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Abstract. Trees are constructed by one–dimensional piecewise linear transformations, and the Hausdorff di-
mension of trees are calculated.

1. Introduction

Let I = [0, 1], and we consider a piecewise linear, expansive and topologically transitive
transformation F : I → I , that is, there exists a finite set A, an interval 〈a〉 corresponds for
each a ∈ A and

1. {〈a〉}a∈A is a partition of I ,
2. (F |〈a〉)′ is constant. We denote

ηa = |(F |〈a〉)′|−1 ,

sgn a =
{

+ F ′(x) > 0 for x ∈ 〈a〉 ,

− F ′(x) < 0 for x ∈ 〈a〉 .

3. F is expanding:

ξ = lim inf
n→∞

1

n
ess inf

x∈I
log |Fn′

(x)| > 0 .

4. F is topologically transitive.

We call a finite sequence w = a1 · · · an a word (ai ∈ A). For a word w = a1 · · · an, we define

1. |w| = n (the length of a word w),

2. 〈w〉 = ⋂n−1
i=0 F−i (〈ai+1〉),

3. sgn w = ∏n
i=1 sgn ai ,

4. ηw = ∏n
i=1 ηai .
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FIGURE 1. Tree corresponding to F(x) = 2x (mod 1)

We call a word w admissible if 〈w〉 �= ∅. For convenience, we consider an empty word ∅ for
which we define |∅| = 0 and 〈∅〉 = I . We denote by Wn the set of all the admissible words
with length n, and W = ⋃∞

n=0 Wn.

We fix 0 < r < 1, and put R = reξ . Now we construct a tree from words in R
d (d ≥ 2).

We start from a branch (∅) corresponding to the empty word with its one end point at the
origin, and the length of this branch equals |I |, where |J | stands for the Lebesgue measure of
a set J . From the other end point of (∅), branches (a) corresponding to words a ∈ A connect.
Then the other endpoints of each (a) branches (ab) (b ∈ A) connect and so on. Namely for
each w = a1 · · · an,

1. (w) is a segment with length R|w||〈w〉|,
2. one endpoint connects to (a1 · · · an−1),
3. the other endpoint connects to (a1 · · · anb) (b ∈ A and a1 · · · anb ∈ W).

DEFINITION 1. 1. We call the closure of T o = ⋃
w∈W (w) a tree and denote it by T .

2. Let ((w)) = ⋃
〈u〉⊂〈w〉(u), and call it a branch starting from w, where J stands for

the closure of a set J .
3. We call T \T o the flowers of T .

We need an assumption that the branches of a tree is sufficiently spread but do not inter-
sect each other.

ASSUMPTION 1. 1. Words u, v ∈ W (|u| < |v|) intersects only when u = a1 · · · an

and v = uan+1 with some ai ∈ A (1 ≤ i ≤ n + 1), and they only intersect with their end
points.

2. There exists a constant C0 > 0 such that for any word w ∈ W the diameter of
((w)) ∩ (T \T o) is greater than C0 times the length of the branch (w).

Remark that each point x in the flowers corresponds to a point in I , because branches do
not intersect from Assumption 1.

EXAMPLE 1. Let F(x) = 2x (mod 1). Then the tree corresponding to this transfor-
mation looks as in Figure 1.

The main theorem which we will prove in this paper is:
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THEOREM 1. Let I = [0, 1], and F be a piecewise linear, expanding and topologically
transitive transformation. Then the Hausdorff dimension of this tree is the maximal solution
of det(I − Φ(Rα, α)) = 0, where the definition of Φ(z, α) is given afterwards.

2. Notaions and Results on piecewise linear maps

For each x ∈ I , its expansion sx = ax
1 ax

2 · · · (ax
i ∈ A) is defined by

F i−1(x) ∈ 〈ax
i 〉 .

We identify a point x ∈ I and its expansion sx . For a word w = a1 · · · an and a point x ∈ I ,
we express by wx an infinite sequence a1 · · · ana

x
1 ax

2 · · · . If there exists a point y which has
the same expansion as wx, then we call wx exists, and express ∃wx. We can consider two
dynamical systems. One is I with F , and the other is a space of infinite sequences

Σ = {sx : x ∈ I } ,

with the shift θ . We can identify these by identifying points in I and their expansions.

LEMMA 1. Fix any 0 < ξ ′ < ξ . Then there exists a constant C1 = C1(ξ
′) such that

for any w ∈ W , we get

ηw ≤ C1e
−ξ ′|w| .

The proof directly follows from the definition of ξ . From this lemma, we get also

|〈w〉| ≤ C1e
−ξ ′|w| .

We call a piecewise linear transformation F Markov if there exists a finite set A such that for

any words u, v, if F(〈u〉) ∩ 〈v〉o �= ∅, then F(〈u〉) ⊃ 〈v〉0. Here we denote by J o the interior
of a set J .

For an infinite sequence s = a1a2 · · · (ai ∈ A), we define

s[n,m] = an · · · am (n ≤ m) ,

s[n] = an .

Especially, for an expansion of x, we denote

ax[1, n] = ax
1 ax

2 · · · ax
n .

Moreover, by taking limits from the right and the left, we define

y+ = lim
x↑y

ax
1 ax

2 · · · ,

y− = lim
x↓y

ax
1 ax

2 · · · .

We denote by a+ and a− the expansions of the right and the left endpoints of an interval 〈a〉,
respectively.
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We will prepare a generating function. Let for g ∈ L∞, we define for α > 0

syσ

g (z, α) =
∞∑

n=0

zn
∑

w∈W
ηα

w

∫
n

σ (yσ ,wx)δ[〈w[1]〉 ⊃ 〈ay

1 〉, ∃θwx]g(x) dx .

Here

δ[L] =
{

1 L is true ,

0 otherwise ,

σ(yσ , x) =




+1

2
if y ≥σ x ,

−1

2
if y <σ x ,

x <σ y =
{

x < y σ = + ,

x > y σ = − ,

∫
n

=
∫

n,yσ

=
{∫

〈ay
1 〉 n = 0 ,∫

I n ≥ 1 .

Then we put

Φ(z, α)yσ ,bτ =
∞∑

n=1

znσ (θnyσ , bτ )(sgn yσ [1, n])(ηyσ [1,n])α ,

χyσ

g (z, α) =
∞∑

n=0

zn(sgn yσ [1, n])(ηyσ [1,n])α
∫

n

g(x)σ (θnyσ , x) dx .

We define vectors sg (z, α) = (sã
g (z, α))

ã∈Ã and χg(z, α) = (χã
g (z, α))

ã∈Ã on Ã = {aσ : a ∈
A, σ = ±}. Let Φ(z, α) be a matrix on Ã whose component equals Φ(z, α)aσ ,bτ (aσ , bτ ∈
Ã). We call this matrix the Fredholm matrix associated with F . Note that Φ(z, α) and
χg (z, α) are analytic in |z| < eξα.

We have a renewal equation of the form (cf. [3] when α = 1, and [6] for general α):

sg (z, α) = (I − Φ(z, α))−1χg (z, α) .

Set for an interval J

sJ
g (z, α) = sJ+

g (z, α) + sJ−
g (z, α) .

where J+ and J− is the expansions of points sup{x ∈ J } and inf{x ∈ J }, respectively. Then
from the definition, we get (cf. also [3] and [6])

s〈a〉
g (z, α) =

∞∑
n=0

zn
∑

w∈Wn,w[1]=a

ηα
w

∫
1Fn(〈w〉)(x)g(x) dx .
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Then taking g ≡ 1, we get for z > 0 and α ≥ 1

s
〈a〉
1 (z, α) =

∞∑
n=0

zn
∑

w∈Wn,w[1]=a

ηα
w|Fn(〈w〉)|

≥
∞∑

n=0

zn
∑

w∈Wn,w[1]=a

ηα
w|Fn(〈w〉)|α

=
∞∑

n=0

zn
∑

w∈Wn,w[1]=a

|〈w〉|α.(2.1)

We define an α-zeta function:

ζ(z, α) = exp

[ ∞∑
n=1

zn

n

∑
p=Fn(p)

|Fn′
(p)|−α

]
.

Then we get

ζ(z, α) = [det(I − Φ(z, α))]−1 .

Moreover, if F is Markov, then a matrix defined by

Φ̃(z, α)a,b =
{

zηα
a if F(〈a〉) ⊃ 〈b〉o,

0 otherwise

satisfies

det(I − Φ(z, α)) = det(I − Φ̃(z, α)) .

We call this matrix Φ̃(z, α) Markov expression of Fredholm matrix. See [5] and [6] for detail.

3. Markov Approximation

For each a ∈ A and an integer M > 0, we define two infinite sequences of symbols
(a+

M)− and (a−
M)+, which coincide with a+ and a− until M , and FM((a+

M)−) = 〈a+
M〉− and

FM((a−
M)+) = 〈a−

M〉+, respectively, that is,

(a+
M)− = a+

1 · · · a+
M−1〈a+

M〉−

= a+
1 · · · a+

M−1(a
+
M)−1 (a+

M)−2 · · · ,

(a−
M)+ = a−

1 · · · a−
M−1〈a−

M〉+

= a−
1 · · · a−

M−1(a
−
M)+1 (a−

M)+2 · · · .

Then for sufficiently large M and a ∈ A, taking above sequences as points in [0, 1], we get

(a+
M)−, (a−

M)+ ∈ 〈a〉 .
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From the construction,

(a+
M)− ↑ a+, (a−

M)+ ↓ a− .

Therefore

IM =
⋃
a∈A

[(a−
M)+, (a+

M)−] ↑ [0, 1] .

Now let for sufficiently large M

CM = {x ∈ IM : Fn(x) ∈ IM for all n} .

Then CM is a Cantor set in [0, 1]. Take a restriction FM = F |CM . Then FM is a Markov
transformation on CM . Because IM increases to [0, 1], CM also increases. Thus any periodic

orbit belongs to CM for sufficiently large M . Periodic orbits are dense in [0, 1], so CM ↑
[0, 1]. Thus, since zeta functions are determined by periodic orbits, for sufficiently small z,
the α-zeta function associated with FM converges to the α-zeta function ζ(z, α) associated
with F .

We call a word w a Markov word if F |w|(〈w〉) is a union of 〈a〉 (a ∈ A). Let WM
n be a

set of all the words w = a1 · · · an ∈ Wn which satisfy one of the followings:
1. n < M and there exists a M–Markov word b1 · · · bM such that 〈w〉 ⊃ 〈b1 · · · bM〉,
2. n ≥ M and for any 1 ≤ i ≤ n − M , ai · · · aM+i is a Markov word.

Put WM = ⋃∞
n=0 WM

n .

4. Proof of Theorem 1, Hausdorff dimension of the tree T

Let us estimate the Hausdorff dimension of trees from above. First we prove:

LEMMA 2. The Hausdorff dimension of T o equals 1, that is, the main part of the tree
T is its flowers.

PROOF. Let us choose any 0 < p < 1 and fix it. We will cover a branch ((w))o starting
from a word w with length |w| = n by closed discs with radius pn. The total length of

branches ((w)) with length |w| = n equals Rn. So there exist at most Rn

pn + (#A)n number of

disks to cover these branches. Thus by this cover we get an upper estimate:

pnα

(
Rn

pn
+ (#A)n

)
= (Rpα−1)n + (pα#A)n ≤ 2(max{Rpα−1, pα#A})n .

Therefore, for any α > 1, we can take max{Rpα−1, pα#A} < 1 with sufficiently small p.
This shows dim T o ≤ 1. On the other hand, T o contains segments, therefore dim T o ≥ 1.
This shows dim T o = 1. �

There exists a natural one to one and onto correspondence between the symbolic dynam-
ics s = a1a2 · · · ∈ Σ and ((s)) = ∩∞

n=1((a1 · · · an)) ∈ T \T o. So we first cover flowers
T \T o by using closed disks which cover branches ((w)) (|w| = n) for some n. From the
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assumption, we get

the diameter of ((w)) ≤ sup
a1,a2,...

∞∑
n=0

the length of (wa1 · · · an)

= sup
a1,a2,...

∞∑
n=0

R|w|+n|〈wa1 · · · an〉|

≤
∞∑

n=0

R|w|+nC1e
(−ξ+ε)n|〈w〉| (ξ ′ = ξ − ε)

=
∞∑

n=0

R|w|rnC1e
εn|〈w〉|

= R|w||〈w〉| C1

1 − reε
.(4.1)

Here we choose any ε > 0 which satisfies reε < 1.
Using renewal equation

sg (z, α) = (I − Φ(z, α))−1χg (z, α) ,

and (2.1), we get for z > 0
∞∑

n=0

zn
∑

|w|=n

[the diameter of ((w))]α ≤
∞∑

n=0

zn
∑

|w|=n

Rnα |〈w〉|α
(

C1

1 − reε

)α

=
(

C1

1 − reε

)α ∞∑
n=0

(Rαz)n
∑

|w|=n

|〈w〉|α

≤
(

C1

1 − reε

)α

(1, . . . , 1)s1(R
αz, α)

=
(

C1

1 − reε

)α

(1, . . . , 1)(I − Φ(Rαz, α))−1χ1(R
αz, α) .

Let us denote by α∗ the maximal solution of the equation

det(I − Φ(Rα, α)) = 0 .

Then the Hausdorff dimension of T is less than or equal to α∗ (cf. [6]).
Now we will show the opposite inequality. Let us denote by TM the tree constructed only

by words which belongs to WM . Because every branches are shorter than that of T and from
the assumption, TM ⊂ T , hence dim TM ≤ dim T .

We first calculate the Hausdorff dimension of TM . Let Φ̃M(z, α) be the Markov ex-
pression of the Fredholm matrix associated with FM . Let αM be the maximal solution of

det(I − Φ̃M(Rα, α)) = 0.
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From the Perron-Frobenius’ theorem, there exists an eigenvector (va)a∈A such that va >

0 and
∑

a∈A va = 1 associated with eigenvalue 1 of Φ̃M(RαM , αM). We consider a new
partition {〈a〉M}a∈A of [0, 1] such that |〈a〉M | = va . We define a piecewise linear Markov
transformation GM such that GM(〈a〉M) = ⋃

b∈F(〈a〉)〈b〉M and G′
M |〈a〉M = (Rηa)

αM sgn a.

Induce the Lebesgue measure on the space where GM acts to ∪x((sx)), and denote it by
µ1. We consider another set function µ2 which is derived by a cover by words ((w)) of
{((sx)) : x ∈ [0, 1]}. We define for a word w µ2[((w))] = [the diameter of ((w)) ∩ (T \T o)].
For these µ1 and µ2, we can define a Hausdorff dimension dimµi (i = 1, 2) by the critical
point of

lim
δ↓0

inf
the diameter of ((w))<δ

∪w((w))⊃T\T o

∑
w

[µi[((w))]]α ,

and from the assumption

µ2[((w))] ≥ C0|(w)| = C0R
|w||〈w〉| .

Therefore

TM ⊂
{
((sx)) : lim inf

n→∞
log µ1[((ax[1, n]))]
log µ2[((ax[1, n]))] ≥ αM

}
.

Now we will appeal to Billingsley’s theorem:

THEOREM 2. ([1]) Assume that

T ⊂
{
((x)) : lim inf

n→∞
log µ1[((ax[1, n]))]
log µ2[((ax[1, n]))] ≥ α

}
.

Then

dimµ2 ≥ α dimµ1 .

REMARK 1. To be precise, the set function µ2 is not a measure, so we can not apply
the above theorem to our case directly. But we consider µ2 only for intervals corresponding
to words, so we can easily extend the above theorem to our case just along the same way to
prove it (cf. [1]). So, we omit the proof.

Then from this theorem, we get

dimµ2 ≥ αM dimµ1 = αM .

LEMMA 3. dimµ2 equals the Hausdorff dimension of TM\T o
M

PROOF. From the definition, we get dimµ2 is greater than or equal to the Hausdorff
dimension of TM\T o

M . We will show the opposite inequality. Take α any number which is
greater than the Hausdorff dimension of TM\T o

M . Then there exists a cover {Dn}n of flowers

TM\T o
M by closed discs such that

∑
n |Dn|α < ∞. To each Dn ∩ (T \T o), an interval D′

n ⊂
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[0, 1] corresponds using symbolic dynamics. Without loss of generality, we can assume

|D′
n| < min

a∈A
|〈a〉| .

Let w = a1 · · · ak ∈ W be a word with the shortest length for which 〈w〉 is contained in
D′

n. If 〈a1 · · · ak−1〉 does not cover D′
n, we choose a word w′ = b1 · · · bl which is the word

with the shortest length such that 〈w′〉 is contained in D′
n\〈a1 · · · ak−1〉. Then 〈a1 · · · ak−1〉 ∪

〈b1 · · · bl−1〉 covers D′
n. In other words, ((a1 · · · ak−1))∪((b1 · · · bl−1)) covers Dn∩(TM\T o

M).
Because FM is Markov, there exist constants K1,K2 > 0 such that

K1ηw ≤ |〈w〉| ≤ K2ηw .

Therefore

|〈a1 · · · ak−1〉| ≤ K2

k−1∏
i=1

ηai ≤ K2 max
a∈A

(ηa)
−1

k∏
i=1

ηai

≤ K2

K1
max
a∈A

(ηa)
−1|〈a1 · · · ak〉| .

From the construction and (4.1),

{diameter of ((a1 · · · ak−1)) ∩ (TM\T o
M)}α

+ {diameter of ((b1 · · · bl−1)) ∩ (TM\T o
M)}α}

≤
(

Rk C2

1 − reε

)α

|〈a1 · · · ak−1〉|α +
(

Rl C2

1 − reε

)α

|〈b1 · · · bl−1〉|α

≤
(

Rk C2

1 − reε

K2

K1
max
a∈A

(ηa)
−1

)α

|〈a1 · · · ak〉|α

+
(

Rl C2

1 − reε

K2

K1
max
a∈A

(ηa)
−1

)α

|〈b1 · · · bl〉|α) .(4.2)

Then from |((w))| ≥ C0|(w)| = C0R
|w||〈w〉|, we get

the right hand term of (4.2)

≤
(

C2K2

C0(1 − reε)K1
max
a∈A

(ηa)
−1

)α

(|((a1 · · · ak))|α + |((b1 · · · bl))|α)

≤
(

C2K2

C0(1 − reε)K1
max
a∈A

(ηa)
−1

)α

2 max{|((a1 · · · ak))|α, |((b1 · · · bl))|α}

≤ 2

(
C2K2

C0(1 − reε)K1
max
a∈A

(ηa)
−1

)α

|Dn|α .

Thus we get a cover of TM\T o
M by words wi such that

∑
i µ2[((wi))]α < ∞. This proves the

Lemma. �
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Therefore αM equals the Hausdorff dimension of TM .
The Fredholm determinant det(I −Φ(z, α)) is the reciprocal of α–zeta function, and the

α–zeta function of FM converges to that of F in |z| < eξα. Therefore, det(I − ΦM(z, α)) =
det(I − Φ̃M(z, α)) converges to det(I − Φ(z, α)). Hence, we get αM converges to α∗. This
proves Theorem 1.
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