{M}$ such that $\langle w\rangle \supset\left\langle b_{1} \cdots b_{M}\right\rangle$,
2. $n \geq M$ and for any $1 \leq i \leq n-M, a_{i} \cdots a_{M+i}$ is a Markov word.

Put $\mathcal{W}^{M}=\bigcup_{n=0}^{\infty} \mathcal{W}_{n}^{M}$.

4. Proof of Theorem 1, Hausdorff dimension of the tree T

Let us estimate the Hausdorff dimension of trees from above. First we prove:
Lemma 2. The Hausdorff dimension of T^{o} equals 1 , that is, the main part of the tree T is its flowers.

Proof. Let us choose any $0<p<1$ and fix it. We will cover a branch $((w))^{o}$ starting from a word w with length $|w|=n$ by closed discs with radius p^{n}. The total length of branches $((w))$ with length $|w|=n$ equals R^{n}. So there exist at most $\frac{R^{n}}{p^{n}}+(\# \mathcal{A})^{n}$ number of disks to cover these branches. Thus by this cover we get an upper estimate:

$$
p^{n \alpha}\left(\frac{R^{n}}{p^{n}}+(\# \mathcal{A})^{n}\right)=\left(R p^{\alpha-1}\right)^{n}+\left(p^{\alpha} \# \mathcal{A}\right)^{n} \leq 2\left(\max \left\{R p^{\alpha-1}, p^{\alpha} \# \mathcal{A}\right\}\right)^{n} .
$$

Therefore, for any $\alpha>1$, we can take $\max \left\{R p^{\alpha-1}, p^{\alpha} \# \mathcal{A}\right\}<1$ with sufficiently small p. This shows $\operatorname{dim} T^{o} \leq 1$. On the other hand, T^{o} contains segments, therefore $\operatorname{dim} T^{o} \geq 1$. This shows $\operatorname{dim} T^{o}=1$.

There exists a natural one to one and onto correspondence between the symbolic dynamics $s=a_{1} a_{2} \cdots \in \Sigma$ and $((s))=\cap_{n=1}^{\infty}\left(\left(a_{1} \cdots a_{n}\right)\right) \in T \backslash T^{o}$. So we first cover flowers $T \backslash T^{o}$ by using closed disks which cover branches $((w))(|w|=n)$ for some n. From the
assumption, we get

$$
\text { the diameter of } \begin{align*}
((w)) & \leq \sup _{a_{1}, a_{2}, \ldots} \sum_{n=0}^{\infty} \text { the length of }\left(w a_{1} \cdots a_{n}\right) \\
& =\sup _{a_{1}, a_{2}, \ldots} \sum_{n=0}^{\infty} R^{|w|+n}\left|\left\langle w a_{1} \cdots a_{n}\right\rangle\right| \\
& \leq \sum_{n=0}^{\infty} R^{|w|+n} C_{1} e^{(-\xi+\varepsilon) n}|\langle w\rangle| \quad\left(\xi^{\prime}=\xi-\varepsilon\right) \\
& =\sum_{n=0}^{\infty} R^{|w|} r^{n} C_{1} e^{\varepsilon n}|\langle w\rangle| \\
& =R^{|w|}|\langle w\rangle| \frac{C_{1}}{1-r e^{\varepsilon}} . \tag{4.1}
\end{align*}
$$

Here we choose any $\varepsilon>0$ which satisfies $r e^{\varepsilon}<1$.
Using renewal equation

$$
s_{g}(z, \alpha)=(I-\Phi(z, \alpha))^{-1} \chi_{g}(z, \alpha)
$$

and (2.1), we get for $z>0$

$$
\begin{aligned}
& \sum_{n=0}^{\infty} z^{n} \sum_{|w|=n}[\text { the diameter of }((w))]^{\alpha} \leq \sum_{n=0}^{\infty} z^{n} \sum_{|w|=n} R^{n \alpha}|\langle w\rangle|^{\alpha}\left(\frac{C_{1}}{1-r e^{\varepsilon}}\right)^{\alpha} \\
& \quad=\left(\frac{C_{1}}{1-r e^{\varepsilon}}\right)^{\alpha} \sum_{n=0}^{\infty}\left(R^{\alpha} z\right)^{n} \sum_{|w|=n}|\langle w\rangle|^{\alpha} \\
& \quad \leq\left(\frac{C_{1}}{1-r e^{\varepsilon}}\right)^{\alpha}(1, \ldots, 1) s_{1}\left(R^{\alpha} z, \alpha\right) \\
& \quad=\left(\frac{C_{1}}{1-r e^{\varepsilon}}\right)^{\alpha}(1, \ldots, 1)\left(I-\Phi\left(R^{\alpha} z, \alpha\right)\right)^{-1} \chi_{1}\left(R^{\alpha} z, \alpha\right)
\end{aligned}
$$

Let us denote by α_{*} the maximal solution of the equation

$$
\operatorname{det}\left(I-\Phi\left(R^{\alpha}, \alpha\right)\right)=0
$$

Then the Hausdorff dimension of T is less than or equal to α_{*} (cf. [6]).
Now we will show the opposite inequality. Let us denote by T_{M} the tree constructed only by words which belongs to \mathcal{W}^{M}. Because every branches are shorter than that of T and from the assumption, $T_{M} \subset T$, hence $\operatorname{dim} T_{M} \leq \operatorname{dim} T$.

We first calculate the Hausdorff dimension of T_{M}. Let $\tilde{\Phi}_{M}(z, \alpha)$ be the Markov expression of the Fredholm matrix associated with F_{M}. Let α_{M} be the maximal solution of $\operatorname{det}\left(I-\tilde{\Phi}_{M}\left(R^{\alpha}, \alpha\right)\right)=0$.

From the Perron-Frobenius' theorem, there exists an eigenvector $\left(v_{a}\right)_{a \in \mathcal{A}}$ such that $v_{a}>$ 0 and $\sum_{a \in \mathcal{A}} v_{a}=1$ associated with eigenvalue 1 of $\tilde{\Phi}_{M}\left(R^{\alpha_{M}}, \alpha_{M}\right)$. We consider a new partition $\left\{\langle a\rangle_{M}\right\}_{a \in \mathcal{A}}$ of $[0,1]$ such that $\left|\langle a\rangle_{M}\right|=v_{a}$. We define a piecewise linear Markov transformation G_{M} such that $G_{M}\left(\langle a\rangle_{M}\right)=\bigcup_{b \in F(\langle a\rangle)}\langle b\rangle_{M}$ and $\left.G_{M}^{\prime}\right|_{\langle a\rangle_{M}}=\left(R \eta_{a}\right)^{\alpha_{M}} \operatorname{sgn} a$. Induce the Lebesgue measure on the space where G_{M} acts to $\cup_{x}\left(\left(s^{x}\right)\right)$, and denote it by μ_{1}. We consider another set function μ_{2} which is derived by a cover by words $((w))$ of $\left\{\left(\left(s_{x}\right)\right): x \in[0,1]\right\}$. We define for a word $w \mu_{2}[((w))]=\left[\right.$ the diameter of $\left.((w)) \cap\left(T \backslash T^{o}\right)\right]$. For these μ_{1} and μ_{2}, we can define a Hausdorff dimension $\operatorname{dim}_{\mu_{i}}(i=1,2)$ by the critical point of

$$
\lim _{\delta \downarrow 0} \inf _{\text {the }}^{\substack{\left.\operatorname{diameter} \text { of }((w))<\delta \\ U_{w}(w)\right) \supset T \backslash T o}} \sum_{w}\left[\mu_{i}[((w))]\right]^{\alpha},
$$

and from the assumption

$$
\mu_{2}[((w))] \geq C_{0}|(w)|=C_{0} R^{|w|}|\langle w\rangle| .
$$

Therefore

$$
T_{M} \subset\left\{\left(\left(s_{x}\right)\right): \liminf _{n \rightarrow \infty} \frac{\log \mu_{1}\left[\left(\left(a^{x}[1, n]\right)\right)\right]}{\log \mu_{2}\left[\left(\left(a^{x}[1, n]\right)\right)\right]} \geq \alpha_{M}\right\} .
$$

Now we will appeal to Billingsley's theorem:
Theorem 2. ([1]) Assume that

$$
T \subset\left\{((x)): \liminf _{n \rightarrow \infty} \frac{\log \mu_{1}\left[\left(\left(a^{x}[1, n]\right)\right)\right]}{\log \mu_{2}\left[\left(\left(a^{x}[1, n]\right)\right)\right]} \geq \alpha\right\} .
$$

Then

$$
\operatorname{dim}_{\mu_{2}} \geq \alpha \operatorname{dim}_{\mu_{1}}
$$

REMARK 1. To be precise, the set function μ_{2} is not a measure, so we can not apply the above theorem to our case directly. But we consider μ_{2} only for intervals corresponding to words, so we can easily extend the above theorem to our case just along the same way to prove it (cf. [1]). So, we omit the proof.

Then from this theorem, we get

$$
\operatorname{dim}_{\mu_{2}} \geq \alpha_{M} \operatorname{dim}_{\mu_{1}}=\alpha_{M} .
$$

Lemma 3. $\operatorname{dim}_{\mu_{2}}$ equals the Hausdorff dimension of $T_{M} \backslash T_{M}^{o}$
Proof. From the definition, we get $\operatorname{dim}_{\mu_{2}}$ is greater than or equal to the Hausdorff dimension of $T_{M} \backslash T_{M}^{o}$. We will show the opposite inequality. Take α any number which is greater than the Hausdorff dimension of $T_{M} \backslash T_{M}^{o}$. Then there exists a cover $\left\{D_{n}\right\}_{n}$ of flowers $T_{M} \backslash T_{M}^{o}$ by closed discs such that $\sum_{n}\left|D_{n}\right|^{\alpha}<\infty$. To each $D_{n} \cap\left(T \backslash T^{o}\right)$, an interval $D_{n}^{\prime} \subset$
[0,1$]$ corresponds using symbolic dynamics. Without loss of generality, we can assume

$$
\left|D_{n}^{\prime}\right|<\min _{a \in \mathcal{A}}|\langle a\rangle| .
$$

Let $w=a_{1} \cdots a_{k} \in \mathcal{W}$ be a word with the shortest length for which $\langle w\rangle$ is contained in D_{n}^{\prime}. If $\left\langle a_{1} \cdots a_{k-1}\right\rangle$ does not cover D_{n}^{\prime}, we choose a word $w^{\prime}=b_{1} \cdots b_{l}$ which is the word with the shortest length such that $\left\langle w^{\prime}\right\rangle$ is contained in $D_{n}^{\prime} \backslash\left\langle a_{1} \cdots a_{k-1}\right\rangle$. Then $\left\langle a_{1} \cdots a_{k-1}\right\rangle \cup$ $\left\langle b_{1} \cdots b_{l-1}\right\rangle$ covers D_{n}^{\prime}. In other words, $\left(\left(a_{1} \cdots a_{k-1}\right)\right) \cup\left(\left(b_{1} \cdots b_{l-1}\right)\right)$ covers $D_{n} \cap\left(T_{M} \backslash T_{M}^{o}\right)$. Because F_{M} is Markov, there exist constants $K_{1}, K_{2}>0$ such that

$$
K_{1} \eta_{w} \leq|\langle w\rangle| \leq K_{2} \eta_{w}
$$

Therefore

$$
\begin{aligned}
\left|\left\langle a_{1} \cdots a_{k-1}\right\rangle\right| & \leq K_{2} \prod_{i=1}^{k-1} \eta_{a_{i}} \leq K_{2} \max _{a \in \mathcal{A}}\left(\eta_{a}\right)^{-1} \prod_{i=1}^{k} \eta_{a_{i}} \\
& \leq \frac{K_{2}}{K_{1}} \max _{a \in \mathcal{A}}\left(\eta_{a}\right)^{-1}\left|\left\langle a_{1} \cdots a_{k}\right\rangle\right|
\end{aligned}
$$

From the construction and (4.1),

$$
\begin{align*}
& \left\{\text { diameter of }\left(\left(a_{1} \cdots a_{k-1}\right)\right) \cap\left(T_{M} \backslash T_{M}^{o}\right)\right\}^{\alpha} \\
& \left.\quad+\left\{\text { diameter of }\left(\left(b_{1} \cdots b_{l-1}\right)\right) \cap\left(T_{M} \backslash T_{M}^{o}\right)\right\}^{\alpha}\right\} \\
& \quad \leq\left(R^{k} \frac{C_{2}}{1-r e^{\varepsilon}}\right)^{\alpha}\left|\left\langle a_{1} \cdots a_{k-1}\right\rangle\right|^{\alpha}+\left(R^{l} \frac{C_{2}}{1-r e^{\varepsilon}}\right)^{\alpha}\left|\left\langle b_{1} \cdots b_{l-1}\right\rangle\right|^{\alpha} \\
& \quad \leq\left(R^{k} \frac{C_{2}}{1-r e^{\varepsilon}} \frac{K_{2}}{K_{1}} \max _{a \in \mathcal{A}}\left(\eta_{a}\right)^{-1}\right)^{\alpha}\left|\left\langle a_{1} \cdots a_{k}\right\rangle\right|^{\alpha} \\
& \left.\quad+\left(R^{l} \frac{C_{2}}{1-r e^{\varepsilon}} \frac{K_{2}}{K_{1}} \max _{a \in \mathcal{A}}\left(\eta_{a}\right)^{-1}\right)^{\alpha}\left|\left\langle b_{1} \cdots b_{l}\right\rangle\right|^{\alpha}\right) \tag{4.2}
\end{align*}
$$

Then from $|((w))| \geq C_{0}|(w)|=C_{0} R^{|w|}|\langle w\rangle|$, we get
the right hand term of (4.2)

$$
\begin{aligned}
& \leq\left(\frac{C_{2} K_{2}}{C_{0}\left(1-r e^{\varepsilon}\right) K_{1}} \max _{a \in \mathcal{A}}\left(\eta_{a}\right)^{-1}\right)^{\alpha}\left(\left|\left(\left(a_{1} \cdots a_{k}\right)\right)\right|^{\alpha}+\left|\left(\left(b_{1} \cdots b_{l}\right)\right)\right|^{\alpha}\right) \\
& \leq\left(\frac{C_{2} K_{2}}{C_{0}\left(1-r e^{\varepsilon}\right) K_{1}} \max _{a \in \mathcal{A}}\left(\eta_{a}\right)^{-1}\right)^{\alpha} 2 \max \left\{\left|\left(\left(a_{1} \cdots a_{k}\right)\right)\right|^{\alpha},\left|\left(\left(b_{1} \cdots b_{l}\right)\right)\right|^{\alpha}\right\} \\
& \leq 2\left(\frac{C_{2} K_{2}}{C_{0}\left(1-r e^{\varepsilon}\right) K_{1}} \max _{a \in \mathcal{A}}\left(\eta_{a}\right)^{-1}\right)^{\alpha}\left|D_{n}\right|^{\alpha} .
\end{aligned}
$$

Thus we get a cover of $T_{M} \backslash T_{M}^{o}$ by words w_{i} such that $\sum_{i} \mu_{2}\left[\left(\left(w_{i}\right)\right)\right]^{\alpha}<\infty$. This proves the Lemma.

Therefore α_{M} equals the Hausdorff dimension of T_{M}.
The Fredholm determinant $\operatorname{det}(I-\Phi(z, \alpha))$ is the reciprocal of α-zeta function, and the α-zeta function of F_{M} converges to that of F in $|z|<e^{\xi \alpha}$. Therefore, $\operatorname{det}\left(I-\Phi_{M}(z, \alpha)\right)=$ $\operatorname{det}\left(I-\tilde{\Phi}_{M}(z, \alpha)\right)$ converges to $\operatorname{det}(I-\Phi(z, \alpha))$. Hence, we get α_{M} converges to α_{*}. This proves Theorem 1.

References

[1] P. Billingsley, Ergodic Theory and Information, John Wiley \& Sons (1965).
[2] M. Mori, Fredholm determinant for piecewise linear transformations, Osaka J. Math., 27 (1990), 81-116.
[3] M. Mori, Fredholm determinant for piecewise monotonic transformations, Osaka J. Math. 29 (1992), 497529.
[4] M. Mori, On the convergence of the spectrum of Perron-Frobenius operators, Tokyo J. Math. 17 (1994), 1-19.
[5] M. Mori, Dynamical system on Cantor set, Tokyo J. Math. 21 (1998), 217-231.
[6] M. Mori, Cantor sets generated by piecewise linear map, Proceedings of the Institute of Natural Sciences, Nihon University, 35 (2000), 145-171.
[7] M. Mori, Hausdorff dimension as Thermodynamical Formalism, Proceedings of the Institute of Natural Sciences, Nihon University, 39 (2004), 303-316.

Present Address:
Dept. Math. College of Humanities and Sciences, Nihon University,
Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.

